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Edit3D: Elevating 3D Scene Editing with Attention-Driven
Multi-Turn Interactivity
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ABSTRACT
With the rise of new 3D representations like NeRF and 3D Gauss-
ian splatting, creating realistic 3D scenes is easier than ever before.
However, the incompatibility of these 3D representations with exist-
ing editing software has also introduced unprecedented challenges
to 3D editing tasks. Although recent advances in text-to-image
generative models have made some progress in 3D editing, these
methods either lack precision or require users to manually specify
the editing areas in 3D space, complicating the editing process. To
overcome these issues, we propose Edit3D, an innovative 3D edit-
ing method designed to enhance editing quality. Specifically, we
propose a multi-turn editing framework and introduce an attention-
driven open-set segmentation (ADSS) technique within this frame-
work. ADSS allows for more precise segmentation of parts, which
enhances the editing precision and minimizes interference with
pixels in areas that are not being edited. Additionally, we propose a
fine-tuning phase, intended to further improve the overall editing
quality without compromising the training efficiency. Experiments
demonstrate that Edit3D effectively adjusts 3D scenes based on tex-
tual instructions. Through continuous and multiple turns of editing,
it achieves more intricate combinations, enhancing the diversity of
3D editing effects.

CCS CONCEPTS
• Computing methodologies→ 3D imaging.

KEYWORDS
3D editing, attention-driven, multi-turn editing

1 INTRODUCTION
Traditional 3D editing is a complex task, typically requiring pro-
fessional software to precisely adjust models’ shape and texture.
This process demands expertise from the user and makes the entire
editing procedure complicated. Recently, innovative 3D representa-
tions such as NeRF [36] and 3D Gaussian splatting [20] have pro-
vided unprecedented support for the reconstruction of 3D scenes.
Although these emerging 3D representations have facilitated the
reconstruction of real 3D scenes, they also present new challenges:
their incompatibility with existing 3D editing software means that
traditional editing methods are no longer applicable. As generative
artificial intelligence progresses, there is an need to develop new
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Turn 1: Turn 2:
Original NeRF “Give him a mustache" “Give him a cowboy hat"

(a) IN2N

(b) Edit3D

Figure 1: Two-step 3D editing comparison. The IN2N method
adds a mustache but later removes it when adding a hat, also
blurring the clothing and background. The Edit3D method
adds both items without affecting clarity, showing its effec-
tiveness in sequential edits.

tools and methods to edit and adjust the latest 3D representations
both easier and more intuitive.

Text-to-image generative models offer new technological means
for 3D editing techniques [14, 30, 34, 43]. Among these innovative
methods, IN2N [14] has garnered widespread attention for its text-
driven 3D editing capabilities. This technology allows for the editing
of 3D scenes through text instructions, greatly simplifying the 3D
editing process. Despite the notable advancements for IN2N in 3D
editing, its editing capabilities are based on the InstructPix2Pix
model [2]. The InstructPix2Pix model uses a diffusion process to
edit images, processing the entire image as input, causing all pixels
in the image to undergo a diffusion process. This global editing
may cause unintended alterations in certain areas not intended
for change, causing the final 3D scene to diverge from the editor’s
original intent. To further enhance the effects of 3D editing, it is
necessary to optimize the current editing framework to ensure
precise operations in target areas during the editing process.

In this paper, we propose a text-driven 3D editing method called
Edit3D and have implemented three improvement measures. First,
we improve the IN2N algorithm. The optimized algorithm can adapt
to multiple turns of continuous editing processes, allowing users
to achieve more complex 3D editing effects by combining a series
of editing instructions. Second, we integrate a segmentation model
into the 3D editing framework, which enhanced the precision of
editing operations and ensured that the edits accurately target the
intended locations. Existing open-set segmentation techniques do
not perform well in handling fine-grained segmentation tasks. To
address this, we propose an innovative attention-driven open-set
segmentation (ADSS) method that achieves more refined object
segmentation, thereby enabling more precise editing of 3D scenes.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Throughout the study, we observe an intriguing phenomenon: when
the model is given precise image text descriptions (captions), it can
generate more accurate attention maps, which in turn improves
the accuracy of image segmentation tasks. This further confirms
the importance and potential applications of textual information
in the field of image recognition. Finally, we introduce a carefully
designed fine-tuning phase to further enhance the overall effect
of 3D editing, while ensuring that the extra training costs stay
reasonable.

Fig. 1 shows an example of a two-turn editing process. In this
example, the IN2N approach introduces some unnecessary changes
to areas not targeted for editing when executing the editing instruc-
tions. For example, IN2N initially succeeds in adding a mustache
to the character after the first stage. In the second turn of editing,
a cowboy hat is further added. However, while new elements are
added, the previously added mustache is removed. Besides, the char-
acter’s clothing and the image background also become less clear.
In contrast, with our Edit3D method, not only are the mustache
and hat successfully added, but the clarity of the clothing and back-
ground is well maintained. This indicates that our Edit3D method
not only achieves single editing effects with greater precision but
also produces more complex results through multiple cascading
edits.

2 RELATEDWORK
Progress in using instructions as an editing interface has evolved in
parallel with the development of large language models (LLMs) [3,
42, 44–46, 58, 64]. LLMs enable users to complete tasks via tex-
tual instructions. Based on diffusion-based generative models [7,
17, 18, 52, 54], text-to-image models facilitate the creation of im-
ages from textual prompts [12, 40, 48, 50, 66]. This technology has
advanced to real images by identifying and modifying the word
embeddings, followed by regenerating the image with the intended
edits [10, 39, 47, 49, 53]. InstructPix2Pix [2] simplifies the editing
workflow by employing Prompt-to-Prompt [16] for training dataset
generation, resulting in an instruction-based model that intuitively
edits images via text prompts. Extending this concept, IN2N [14]
has pioneered instruction-based editing for 3D scenes [36]. Unlike
the multi-turn dialogues facilitated by LLMs in neural language
understanding, instruction-based editing in image and 3D domains
has been confined to single-turn interactions [1, 19]. Single-turn
interactions differ from their multi-turn counterparts as they op-
erate on a single sentence or prompt without maintaining context
or coherence across the conversation [59]. Our method enhances
instruction-based editing in the 3D domain to encompass multi-
turn scenarios, thereby achieving a consistent and coherent editing
experience throughout successive editing interactions.

In instruction-based image editing, a common issue is the unin-
tended alteration of areas outside the target region. To address this,
open-set detection/segmentation models [8, 13, 23, 24, 28, 31, 37, 63]
capable of accurately identifying editing areas can be utilized. How-
ever, these models, while proficient in detecting a wide range of
object categories, often lack the part-level recognition ability. For
more granular editing, part-level recognition is essential. Current
fine-grained segmentation models [6, 29, 35, 56, 68], such as those
trained on datasets like Pascal-Part [4] and PartImageNet [15], have

limitations due to dataset annotation biases. We observe that the
SAM model [21] demonstrates robust segmentation performance
across various datasets. However, for segmenting specific parts,
SAM necessitates additional inputs like points or boxes. Our pro-
posal involves using the SAMmodel for initial robust segmentation.
This process can be augmented with vision-language multimodal
models [22, 26, 27, 32, 60] to locate specific parts via attention
maps [51, 67]. Given the capabilities shown by multimodal models
like GPT-4V [41], we anticipate further improvements in the pro-
posed open-set segmentation framework with the release of more
advanced multimodal models in the research community.

3 METHOD
This paper focuses on the improvement of 3D editing techniques,
without being specific to any particular form of 3D representation.
The editing strategies proposed are universal, capable of being ap-
plied to various representations such as NeRF [36] and 3D Gaussian
splatting [20]. To elaborate on the strategy specifically, this paper
selects NeRF as an example of 3D data representation. In Sec. 3.1,
we improve the single-turn editing strategy of the IN2N model to
a multi-turn editing method. Subsequently, in Sec. 3.2, we adopt
attention-driven segmentation technology to precisely confine the
area of editing operations, ensuring the accuracy of the edits. Fi-
nally, in Sec. 3.3, we apply mixed super-resolution technology to
enhance the editing effects, further improving the detail and visual
quality of the edited 3D scene.

3.1 Overcoming Catastrophic Forgetting
IN2N simplifies the process of editing NeRF with text instructions,
allowing for editing to be made in a single turn. A more natural
method, however, is to edit 3D scenes through a series of turns. For
instance, IN2N performs effectively in the initial turn of a two-stage
editing process, as illustrated in Fig. 1(a), where it successfully adds
a mustache to a figure following the given instruction. Yet, when
a new instruction is introduced in the subsequent turn, such as
“Give him a cowboy hat”, the system only applies this latest instruc-
tion and overlooks the previous edit of adding the mustache. This
phenomenon is known as catastrophic forgetting. In this section,
we discuss how we improve the IN2N framework by integrating
capabilities that allow for consecutive editing, thereby resolving the
issue of catastrophic forgetting. Specifically, the IN2N framework
edits images rendered by NeRF using InstructPix2Pix, conditioned
by three key elements: a reference image 𝐶image, a text instruction
𝐶text, and a noise-injected input z𝑡 . The process is encapsulated by
a function 𝐺 (·), yielding the modified image as 𝐺 (𝐶image,𝐶text, z𝑡 ).

Pre-Rendered Images as Condition. During training, the IN2N
model uses the original dataset image 𝐼 𝑣dataset as the conditioning
image 𝐶image, where 𝑣 is the camera’s calibrated viewpoint. It gen-
erates a new image from viewpoint 𝑣 using the current NeRF model,
labeled 𝐼 𝑣rendered. For the noisy input z𝑡 , since the InstructPix2Pix
framework operates in a latent space, 𝐼 𝑣rendered is first encoded by a
VAE encoder E and then combined with Gaussian noise to create
z𝑡 , where 𝑡 represents the degree of noise added. To simplify, we
refer to this encoding and noising process as 𝐹𝑡 (·), resulting in
z𝑡 = 𝐹𝑡 (𝐼 𝑣rendered). Consequently, the edited image by IN2N is given
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Figure 2: Overview of the Edit3D method. Our method begins with pre-rendered images at the start of each editing session,
which are used as the condition for InstructPix2Pix, and as the initial guiding images for supervising the 3D scene to prevent
catastrophic forgetting (as detailed in Sec. 3.1). Additionally, semantic segmentation is applied to address the issue of character-
istic drift (explained in Sec. 3.2).

by

𝐼 𝑣edited = 𝐺 (𝐼 𝑣dataset,𝐶text, 𝐹𝑡 (𝐼 𝑣rendered)). (1)

According to Eq. (1), the edited image in the current turn, denoted
as 𝐼 𝑣edited, integrates information from both the conditioning image
𝐼 𝑣dataset and the textual instruction𝐶text. During the multi-turn edit-
ing process, changes made in earlier turns are captured by 𝐼 𝑣rendered,
yet the addition of noise compromises the preservation of these
edits, interrupting the continuity. To address this, we start each edit-
ing turn by pre-rendering a set of images {𝐼 𝑣rendered | 𝑣 ∈ 𝑉dataset}
using the updated NeRF from the preceding turn. The set 𝑉dataset
encompasses all camera viewpoints in the dataset. It is important to
note that the pre-rendered image 𝐼 𝑣rendered is distinct from 𝐼 𝑣rendered
mentioned in Eq. (1). The former maintains the modifications from
prior turns, whereas the latter, updated by the current NeRF, might
not retain the impact of those earlier changes. To overcome this,
we utilize 𝐼 𝑣rendered as the conditioning image, and thus the edited
image according to our method is given by:

𝐼 𝑣edited = 𝐺 (𝐼 𝑣rendered,𝐶text, 𝐹𝑡 (𝐼 𝑣rendered)) . (2)

Fig. 2 illustrates the schematic of the editing framework. It is
important to recognize that Eq. (1) represents a specific instance
of Eq. (2) in the context of a single-turn editing scenario. Assuming
the NeRF has converged on the original dataset, the rendered image
𝐼 𝑣rendered is approximately equal to 𝐼 𝑣dataset. As a result, the edited
image 𝐼 𝑣edited closely resembles 𝐼 𝑣edited. In scenarios involving multi-
ple editing turns, utilizing the previously rendered image 𝐼 𝑣rendered

instead of the original dataset image 𝐼 𝑣dataset as the conditioning im-
age ensures that edits from earlier stages are seamlessly integrated
into subsequent ones.

Pre-Rendered Images as Targets. The edited images created by
InstructPix2Pix exhibit inconsistencies when viewed from different
viewpoints, making them unsuitable for direct use in supervising
the training of the 3D representation. To resolve this, IN2N intro-
duces an Iterative Dataset Update (Iterative DU ) algorithm, which
incrementally incorporates edited images into the original dataset.
During the training phase, NeRF randomly selects rays from a range
of viewpoints. Consequently, the ground truth pixel values for these
rays could be derived either from the original dataset or from the
edited images. It has been demonstrated that this method of mixed
supervision leads to more stable training and yields multi-view
consistent results in 3D editing.

Iterative DU is effective for single-turn editing, but it’s not suit-
able for scenarios involving multiple editing turns. In these cases,
the current NeRF already incorporates the editing effects of pre-
vious turns. Therefore, using images from the original dataset to
supervise the current NeRF could erase the edits made in earlier
turns. To address this, we begin each editing session with a set
of pre-rendered images {𝐼 𝑣rendered | 𝑣 ∈ 𝑉dataset}, where 𝐼 𝑣rendered
represents the edits from earlier sessions. We employ these pre-
rendered images as training targets for the current NeRF. At the
same time, we gradually replace these targets with the newly edited
images 𝐼 𝑣edited, as specified in Eq. (2). This approach ensures that the
NeRF during each editing phase is guided either by the previously
rendered 𝐼 𝑣rendered or the recently edited images 𝐼 𝑣edited. Since both
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Figure 3: Characteristic drift issue in 3D editing. The editing process is divided into two turns: the first alters the woman’s
hair to blonde, and the second transforms her face into a marble Roman sculpture. As the training iterations progress, the
top row, marked “IN2N”, displays noticeable deviation during the editing process, while the bottom row, denoted as “Edit3D”,
demonstrates more precise and consistent transitions through the multi-stage edits.

images reflect the cumulative edits, our method effectively prevents
the catastrophic forgetting issue in multi-turn editing. For example,
as shown in Fig. 1(b), Edit3D demonstrates a seamless two-turn
editing process for 3D scenes.

3.2 Mitigating Characteristic Drift
It is observed that IN2N exhibits a characteristic drift issue, as
depicted in the top row of Fig. 3. The figure displays a 3D editing
process, which is divided into two phases. In the first phase, the
woman’s hair color is changed to blonde, and in the second phase,
her face is transformed to resemble a marble Roman sculpture.
The top row, “IN2N”, shows significant deviations as the training
iterations progress. For instance, consider the instruction “Turn her
into a blonde girl”. As training progresses, the modified scene by
IN2N adheres to this instruction. Yet, with an increase in training
iterations, there’s a noticeable shift in the person’s identity within
the edited outcomes compared to the original images. IN2N can
mitigate this issue by reducing the training iterations, though this
might affect the editing’s quality. Take the instruction “Turn her
face into a marble Roman sculpture” as another example. If the
iterations are too few, the edit might not be pronounced enough to
meet the intended effect. Conversely, too many iterations can lead
to excessive interference, causing the characteristics of the whole
image to change. This could lead to the whole image to resemble a
statue, instead of simply modifying the face.

To address the issue of characteristic drift, one straightforward
method is to limit the editing process to specific regions. This strat-
egy helps to preserve the integrity of pixels in areas not meant to be
edited. Mirzaei et al. [38] propose a technique to create a relevance
map by spotting the differences between the predictions made by
the InstructPix2Pix model when provided with and without textual
instructions. They concurrently trained a relevance field while up-
dating the NeRF to obtain relevance maps for different viewpoints.

However, Mirzaei et al. [38] have not made their training code pub-
licly available. We decided to develop our own approach, utilizing
attention-driven segmentation to tackle the issue of characteristic
drift.

Image Fusion with Semantic Segmentation. Our approach uses
a semantic segmentation model to identify the area for editing in
the image, then blends the images before and after editing using the
segmentation mask. The resulting fused image is used as the target
for training the 3D representation. In particular, at the beginning
of each editing session, we pre-render a set of multi-view images,
{𝐼 𝑣rendered |𝑣 ∈ 𝑉dataset}, utilizing the previously edited NeRF. For the
current editing step, the edited image, 𝐼 𝑣edited, as defined in Eq. (2),
is merged with the pre-rendered image according to the formula:

𝐼 𝑣fused = 𝐼 𝑣edited ·𝑀
𝑣 + 𝐼 𝑣rendered · (1 −𝑀𝑣), (3)

where𝑀𝑣 = 𝑆 (𝐼 𝑣rendered) is the segmentation mask produced by a
semantic segmentation model 𝑆 (·), which marks the region to be
edited. To make the seams of the fused image more natural, we
applied Gaussian smoothing to the edges of the mask. During the
editing process, the fused image 𝐼 𝑣fused is used to iteratively update
the training targets. Since 𝑀𝑣 relies solely on the image rendered
prior to editing, 𝐼 𝑣rendered, we can calculate it in advance at the start
of each editing turn. Consequently, although our approach incor-
porates a semantic segmentation model, it does not significantly
increase the overall time required for training.

Please note that for certain instructions such as “Give him a cow-
boy hat”, the pre-rendered images 𝐼 𝑣rendered do not include the “hat"
attribute. This creates a challenge for the semantic segmentation
model to identify the editing area. In response, we propose to ex-
tract the mask𝑀𝑣

retained for the regions in the pre-rendered image
that should stay unchanged. The mask for the editing region,𝑀𝑣 ,
is then obtained by 1 −𝑀𝑣

retained. Fig. 1(b) illustrates an example
where the face and mustache are preserved while a hat is added
to the top of the head. In this case, the precise location of the hat
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Figure 4: Schematic of the Attention-Driven Open-Set Segmentation (ADSS) framework. ADSS employs two techniques: SAM [21]
and Grad-CAM [51]. SAM generates class-agnostic masks for the entire image, while Grad-CAM extracts attention maps for
text-relevant regions like hair, face, and sweater. These maps are thresholded to create masks, which are then matched with
SAM’s masks to achieve precise segmentation for specific parts.

could not be determined using the segmentation model before the
editing.

ADSS: Attention-Driven Open-Set Segmentation. Our method
necessitates a semantic segmentation model that operates in an
open-set manner and is adept at distinguishing various parts such as
hair, face, and items of clothing like T-shirts and trousers. However,
our evaluations of recent models have indicated that they do not
fulfill our requirements. For instance, the model SEEM [70], as
shown in Fig. 5(a), merges distinct elements such as hair, face, T-
shirt, and trousers into a single segmentation mask. This issue is not
unique to SEEM. We observed similar challenges with other open-
set segmentation models like Grounded-SAM1. Additionally, our
experiments with VLPart [55, 56] model anticipated to segment at
the part level, exhibit shortcomings in accurately identifying faces
and trousers, as illustrated in Fig. 5(b). To address these limitations,
we have developed a novel model named Attention-Driven Open-
Set Segmentation (ADSS), which is a part of our multi-turn editing
framework. ADSS integrates two advanced techniques: SAM [21]
and Grad-CAM [51].

As depicted in Fig. 4, the initial step involves deploying SAM
to derive masks for the entire image, though these masks do not
possess category labels. Then a caption is automatically generated
for the input image using a visual-language multimodal model,
BLIP [27]. This caption is subsequently concatenated with the pro-
vided text queries. The merged text and the original image are
then processed through the image-text matching module of BLIP
to compute attention maps for the queries via Grad-CAM, which
is inspired by LAVIS [25]. We find that appending the caption be-
fore queries is crucial for generating a precise attention map for
each query, as evidenced by the experiments (Sec. 4.4). For a spe-
cific query, its attention map is thresholded into a mask, which is
then matched with SAM’s output masks. The mask that exhibits

1https://github.com/IDEA-Research/Grounded-Segment-Anything

the largest Intersection over Union (IoU) is considered the seg-
mentation result corresponding to the query. ADSS is an effective
part-level open-set segmenter. As demonstrated in Fig. 5(c), when
provided with referring texts, ADSS effectively generates masks for
each respective query.

3.3 Enhancing Editing Quality
It has been noted that IN2N shows effective performance with im-
ages of medium resolution, such as those with dimensions up to 256
or 512 pixels. However, when it comes to high-resolution images,
up to 1024 pixels, the quality of editing noticeably decreases2. This
decline is linked to its dependency on InstructPix2Pix for image
editing. InstructPix2Pix was developed using images of 256×256 res-
olution. Furthermore, the foundational model for InstructPix2Pix,
specifically the Stable Diffusion v1.5 checkpoint, was trained using
512× 512 images [48]. Therefore, while InstructPix2Pix operates ef-
ficiently at resolutions of 256×256 and 512×512, it faces challenges
in adapting to higher resolutions. This limitation often leads IN2N
to downsample original high-resolution images to a medium reso-
lution during training, resulting in a loss of detailed high-frequency
information in the edited images.

We propose to improve the editing effect through super-resolution.
Initially, we edited low-resolution images using InstructPix2Pix and
then increased the resolution of these edits with super-resolution.
The resulting high-resolution images were considered the final ed-
its and used to update the training targets iteratively. However, this
approach greatly slowed down the training and was not feasible for
multi-turn editing. Ultimately, we adopted a more straightforward
method: once all edits were completed, we generated multi-view
images from the edited NeRF and enhanced them using a super-
resolution model. We further refined the edited NeRF with these
high-resolution images. For superior super-resolution outcomes,
we applied different models to facial and non-facial parts. We used

2https://github.com/ayaanzhaque/instruct-nerf2nerf/issues/14

https://github.com/IDEA-Research/Grounded-Segment-Anything
https://github.com/ayaanzhaque/instruct-nerf2nerf/issues/14
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(a) SEEM [70]

(b) VLPart [56]
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Figure 5: Results of open-set segmentation. SEEM [70] colors
the entire figure uniformly, unable to differentiate among
hair, face, T-shirt, and trousers. VLPart [56] misses faces
and shows inaccurate and inconsistent detection of trousers
from various viewpoints. In contrast, ADSS demonstrates its
effectiveness as a part-level segmenter.

the GFPGAN [61] model enhanced with generative prior for facial
areas, and the Real-ESRGAN [62] model for non-facial areas. This
refining phase is notably efficient because it bypasses the editing
process. The editing effect of the 3D scene was enhanced after
refining the NeRF model.

4 EXPERIMENTS
4.1 Implementation Details
In our NeRF implementation, we selected the nerfacto model from
NeRFStudio [57]. Our approach supports multiple turns of editing,
with a fixed learning rate across training sessions. Initially, we train
NeRF on the original scene for 30, 000 iterations, with a learning
rate of 0.0003 for camera parameters and 0.005 for NeRF’s parame-
ters. When we move to the editing phase, we keep the learning rate
for camera unchanged but lower NeRF’s learning rate to 0.0025. A
typical run of 15, 000 iterations usually yields satisfactory edits. We
conducted experiments with MobileSAM [65]; however, the out-
comes failed to meet our expectations. Finally, we selected the SAM
vit-h [21] for the segmentation model. The vision-language multi-
modal model we utilize is BLIP-large [27]. We translate attention

Table 1: Quantitative scores for multi-turn editing. Edit3D
outperforms IN2N in successive edits. Please refer to Sec. 4.3
for details.

⟨NeRF, Turn 1⟩ ⟨Turn1, Turn 2⟩ ⟨Turn2, Turn 3⟩ Mean

CLIP Directional Score ↑
IN2N 0.2457 0.1883 0.1607 0.1983
Edit3D 0.2731 0.2735 0.2088 0.2518

maps to masks using a 0.6 threshold. Our additional hyperparam-
eters are aligned with those of IN2N, such as the adjustment of
one training target every ten iterations with an edited image. Our
classifier-free guidance weights for the image and text conditions
are 1.5 and 7.5, respectively. Lastly, our image editing diffusion
process involves 20 denoising steps.

4.2 Qualitative Results
We present qualitative results to evaluate the effectiveness of our
proposed Edit3D, focusing on assessing the precision and consis-
tency of edits. As shown in Fig. 6(a), we compare our method with
IN2N [14] and the approach by Mirzaei et al. [38] (the result is from
their paper due to the lack of available code). Following the editing
instruction “Give him blue hair”, the results from IN2N altered the
color of the subject’s eyes and clothing, which was unintended.
Although Mirzaei et al. [38] developed a relevance field to locate
the editing area, their method still affected the subject’s clothing
color. Our method demonstrated superior performance in adhering
to the given instruction by accurately altering only the hair color
while preserving the original colors of the eyes and clothing.

In Fig. 6(b) and 6(c), we showcase the editing results within the
same scene by IN2N and our Edit3D, respectively. IN2N, which
does not support multi-turn editing, displays a pronounced char-
acteristic drift issue. For example, when instructed to “Turn the
red apple into a tomato”, objects irrelevant to the instruction were
also transformed into tomatoes. In contrast, our method achieves
precise, consecutive multi-turn editing, altering only the specific
items detailed in the instructions. Fig. 6(d) presents an example
of multi-turn human editing using our method. Starting from the
original 3D scene, we apply a series of instructions in turn: first, we
change the subject’s face to resemble that of a clown, then we add a
leather jacket, and finally, we shorten the trousers into shorts. Each
modification is precise and impacts only the designated areas. This
process demonstrates the model’s capability to ensure consistency
throughout the editing stages.

4.3 Quantitative Results
When assessing the effectiveness of multi-turn editing algorithms,
the key lies in comprehensively considering the alignment between
3D editing and text instructions, as well as the coherence of the ef-
fects across multiple turns of editing. Although IN2N only provided
quantitative analysis of 3D editing in two scenes, we expanded this
to three different scenes and implemented three consecutive turns
of editing for each scene, resulting in nine edited scenes in total.
To ensure the accuracy of the assessment, we manually annotated
these nine edited 3D scenes to establish the ideal text caption after
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Figure 6: Qualitative comparison: (a) Our approach accurately colors hair without impacting other areas, in contrast to IN2N [14]
and Mirzaei et al. [38]; (b) and (c) depict the challenge of characteristic drift in IN2N and the improved multi-turn editing with
our method; (d) showcases the precision and consistency of our method when applied to multi-turn editing on human figures.
Please see Sec. 4.2 for details.

Table 2: Time efficiencywas evaluated across 10, 000 iterations
at a resolution of 497×369 on anNVIDIA 3090GPU. See Sec. 4.3
for details.

Traing NeRF Editing (IN2N) Editing (Edit3D) Fine-tuning

Time 3.48 44.16 44.62 4.45(minutes)

successful editing. We employed the CLIP directional score [11] to
quantify the consistency between the editing effects and the text
descriptions. The score was assessed across images rendered from
100 distinct viewpoints. After completing all turns of editing, we
summarized the scores obtained from each turn and calculated the
average score, which served as the basis for the final assessment of
the effectiveness of the editing algorithms. As depicted in Tab. 1,
our approach demonstrates a clear advantage over IN2N, with a
higher average CLIP directional score of 0.2518 compared to 0.1983.
This indicates a more consistent alignment between textual and
visual changes throughout the multi-turn editing process.

We also evaluated the runtime efficiency of our method. The
results in Tab. 2 indicate that Edit3D is on par with the original
IN2N. The efficiency comes from the ADSS segmentation strategy.
ADSS identifies the editing areas in advance, removing the need for
extra computational resources when editing. Using an NVIDIA 3090
GPU, our method can perform 10, 000 iterations in approximately
45 minutes, a duration consistent with that of IN2N. Moreover,
the fine-tuning stage that employs super-resolution technology is
highly efficient, completing 10, 000 iterations in under 5 minutes.

4.4 Ablation Studies
In this section, we examine the impact of two improvements to
our editing framework: enhancement with super-resolution and
segmentation with caption-prefix techniques.

Super-Resolution Enhanced Editing.We examine the before and
after effects of fine-tuning using super-resolution. As illustrated
in Fig. 7, editing without fine-tuning results in artifacts, which are
marked by the red and blue boxes. With fine-tuning, the clarity of
the details in the images is enhanced, showcasing the advantages
of fine-tuning in the editing process.
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Figure 8: Segmentation results of ADSS with and without the
use of captions. Without captions (top row), the attention
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is a noticeable improvement in the attention maps, partic-
ularly in the areas of hair and shirt. The caption used for
enhancement is: “A womanwearing a striped button-up shirt
and khaki shorts, with long wavy brown hair”.

Table 3: Segmentation scores for VLPart [56] and ADSS, high-
lighting the improved accuracy of ADSS when captions are
used.

Hair Shirt Trousers mIoU

VLPart [56] 0.3647 0.9688 0.8753 0.7362
ADSS w/o captions 0.0 0.0972 0.1938 0.0970
ADSS w/ captions 0.8834 0.9601 0.9637 0.9357

Caption-Prefix Enhanced Segmentation. We assess the benefits of
prefixing captions to text queries for segmentation. The improve-
ments are evident in Fig. 8, where ADSS without a caption created
less accurate attention maps, especially in areas like hair and shirt
segments. Introducing relevant captions to the model resulted in at-
tention maps becoming more focused, leading to more satisfactory
segmentation masks. To validate this enhancement, we gathered
30 images from the DeepFashion [33] dataset and used BLIP [27]
to generate image captions. Tab. 3 shows that ADSS with captions
significantly outperformed its caption-less counterpart (0.9357 vs.

0.0970). We also tested VLPart [56], a part-level open-set segmen-
tation model, but its accuracy was lower, particularly for hair seg-
ments, with an mIoU of only 0.3647. Additionally, we examined
how the quality of captions affects segmentation performance. To
do this, we added a step where the captions produced by BLIP were
manually refined before being input into the ADSS model. This
process made the descriptions clearer and more detailed to match
the images closely. For instance, instead of generic descriptions
like “a person wearing clothes”, we used more detailed captions
such as “a person wearing a striped shirt and khaki shorts”. This
refinement process led to a noticeable improvement in attention
quality, showing that detailed and relevant captions are key to the
success of attention-driven segmentation models.

5 DISCUSSION
Although our attention-driven segmentation algorithm depends
on the quality of image captions, obtaining high-quality image de-
scriptions is not a challenging task in the current technological
environment. For example, before editing 3D scenes, we can gener-
ate preliminary descriptions of the 3D scenes using the open-source
BLIP model, then refine the descriptions manually to improve their
accuracy. Alternatively, we can directly use commercial multimodal
models like GPT-4V to obtain more detailed image descriptions.
Since our method relies on SAM and BLIP models, we developed
a graphical UI program specifically for the image segmentation
functionality to simplify the debugging process. After developing
the segmentation module, we integrate it into the 3D editing frame-
work. Despite involving several different models, the entire editing
framework maintains simplicity and efficiency thanks to the modu-
lar design.

Recently, several studies have improved the effects of IN2N by
defining the editing area in 3D space [5, 9, 69]. Although ourmethod
might seem less technologically advanced compared to others that
operate in 3D space, the advantages of a 2D approach cannot be
overlooked. Our approach simplifies the editing process, making it
less challenging for users who may not have extensive 3D knowl-
edge. As a result, it becomes more accessible to a broader audience,
including those who are not professionals. Additionally, the auto-
matic identification of editing areas in 2D space allows for faster
adjustments, which is essential in cases where time is often limited.

6 CONCLUSION
In this paper, we introduce Edit3D, a novel attention-driven multi-
turn 3D editingmethod. This method extends single-turn 3D editing
algorithms to multiple turns and embeds a segmentation model
to enhance the accuracy of the editing effects during the editing
process. We also introduce a fine-tuning phase to further improve
the editing results, and this phase does not significantly increase
training costs. However, our method also has some limitations. For
example, due to the limited image editing capabilities of Instruct-
Pix2Pix [2], our method may fail when dealing with more complex
editing instructions. Looking ahead, enhancing the algorithm’s abil-
ity to handle increasingly complex editing instructions represents
a promising research direction.
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