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ABSTRACT

Conditional Flow Matching (CFM), a simulation-free method for training contin-
uous normalizing flows, provides an efficient alternative to diffusion models for
key tasks like image and video generation. The performance of CFM in solving
these tasks depends on the way data is coupled with noise. A recent approach uses
minibatch optimal transport (OT) to reassign noise-data pairs in each training step
to streamline sampling trajectories and thus accelerate inference. However, its
optimization is restricted to individual minibatches, limiting its effectiveness on
large datasets. To address this shortcoming, we introduce LOOM-CFM (Looking
Out Of Minibatch-CFM), a novel method to extend the scope of minibatch OT
by preserving and optimizing these assignments across minibatches over training
time. Our approach demonstrates consistent improvements in the sampling speed-
quality trade-off across multiple datasets. LOOM-CFM also enhances distillation
initialization and supports high-resolution synthesis in latent space training.

1 INTRODUCTION

The high-quality outputs and training stability of modern diffusion (Ho et al., 2020; Dhariwal &
Nichol, 2021) and flow-based models (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2023), or
more generally iterative denoising methods, have led to their rapid adoption in nearly every area
of content creation, from image (Esser et al., 2024) and video generation (Davtyan et al., 2023) to
motion (Hu et al., 2023) and audio synthesis (Guan et al., 2024).

Despite the superior performance of iterative methods, they require multiple evaluations of the un-
derlying model during inference to generate content. This requirement stems from the gradual trans-
formation of the initial sample into the desired data point, resulting in slower operation compared to
single-pass methods like GANs (Goodfellow et al., 2020).

To mitigate this drawback, recent research has focused on expediting the generation process through
various strategies, including enhanced training techniques (Lee et al., 2023; Bartosh et al., 2024),
model distillation (Luhman & Luhman, 2021; Song et al., 2023; Liu et al., 2023; Salimans & Ho,
2022), and sampling modifications (Dhariwal & Nichol, 2021; Lu et al., 2022; Shaul et al., 2024).
Specifically, iterative models employing a probability flow ordinary differential equation (ODE)
framework are promising, as minimizing the curvature of their generative trajectories can signifi-
cantly reduce the number of required network evaluations, thereby accelerating sampling.

This paper explores the Conditional Flow Matching (CFM) framework and its derivatives (Lipman
et al., 2022; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023; Tong et al., 2023). CFM provides
a straightforward, efficient, and versatile training method that is not dependent on the initial noise
distribution. Although data and noise are typically sampled independently, the joint distribution of
data-noise pairs, or data-noise coupling, significantly impacts the curvature of sampling trajectories
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in CFM-trained models (Lee et al., 2023). Sampling these pairs most effectively follows the Optimal
Transport (OT) plan (Villani et al., 2009) between the noise and data distributions (Liu et al., 2023).
However, computing the OT plan for large datasets is not feasible, and while minibatch OT methods
offer an approximation during training (Tong et al., 2023; Pooladian et al., 2023), their effectiveness
decreases with increasing dataset size.

To overcome these limitations, we introduce a method that enhances the effectiveness of minibatch
OT-based CFM. Central to our approach is the preservation and iterative refinement of noise-data
pairings within each minibatch, facilitating implicit communication of local OT assignments across
different minibatches, thus achieving a more accurate approximation of the global OT plan. To avoid
model overfitting to static noise-data assignments, we further propose assigning multiple noise in-
stances to each data point, selecting one randomly during each training step. We refer to our ap-
proach as LOOM-CFM, standing for Looking Out Of Minibatch-CFM. We provide a convergence
analysis and demonstrate through experiments that LOOM-CFM outperforms existing methods on
standard benchmarks. Additionally, LOOM-CFM serves as an effective initialization for model
distillation, further enhancing inference speed, and is compatible with latent flow matching for gen-
erating higher-resolution outputs. Our contributions can be summarized as follows:

• We introduce LOOM-CFM – a novel iterative algorithm to boost the generation speed and
accuracy of CFMs by optimizing the global data-noise assignments of minibatch OT;

• We prevent overfitting of fixed data-noise assignments at no computational cost by allocat-
ing multiple noise samples per data point (which artificially increases the dataset size);

• We present a convergence analysis of LOOM-CFM;
• We evaluate LOOM-CFM extensively and demonstrate its superior performance over prior

work. Specifically, LOOM-CFM reduces the FID with 12 NFE by 41% on CIFAR10, 46%
on ImageNet-32, and 54% on ImageNet-64 compared to minibatch OT methods.

2 BACKGROUND

In this section, for completeness, we first introduce the required background and the prior work,
which include CFM (in Section 2.1), the existing approaches to speeding up its inference by straight-
ening the sampling paths (in Section 2.2) and optimal transport (in Section 2.3). We discuss the
issues and the drawbacks of the existing methods and then explain our approach in Section 3.1.

2.1 CONDITIONAL FLOW MATCHING

Generative modelling requires estimating the unknown target data distribution p(x) with some para-
metric model pθ(x). A conventional choice for this estimator is pθ(x) =

∫
pθ(x|z)p(z) dz, where

p(z) is a given source noise distribution (typically the standard normal distribution) and pθ(x|z) is a
learned conditional noise-to-data distribution, or a generative distribution. Often the latter is consid-
ered to be deterministic, and in that case it can be written as pθ(x|z) = δ(x− gθ(z)), where gθ(z) is
a deterministic mapping from noise to data, often referred to as the generator, and δ(·) is the Dirac
delta distribution.

Recent ODE-based methods (such as denoising diffusion models (Ho et al., 2020; Song et al., 2020)
or conditional flow matching (Lipman et al., 2022; Albergo & Vanden-Eijnden, 2023; Liu et al.,
2023; Tong et al., 2023)) implicitly define the generator gθ(z) through the following ODE

dϕ(z, t)

dt
= vθ(ϕ(z, t), t), (1)

ϕ(z, 0) = z, (2)
where vθ(y, t) is a vector field, parameterized with a neural network. vθ(y, t) is trained in a way that
gθ(z) = ϕ(z, 1) induces a valid approximation of the data distribution. One way to achieve this is
by minimizing the following objective

LCFM(θ) = Ex,z∼p(x,z),t∼U [0,1],ε∼N (0,σ2) ∥vθ(tx+ (1− t)z + ε, t)− (x− z)∥2 , (3)

where p(x, z) is some handcrafted coupling distribution with marginals equal to p(x) and p(z). A
common choice of p(x, z) is the so-called independent coupling p(x)p(z).
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(a) Independent coupling (b) Vector field averaging (c) OT coupling

Figure 1: 2D Gaussian-to-Gaussian generation with CFM. This example illustrates the intuition
behind the source of the curvature of the marginal sampling trajectories in the conditional flow
matching framework and how optimal transport coupling could potentially solve this issue. (a) With
independent coupling the sampling trajectories are highly curved. (b) This is due to the fact that
in CFM the learned marginal vector field is an average over all source-to-target directions. As in
the Gaussian case the distribution is symmetric around the origin, the learned vector field for small
values of t points towards the origin, since the target points are more likely to be sampled from
the other side. (c) OT coupling resolves the curvature of the trajectories and results in the identity
mapping via averaging only over the sources and targets that are close to each other.

To sample from a model trained with the CFM objective, one needs to first draw a noise sample
z from the source distribution and then numerically solve the ODE to obtain gθ(z). This requires
discretizing the ODE and hence calling the neural network vθ(y, t) multiple times, which can be
costly and can slow down the generation. If the trajectories of the ODE had low curvature, fewer
discretization steps would be needed in order to achieve the same accuracy.

In fact, despite the convex interpolation between a single noise and data sample pair in Equation 3,
being a straight line, the sampling trajectory of the ODE is actually far from straight. This can
be seen even in a toy example, where the source and the target distributions are identical and are
both standard normal Gaussians. Intuitively, the optimal vector field in such case should act as an
identity. However, the sampling trajectories of a model trained in this setting first move towards the
origin and then turn around and head back to the starting point (see Figure 1a). One might blame
the convergence and numerical errors for such behavior. However, in this particular case there is a
closed form analytical solution to the CFM optimization problem that is given by

v(y, t) = y · 2t− 1

σ2 + t2 + (1− t)2
. (4)

This expression clearly explains the above observation (see Appendix A for the derivation). The
reason why we get such a solution is the averaging in the loss function over all directions between
the source and target samples (see Figure 1b). This problem has already been noticed and pointed
out in (Lee et al., 2023; Esser et al., 2024; Lee et al., 2024). Despite being just a toy example,
the Gaussian to Gaussian case is actually important, as the conventional preprocessing in image
generation involves normalizing images to ensure zero-mean and unit standard deviation.

2.2 FASTER SAMPLING AND DATA COUPLINGS

Prior work has explored different approaches to speed up the integration of the ODE trajectories.
One way to achieve faster generation is to reduce the number of integration steps and hence the
number of function evaluations. In order to retain accuracy with fewer integration steps straighter
sampling trajectories are desired. It has been shown that the straightness of the sampling paths is
highly dependent on the number of criss-crosses of the data-to-noise interpolations that is induced
by the coupling distribution p(x, z) (Tong et al., 2023; Lee et al., 2023). Hence, by only changing the
coupling distribution, one can obtain straighter sampling trajectories of the learned marginal flow-
field. In Lee et al. (2023) the authors propose to model the coupling distribution as p(x)p(z|x) and
to also learn the encoder or the forward process p(z|x). In Bartosh et al. (2024) the forward process
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is also learned and since the coupling distribution is flexible, they can additionally impose explicit
constraints on the straightness of the sampling paths. However, both approaches require training of
auxiliary models and incorporate additional loss functions, which complicates the training overall.
In this paper we focus instead on approaches that involve only changing the coupling distribution.
It has been shown that the flow obtained after optimizing Equation 3 induces a data coupling with a
transport cost not larger than the cost of the initial coupling (Liu et al., 2023). More formally:

Ez∼p(z)[c(gθ(z), z)] ≤ Ex,z∼p(x,z)[c(x, z)], (5)

where c(x, z) is an arbitrary convex function (e.g., ∥x − z∥2). Thus, using the induced coupling
for the second training (the reflow algorithm Liu et al. (2023)) tends to straighten the paths and
lead to faster sampling. However, it comes with the burden of at least twice the training time.
In Tong et al. (2023) and Pooladian et al. (2023) the authors noticed that one could instead use
a coupling that is already optimal with respect to Equation 5 (see Figure 1c). Such a coupling
is given by the so-called optimal transport plan (we introduce optimal transport in Section 2.3).
Unfortunately, obtaining an exact optimal transport plan at the modern data scale is computationally
infeasible. Therefore, in Tong et al. (2023) and Pooladian et al. (2023) the authors propose to
approximate it via minibatch optimal transport. Tong et al. (2023) recover the soft permutation
matrix with the Sinkhorn-Knopp alogirthm (Knight, 2008) and sample from it as from the joint
data-noise distribution, while Pooladian et al. (2023) calculate the hard permutation matrix with
the Hungarian algorithm (Kuhn, 1955) and reassign the data-noise pairs accordingly. However,
the effectiveness of minibatch OT decreases with the growing sizes of the datasets. In contrast, our
method, LOOM-CFM, is designed to improve minibatch OT by finding a better approximation to the
global optimal transport plan via exchanging information across different minibatches. We describe
our approach in Section 3.1.

2.3 OPTIMAL TRANSPORT

The optimal transport or Monge-Kantorovich problem refers to the search for an optimal coupling
between two distributions p(x) and p(z), over X and Z , with respect to a cost function c(x, z)
(Villani et al., 2009). Formally, a coupling between p(x) and p(z) is a distribution p(x, z) over
X × Z whose x and z marginals are exactly p(x) and p(z). In other words

∫
Z p(x, z)dz = p(x)

and
∫
X p(x, z)dx = p(z). Among all such couplings, denoted Π, the solution to the following

optimization problem
inf

p(x,z)∈Π
Ex,z∼p(x,z)[c(x, z)], (6)

is referred to as the optimal coupling. Remarkably, the optimal coupling can be shown to be de-
terministic for distributions over Rd under minimal assumptions on c. Deterministic couplings
p(x, z) are those that can be expressed as the joint distribution of (x, T (x)) where x ∼ p(x) and
T : X → Z . The map T transports x ∼ p(x) to T (x) ∼ p(z). In our setting, solving Equation 6
thus boils down to finding the optimal transport map T . In fact, further simplifications can be made
since, in this paper, p(x) will correspond to a uniform distribution over n data samples, and p(z) will
be a uniform distribution over n noise samples. Consequently, the problem considered in this paper
is the optimal transport problem between two uniform distributions with finite support of equal size.

Several algorithms exist for tackling this optimization task, see Schrieber et al. (2016) for an exten-
sive list. The problem can be cast as either a linear program or a graph-matching problem, and the
most notable scheme for solving it is the Hungarian algorithm (Kuhn, 1955) which can be under-
stood as either a primal-dual method for solving the linear program or an augmenting path approach
to finding a minimum cost matching (see 3.6 in Peyré et al. (2019)). The complexity of solving
Equation 6 between uniform distributions over n points is O(n3 log(n)). This complexity quickly
becomes prohibitive for large-scale problems, which motivated the search for tractable approxima-
tions. The work of Cuturi (2013), for instance, showed that with additional regularization of 6,
the resulting surrogate optimization problem can be solved with a reduced O(n2) complexity but
remains out of reach for modern datasets.

Alternative approximations, more relevant to our work, are randomized block-coordinate (Xie et al.,
2024) and mini-batch approaches (mOT) (Fatras et al., 2021) which operate on subproblems of size
m < n. The mini-batch approach, which is used in Pooladian et al. (2023), consists of iteratively
sampling a subset of m data points and m noise points independently at each iteration and deter-
mining the optimal coupling with a complexity of O(m3). This scheme does not converge to the
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optimal coupling but to a sub-optimal, non-deterministic, averaged coupling whose bias has been
analyzed in Sommerfeld et al. (2019) and greatly refined in Fatras et al. (2021). On the other hand,
the work of Xie et al. (2024) proposes a randomized coordinate selection scheme to solve the linear
programming formulation of 6 using a sequence of linear programs over a reduced number of vari-
ables. Convergence to optimality can be established as long as the subproblems are solved over 3n
variables, which again remains prohibitively expensive.

Our work can be seen as an intermediate between those two approaches. At each iteration, we
sample m data points and their corresponding noise samples determined at the previous iteration,
instead of the independently sampled noise points of Fatras et al. (2021). The complexity of our
scheme does not exceed O(m3) and is a block coordinate update scheme like Xie et al. (2024).
Our method converges to a stationary transport plan, instead of an averaged one in mOT, albeit to a
sub-optimal one. We describe our method in more detail in the next section.

3 METHOD

In this section, we first introduce our approach to finding better data-to-noise couplings (Section 3.1).
Then, we propose a simple modification to the method to prevent overfitting to the fixed source
(Section 3.2). Finally, we provide some implementation details (Section 3.3).

3.1 LOOKING OUT OF THE MINIBATCH

Suppose that we are given a set of training data points {xi}i∈Nn and noise samples {zi}i∈Nn , where
Nn = {1, . . . , n} and xi, zi ∈ Rd. We aim to find a bijection τ∗ : Nn → Nn that represents an
optimal coupling between the data and the noise sets. That is, we seek a permutation of Nn that
satisfies

τ∗ = arg min
τ∈Sn

∑
i∈Nn

c(xi, zτ(i)), (7)

where c(x, z) is the transport cost between x and z, and Sn is the symmetric group (of degree n) of
Nn. In this paper, we consider the quadratic cost c(x, z) = ∥x − z∥2. Let Pτ be the permutation
matrix corresponding to the mapping τ and let X and Z ∈ Rn×d be the data and noise matrices
formed by stacking the corresponding samples row-wise. Then we can rewrite Equation 7 as:

Pτ∗ = arg min
τ∈Sn

∥X − PτZ∥2 . (OT)

Due to the finiteness of the feasible set, it is clear that a solution to the above problem always exists.
Ideally, we would like to use τ∗ as a data coupling to train CFM. That is, we would define the
coupling distribution as

pτ (x, z) =
1

n

n∑
i=1

δxi,zτ(i)
(8)

and use it to optimize Equation 7. However, algorithms to find τ∗ usually require O(n3) running
time (e.g., Hungarian algorithm (Kuhn, 1955)), which makes their use infeasible at the deep learning
data scale. Existing work, such as (Tong et al., 2023; Pooladian et al., 2023), approximates τ∗ with
a minibatch version of Equation 7. At each iteration, a new minibatch of noise is sampled and
a local optimal transport is solved to assign noise samples to data within that minibatch. These
assignments are used to perform the training step. Despite the simplicity of this method, it suffers
from a limited scalability to larger datasets and data dimensionalities, as local assignments might be
globally suboptimal. To address this issue, we propose an iterative procedure to better approximate
the globally optimal assignment. First, {zi}i∈Nn are sampled and assigned to the corresponding
{xi}i∈Nn . At the beginning, τ0 is set to the trivial identity permutation, i.e., τ0(i) = i,∀i ∈ Nn. At
the k-th training iteration, a minibatch of {xnj}mj=1 and the correspoding {zτk−1(nj)}mj=1 is sampled
from pτk−1

(x, z). τk−1 is then locally updated to ensure the optimality of Equation 7 restricted to
the minibatch. That is, we find another permutation ωk that acts locally on the current minibatch
(i.e., ωk(i) = i, if i /∈ {τk−1(nj)}mj=1) such that the following objective is minimized

ωk = arg min
ω∈Sm

m∑
i=1

c
(
xni

, zω(τk−1(ni))

)
. (9)
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Figure 2: At each iteration a random minibatch is
sampled according to the current data-to-noise assign-
ments. Prior to taking the gradient step the current as-
signment is locally updated to ensure optimality w.r.t.
the current minibatch. This process resembles weav-
ing on a loom, hence the name of the method LOOM-
CFM, or Looking Out Of Minibatch CFM.

Algorithm 1: LOOM-CFM
1: Input:

Set of data points {xi}i∈Nn
,

Set of noise samples {zi}i∈Nn
,

Initial assignment τ0 = Id;
2: for k in range(1, T ) do
3: Sample minibatch

{xnj
, zτk−1(nj)}mj=1 ∼

pτk−1
(x, z);

4: Calculate ωk as in Equation 9;
5: Update τk ← ωk ◦ τk−1;
6: Take a gradient descent update

w.r.t. Equation 7 on
{xnj

, zτk(nj))}mj=1;
7: end for
8: Return: τT

Hence, the update for τk−1 takes the form:

τk = ωk ◦ τk−1. (10)

Finally, the training step is performed using the updated assignments from Equation 9, which are
then saved for later iterations. Formally the method is described in Algorithm 1 and an illustration
is provided in Figure 2.

Notice that in contrast to the prior work, the solution to the local assignment problem is not thrown
away after each step, but is instead used to update the global assignment and affects the future mini-
batches. This makes our approach strictly better than the prior work in terms of global optimality
and approximation error.

The proposed Algorithm 1 is guaranteed to converge to a stable solution. The following theo-
rem, whose proof can be found in Appendix B, characterizes precisely the convergence behavior
of LOOM-CFM. The analysis is based on casting our scheme as a randomized cycle elimination
method which converges to a stationary solution.

Theorem 1 (Finite convergence). LOOM-CFM generates a sequence of assignments τk with non-
increasing costs. With probability 1 over the random batch selection, the iterates converge in a
finite number of steps to a final assignment τfinal whose associated matching Mfinal has no negative
alternating cycles of length less than m.

Like all tractable approximation schemes, our algorithm is not guaranteed to recover the optimal
coupling. However, unlike the minibatch OT schemes, our method outputs a deterministic coupling,
and more importantly, we show in Section 4.2 that it induces a significantly better straightening of
sampling paths.

3.2 MULTIPLE NOISE CACHES

When the size of the dataset is not large enough, using a fixed set of noise samples as the source
distribution may lead to overfitting. As a result, using new noise instances as starting points for the
numerical integration of the ODE in Equation 1 may lead to samples of poor quality. To overcome
this issue, we propose to store more than one assigned noise sample per data point in the dataset.
At each training iteration a minibatch of data-noise pairs is obtained by first sampling data points
and then randomly picking one of the assigned noises. This corresponds to artificially enlarging the
dataset by duplicating the data points and does not change the underlying data distribution. Later
in the paper, we refer to the number of the assigned noise samples as the number of noise caches
and show empirically that this technique helps to prevent overfitting and allows for using new noise
instances as source points at inference.
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3.3 SPEED AND MEMORY ANALYSIS

We use the Hungarian algorithm (Kuhn, 1955) to find locally optimal assignments at each train-
ing step, making LOOM-CFM comparable in time complexity to OT-CFM (Tong et al., 2023) and
BatchOT (Pooladian et al., 2023), as it solves the same minibatch matching problem. While saving
and loading assignments adds minor I/O overhead, it is offset by LOOM-CFM’s faster convergence.
For instance, on ImageNet-32 and -64, LOOM-CFM required only 200 and 100 epochs, compared
to BatchOT’s 350 and 575. To minimize disk usage, we store the random numbers generator’s seed
values instead of the assigned noise instances. This incurs a negligible disk usage overhead com-
pared to that required for storing and loading modern datasets sizes. For example, a 1M-image
dataset requires only under 4MB for the noise cache. For implementation details, see Appendix C.

4 EXPERIMENTS

In this section, we present quantitative experiments to demonstrate the effectiveness of our method
on real-world data. First, in Sec.4.1, we perform ablation studies to analyze the contribution of
different components of LOOM-CFM. In Sec.4.2, we compare our approach to prior work, showing
that LOOM-CFM, as designed, generates higher-quality samples with fewer integration steps. Then
we illustrate how LOOM-CFM enhances the initialization of the Reflow algorithm(Liu et al., 2023),
removing the need for multiple Reflow iterations. Lastly, we show that our method is compatible
with training in the latent space of a pre-trained autoencoder, enabling higher-resolution synthesis.

In all experiments, the main reported metric is FID (Heusel et al., 2017) which measures the distance
between the distributions of some pre-trained deep features of real and generated data. It has been
proven to correlate well with human perception and established as a conventional metric for image
quality. As commonly done in the literature, we report the FID on the validation set with respect
to 50K generated samples. The other measure that is reported is NFE (Number of Function Evalu-
ations) that refers to the number of integration steps used to produce the corresponding result. The
combination of the FID and the NFE acts as a proxy measure for the curvature of the trajectories.
Low FID values along with low NFE speak for the straightness of the sampling trajectories, as the
model is able to generate high-quality images using small number of steps. For qualitative results,
see Appendix E.

4.1 ABLATIONS

In this section, we test different versions of our algorithm to understand the impact of each com-
ponent on the final performance. All ablations are conducted for unconditional generation on CI-
FAR10 (Krizhevsky et al., 2009), a dataset of 32× 32 resolution images from 10 classes containing
50k training and 10k validation images. The metrics are reported on the validation set.

Training with fixed source: We start by training a naive version of CFM, by fixing the initial
random assignment between the collection of noise samples and the images. Interestingly, while
the results are worse than those of LOOM-CFM (see Figure 3 and Appendix D, “Fixed source, w/o
reassignments”), the FID at 4 and 8 NFE are better than those of OT-CFM (Tong et al., 2023).

Training after convergence: A logical variant of our approach would be to wait till the algorithm
converges to the stable matching and only then start training the vector field. However, this ver-
sion results in slightly worse results (see Figure 3 and Appendix D, “Train After Convergence”).
This might be related to overfitting to the fixed collection of noise samples and the corresponding
matching. Indeed, since the algorithm starts with a random matching, training the network from the
very beginning, while the matching keeps improving, can be viewed as a soft transition between the
independent coupling and the coupling induced by our method.

Training without saving reassignments: Next, we test the impact of updating the global matching
with the local reassignments. Instead of using a fixed set of noises and exchanging the information
between different minibatches, for a given minibatch of images, we always sample a new minibatch
of noises from the standard Gaussian distribution and assign them to the images by calculating the
optimal matching. This variant replicates the method of MFM w/ BatchOT (Pooladian et al., 2023).
While the quality of generated images with this method is comparable to the quality of LOOM-
CFM at large NFE, with few sampling steps LOOM-CFM is significantly better (see Figure 3 and
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Figure 3: Ablations on different design choices
on CIFAR10.

Figure 4: Ablation on the number of caches used
on CIFAR10.

Figure 5: Ablation on the size of the minibatch
used on CIFAR10.

Figure 6: Curvature of the sampling trajectories
for the models trained on CIFAR10. Average of
1000 trajectories is reported.

Appendix D, “W/o saving local reassignments”). Moreover, we also explicitly demonstrate that the
curvature of the trajectories, measured as 1 − v̄θ(ϕ(z, t), t)

⊤v̄θ(ϕ(z, t + ∆t), t + ∆t), is smaller
with LOOM-CFM (see Figure 6). Here v̄θ is the normalized vector field and t and t + ∆t are two
consecutive integration timestamps.

Batch size: Further, we test LOOM-CFM with different batch sizes. As shown in Figure 5, with
large NFE different batch sizes lead to similar performance. However, with small NFE larger batch
size significantly overperforms the smaller ones. This indicates that the method trained with a larger
batch size tends to yield straighter sampling trajectories. Nevertheless, we would like to point out
that LOOM-CFM trained with batch size 32 produces on par results for 8 and 12 NFE with OT-
CFM (Tong et al., 2023) that was trained with batch size 128 and outperforms it with larger batch
sizes. This demonstrates the effectiveness of our caching scheme.

Number of noise caches: Finally, we ablate the number of noise caches used for training. Figure 4
shows that larger number of noise caches improves the performance. We found empirically, that 4
caches are enough for a dataset of size comparable to CIFAR10. We observed that the improve-
ment diminishes with more caches, as the method becomes slower to converge and discovers worse
couplings as the number of noise caches grows (see Appendix D). However, if the dataset is large
enough (e.g. ImageNet (Russakovsky et al., 2015)), even a single cache may be sufficient.

4.2 RESULTS

Unconditional Image Generation. We train LOOM-CFM for unconditional generation on CI-
FAR10 (Krizhevsky et al., 2009) and ImageNet32/64 (Russakovsky et al., 2015), with the results
presented in Tables 1 and 2, respectively. LOOM-CFM consistently achieves better few-step FID
scores compared to minibatch OT methods, such as OT-CFM (Tong et al., 2023) and MFM w/
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Table 1: Unconditional generation results on CIFAR10. (∗) indicates that the reported numbers are
calculated by us using the official code, as they were not reported in the corresponding papers.

Method Solver CIFAR10
NFE FID↓

ODE/SDE-based methods
DDPM (Ho et al., 2020) - 1000 3.17
DDPM (Ho et al., 2020) dopri5 274 7.48
St. Interpolatns (Albergo & Vanden-Eijnden, 2023) - - 10.27
FM w/ OT (Lipman et al., 2022) dopri5 142 6.35
I-CFM (Tong et al., 2023) euler 100 4.46
I-CFM (Tong et al., 2023) euler 1000 3.64
I-CFM (Tong et al., 2023) dopri5 146 3.66

Improved sampling
DDIM (Song et al., 2021) - 10 13.36
DPM Solver-2 (Lu et al., 2022) - 12 5.28
DPM Solver-3 (Lu et al., 2022) - 24 2.75
RK2-BES (Shaul et al., 2024) - 10 2.73
RK2-BES (Shaul et al., 2024) - 20 2.59

Rectified Flows
1-Rectified Flow (Liu et al., 2023) euler 1 378

+ distill euler 1 6.18
2-Rectified Flow (Liu et al., 2023) euler 1 12.21

+ distill euler 1 4.85
3-Rectified Flow (Liu et al., 2023) euler 1 8.15

+ distill euler 1 5.21
Improved training for straighter trajectories

OT-CFM (Tong et al., 2023)∗ midpoint 4 15.95
OT-CFM (Tong et al., 2023)∗ midpoint 8 9.73
OT-CFM (Tong et al., 2023)∗ midpoint 12 7.77
OT-CFM (Tong et al., 2023) euler 100 4.44
OT-CFM (Tong et al., 2023) dopri5 134 3.57
Minimizing Trajectory Curvature (Lee et al., 2023) heun 5 18.74
NFDM-OT (Bartosh et al., 2024) euler 2 12.44
NFDM-OT (Bartosh et al., 2024) euler 4 7.76
NFDM-OT (Bartosh et al., 2024) euler 12 5.20

Our results
LOOM-CFM (ours) 4 caches midpoint 4 11.60
LOOM-CFM (ours) 4 caches midpoint 8 5.38
LOOM-CFM (ours) 4 caches midpoint 12 4.60
LOOM-CFM (ours) 4 caches dopri5 134 4.41
LOOM-CFM (ours) 4 caches + reflow euler 1 7.63
LOOM-CFM (ours) 4 caches + reflow midpoint 2 4.49

BatchOT (Pooladian et al., 2023). Additionally, LOOM-CFM outperforms Lee et al. (2023) and de-
livers on par quality with NFDM-OT (Bartosh et al., 2024), surpassing it with 12 NFE while slightly
underperforming at lower NFE. Unlike these methods, which require training additional compo-
nents, LOOM-CFM optimizes the original CFM objective with a modified coupling distribution.

Rectified Flows. As mentioned earlier, LOOM-CFM offers improved initialization for the reflow
algorithm (i.e., retraining the CFM using the coupling induced by the first-stage model). To validate
this, we generated 1M noise-data pairs by sampling from our model trained with 4 caches on CI-
FAR10 and used those samples to train a new CFM model. The results, shown in Table 1 (+ reflow),
indicate that LOOM-CFM combined with reflow outperforms not only 2-Rectified Flow (Liu et al.,
2023) but also 3-Rectified Flow. This demonstrates that performing additional reflows is unneces-
sary as long as the first reflow is well-initialized.

High-Resolution Image Synthesis. Finally, we show that our method can be directly applied to
training in the latent space of a pre-trained autoencoder, similar to the approaches in Rombach et al.
(2022); Dao et al. (2023). We trained LOOM-CFM on FFHQ 256× 256 (Karras et al., 2019) using
a pre-trained autoencoder from Rombach et al. (2022). As shown in Table 3, LOOM-CFM achieves
a lower FID score with an order of magnitude fewer NFE compared to previous methods using
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Table 2: Unconditional generation results on ImageNet-32 and ImageNet-64

Method Solver ImageNet-32 ImageNet-64
NFE FID↓ NFE FID↓

ODE/SDE-based methods
St. Interpolants (Albergo & Vanden-Eijnden, 2023) - - 8.49 - -
FM w/ OT (Lipman et al., 2022) dopri5 122 5.02 138 14.45

Distilled models / Dedicated solvers
Improved training for straighter trajectories

MFM w/ BatchOT (Pooladian et al., 2023) midpoint 4 17.28 4 38.45
MFM w/ BatchOT (Pooladian et al., 2023) midpoint 8 8.73 8 20.85
MFM w/ BatchOT (Pooladian et al., 2023) midpoint 12 7.18 12 18.27
MFM w/ Stable (Pooladian et al., 2023) midpoint 4 21.82 4 46.08
MFM w/ Stable (Pooladian et al., 2023) midpoint 8 9.99 8 21.36
MFM w/ Stable (Pooladian et al., 2023) midpoint 12 7.84 12 17.60
NFDM-OT (Bartosh et al., 2024) euler 2 9.83 2 27.70
NFDM-OT (Bartosh et al., 2024) euler 4 6.13 4 17.28
NFDM-OT (Bartosh et al., 2024) euler 12 4.11 12 11.58

Our results
LOOM-CFM (ours) 1 cache midpoint 4 13.47 4 37.24
LOOM-CFM (ours) 1 cache midpoint 8 5.08 8 11.76
LOOM-CFM (ours) 1 cache midpoint 12 3.89 12 8.49
LOOM-CFM (ours) 1 cache dopri5 137 2.75 133 6.63

Table 3: Unconditional generation results on FFHQ 256×256

Method Solver FFHQ-256
NFE FID↓

Prior Work
LDM (Rombach et al., 2022) - 50 4.98
ImageBART (Esser et al., 2021) - 3 9.57
Latent Flow Matching (Dao et al., 2023) (ADM) dopri5 84 8.07
Latent Flow Matching (Dao et al., 2023) (DiT L/2) dopri5 88 4.55

Our results
LOOM-CFM (ours) 4 caches (ADM) midpoint 2 14.89
LOOM-CFM (ours) 4 caches (ADM) midpoint 4 6.76
LOOM-CFM (ours) 4 caches (ADM) midpoint 8 5.50
LOOM-CFM (ours) 4 caches (ADM) dopri5 77 4.77

the same model architecture. This highlights the compatibility of our method with conventional
techniques for high-resolution synthesis and paves the way for exploring its application to high-
resolution and large-scale datasets.

5 CONCLUSIONS

In this paper, we introduced LOOM-CFM, a method to improve data-noise coupling in training gen-
erative models with the CFM framework. Our method is based on finding locally optimal match-
ings between data and noise at each minibatch. In contrast to previous work, these matchings are
stored and recycled in future iterations to obtain a better data-noise assignment at the global level.
Through an extensive experimental section, we established that LOOM-CFM achieves a better sam-
pling speed-quality trade-off than prior work with no additional computational cost and negligible
disk usage overhead during training. LOOM-CFM is effective and simple enough to be composed
with other techniques, such as rectified flows, to further enhance the sampling speed.
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APPENDIX

Here we provide some additional details and results that could not be included in the main paper due
to the page number limit. Those include: the derivation of the optimal vector field for the Gaussian
to Gaussian case (Appendix A); the proof of the finite convergence of our algorithm (Appendix B);
implementation details (Appendix C); more quantitative results (Appendix D); more qualitative re-
sults (Appendix E).

A GAUSSIAN TO GAUSSIAN CASE

In this section, we are looking for the closed form solution for the optimal flow in the case of both
source and target distributions being standard normal distributions. That is, we are aiming to finding
v̂(y, t) such that:

v̂(y, t) = arg min
v(y,t)

Ex,z∼N (0,1),t∼U [0,1],ε∼N (0,σ2) ∥v(tx+ (1− t)z + ε, t)− (x− z)∥2 , (11)

If we write down the expectation explicitly through integrals, we obtain∫
Rd

∫
Rd

∫ 1

0

∫
Rd

∥v(y, t)− (x− z)∥2N (y|tx+ (1− t)z, σ2I)N (z|0, I)N (x|0, I) dydtdxdz

(12)

Let us define

L(y, t, v) =
∫
Rd

∫
Rd

∥v(y, t)− (x− z)∥2N (y|tx+ (1− t)z, σ2I) dxdz. (13)

The above functional in the objective takes the form

∫
Rd

∫ 1

0

L(y, t, v(y, t)) dydt. (14)

In order to find the optimal v(y, t), one needs to write down the Euler-Lagrange equation (notice
that L does not depend on the derivatives of v, and hence the Euler-Lagrange equation only includes
the derivative w.r.t v)

∂L(y, t, v(y, t))
∂v

= 0, (15)

which in this special case takes the form (here and later on we omit the integration domains for
saving space and assume Rd everywhere)

∫∫
2 ∗ (v(y, t)− (x− z))N (y|tx+ (1− t)z, σ2I)N (z|0, I)N (x|0, I) dxdz = 0. (16)

And hence, solving for v(y, t), gives

v̂(y, t) =

∫∫
(x− z)N (y|tx+ (1− t)z, σ2I)N (z|0, I)N (x|0, I) dxdz∫∫
N (y|tx+ (1− t)z, σ2I)N (z|0, I)N (x|0, I) dxdz

(17)

First, let us calculate the denominator:
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∫∫
N (y | tx+ (1− t)z, σ2I)N (z | 0, I)N (x | 0, I) dx dz = (18)∣∣∣∣∣C0 =

1

(2π)
3d
2 σd

∣∣∣∣∣ (19)

= C0

∫∫
exp

Å
−1

2

Å
x⊤x+ z⊤z +

1

σ2
((y − tx)− (1− t)z)⊤ ((y − tx)− (1− t)z)

ãã
dx dz (20)

= C0

∫∫
exp

Å
−1

2

Å
1 +

(1− t)2

σ2

ã
z⊤z +

(1− t)

σ2
(y − tx)⊤z − 1

2
x⊤x− 1

2σ2
(y − tx)⊤(y − tx)

ã
dx dz

(21)∣∣∣∣∣C1 =
1

(2π)d(σ2 + (1− t)2)
d
2

∣∣∣∣∣ (22)

= C1

∫
exp

Å
−1

2
x⊤x− 1

2

1

σ2 + (1− t)2

î
y⊤y + t2x⊤x− 2ty⊤x

óã
dx (23)

= C1

∫
exp

Å
−1

2

Å
1 +

t2

σ2 + (1− t)2

ã
x⊤x+

t

σ2 + (1− t)2
y⊤x− 1

2

1

σ2 + (1− t)2
y⊤y

ã
dx (24)

= C1
(2π)

d
2Ä

1 + t2

σ2+(1−t)2

ä d
2

exp

(
1

2

Å
t

σ2 + (1− t)2

ã2 1

1 + t2

σ2+(1−t)2

y⊤y − 1

2

1

σ2 + (1− t)2
y⊤y

)
(25)

(26)

Here we used the well-known Gaussian integrals of the form

∫
exp

Å
−1

2
x⊤Ax+ b⊤x+ c

ã
dx =

»
det(2πA−1) exp

Å
1

2
b⊤A−1b+ c

ã
. (27)

Finally, the last expression can be simplified to

(2π)−
d
2 (σ2 + t2 + (1− t)2)−

d
2 exp

Ç
−1

2

y⊤y

σ2 + t2 + (1− t)2

å
, (28)

which is the probability density function of

N (y | 0,
(
σ2 + t2 + (1− t)2

)
I). (29)

Now let us move to the nominator, which can be rewritten as F (y, t)− F (y, 1− t), where

F (y, t) =

∫∫
xN (y|tx+ (1− t)z, σ2I)N (z|0, I)N (x|0, I) dxdz. (30)

Thus, we only need to calculate F (y, t). Similarly to the denominator, using the well-known Gaus-
sian integrals of the form

∫
x · exp

Å
−1

2
x⊤x+ b⊤x+ c

ã
dx =

Å
2π

a

ã d
2 b

a
exp

Ç
b⊤b

2a
+ c

å
, (31)

we can obtain

F (y, t) =
yt

σ2 + t2 + (1− t)2
N (y | 0, σ2 + t2 + (1− t)2). (32)
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Figure 7: The form of the multiplier s(t) by y in the optimal vector field v(y, t) = y · s(t) for
different values of σ.

Hence, by combining all the results, we get the optimal vector field

v̂(y, t) = y · s(t), where s(t) =
2t− 1

σ2 + t2 + (1− t)2
. (33)

The vector field of such form is parallel to the line connecting y and the origin and changes its
direction halfway through time t ∈ [0, 1] (see Figure 7). This analytical result coincides with the
empirical observation of fitting the vector field as a neural network via gradient descent in the two-
dimensional setting (see Section 2.1).

B ANALYSIS

In this section we provide a proof for the theorem established in section 3.1 and include a counter-
example, where only using batch size equal to the size of the dataset could solve for the globally
optimal matching (see Fig. 8).

As noted in section 2.3, OT can be understood as a minimum cost perfect matching problem in a
complete bipartite graph. The assignment task is captured by the graph G = (V = X ∪ Z,E),
where X is the set of nodes representing the data points and Z is the set of nodes representing the
noise samples. The set of edges E = X ×E, where the cost of an edge (xi, zj) ∈ E is given by the
cij = ∥xi − zj∥2, defines the complete bipartite graph (see Figure 2 for a visual representation).

A perfect matching M is a set of n edges in G that cover all the vertices. The cost of a matching
is the sum of the costs of the edges. An optimal matching is one achieving the minimal cost. The
optimality of a matching M is entirely captured by the absence of negative M -alternating cycles.
Definition B.1 (M-alternating cycles). Given a perfect matching M , any cycle in G given by a
sequence of edges C = (xi1 , zi1)(zi1 , xi2)(xi2 , zi2) . . . (xik , zik)(zik , xi1) where for any p ∈ [k],
we have (xip , zip) ∈M is called an alternating M -cycle.

M -alternating cycles as their name suggests, pass from X to Z back and forth while passing through
edges in M to go from X to Z. An M -alternating cycle is said to be negative if the sum of the costs
of the edges in M is larger than the cost of the edges in absent from M :∑

e∈C\M

ce <
∑

e∈C∩M

ce. (34)

Consequently, for any matching M , if a negative M -alternating cycle C exists, then matching M ′

with lower cost can be constructed by taking M ′ = (C \ M) ∪ (M \ C). In other words, by
swapping the going edges in C(from X to Z) with the return edges (from Z to X), we can diminish
the cost thanks to Equation 34. A necessary condition for optimality is thus the absence of negative
M -alternating cycles. The following theorem shows that it is in fact a sufficient condition.
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Figure 8: Counter-example showing the existence of stationary sub-optimal matchings. The data
points (red) are placed at every other vertex of a regular polygon, the noise points (green) are
slightly offset in a counterclockwise fashion from the vertices of the polygon. The optimal as-
signment matches each data points to the following noise point going in the clockwise direction.
The assignment represented in blue is sub-optimal but it is stationary for any batch size m < n.

Proposition B.1 (Thm 2.2 (Roughgarden, 2016)). A matching M is optimal if and only if there are
no negative M -alternating cycles.

Given the exposition above, LOOM-CFM can be understood as an iterative negative-cycle elimina-
tion scheme. Indeed the algorithms starts from a matching M0 given by the edges (xi, zτ0(i)), then
at each iteration k, a subgraph Gk = (Vk = {xnj

}mj=1 ∪ {zτk−1(nj)}mj=1, Ek) consisting of only the
2m vertices sampled at step 3 in Algorithm 1 is considered. An optimal matching is computed
within that subgraph and the matching Mk+1 is obtained by updating the edges involving vertices
in Vk. As computing optimal matchings are equivalent to elimination of all negative cycles, the
update of Mk corresponds to the elimination of negative Mk-alternating cycles that are contained in
Gk. Such cycles are of length at most m. The process described by algorithm 1 is thus a stepwise
elimination of negative Mk-alternating cycles of length at most m. This allows us to characterize
the convergence of our method in the following theorem.

Theorem 1 (Finite convergence). LOOM-CFM generates a sequence of assignments τk with non-
increasing costs. With probability 1 over the random batch selection, the iterates converge in a
finite number of steps to a final assignment τfinal whose associated matching Mfinal has no negative
alternating cycles of length less than m.

Proof. Let c(τ) :=
∑

i∈Nn
c(xi, zτ(i)). Each update of LOOM-CFM (step 4 and 5 of Algorithm 1)

improves the matching over a sub-graph selected at step 3. The sequence c(τk)k is thus non-
increasing. Moreover, for all k, the sequence of costs takes its values in the finite set {c(τ) : τ ∈
Sn}. It then follows that (c(τk))k becomes constant after a finite number of iterations Kfinal since it
is a monotone sequence taking values in a finite set.

Suppose now that there existed a negative alternating cycle of length less than m in the matching
induced by τKfinal . At each iteration, a subgraph containing a negative cycle has a non-zero proba-
bility of being selected at step 3. Since (c(τk))k is constant for all k > Kfinal, this implies that
such a subgraph is never sampled at step 3 for all k > Kfinal. The probability of such a sub-graph
never being sampled for all k > Kfinal is 0 by a simple application of Borell-Cantelli’s lemma.
Consequently, the probability of τKfinal containing a negative alternating cycle is 0.

Although this theorem shows that LOOM-CFM converges to a stationary solution, it does not guar-
antee global optimality. However, as already mentioned in Section 3.1 of the main paper, this is
the case for all minibatch-based methods. We exhibit the counter-example of Xie et al. (2024) (see
Figure 8) showing that any sub-problem-based approach would fail to recover the optimal coupling
as a full cyclic permutation of all the points is necessary to solve the problem. Despite this, the
coupling induced by LOOM-CFM is more optimal than that of minibatch OT-based methods and
leads to straighter sampling trajectories, as evidenced by the experiments on real data.
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Table 4: ADM network architecture and training parameters of LOOM-CFM for each model.

CIFAR10 ImageNet-32 ImageNet-64 FFHQ256
Input shape [3, 32, 32] [3, 32, 32] [3, 64, 64] [4, 32, 32]
Channels 128 128 192 256
Number of Res blocks 2 3 2 2
Channels multipliers [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 3, 4] [1, 2, 3, 4]
Heads 4 4 4 4
Heads channels 64 64 64 64
Attention resolution [16] [16, 8] [16] [16, 8, 4]
Dropout 0.1 0.1 0.1 0.1
Effective batch size 128 512 96 128
GPUs 4 4 4 4
Epochs 1000 200 100 500
Iterations 391k 500k 1334k 273k
Learning rate 0.0002 0.0001 0.0001 0.00002
Learning rate scheduler Constant Constant Constant Constant
Warmup steps 5k 20k 20k 3.5k
EMA decay 0.9999 0.9999 0.9999 0.9999
Training time (hours) 17.3 73.5 190.6 66.8
CFM σ 1e-7 1e-7 1e-7 1e-7
Number of noise caches 4 1 1 4

C IMPLEMENTATION DETAILS

This section includes the implementation details of our algorithm, including model architectures,
training parameters, etc.

In practice, to be comparable with the prior work, we parametrize the learned vector field with a
neural network that has an improved UNet (Ronneberger et al., 2015) architecture (ADM) from
Dhariwal & Nichol (2021). To make fair comparisons, we used the same model architectures and
training parameters as in the prior work, when possible. See Table 4 for the network architecture
configurations and training parameters. All models (except for the ablations) were trained on 4
Nvidia RTX 3090 GPUs. For the latent space models we used the pretrained autoencoder from
Stable Diffusion (Rombach et al., 2022) provided at the Hugging Face model hub1. The training
code can be found at https://github.com/araachie/loom-cfm.

D QUANTITATIVE RESULTS

In this section, we provide more quantitative evaluations of our method.

Ablations. For a better visual perception, the results of ablations were presented as plots in the main
paper. Here we include the numbers used to build those plots (see Table 5).

Convergence. Throughout the training we log the number of reassignments per minibatch. We
report those in Figure 9 for different batch sizes and in Figure 11 for different number of noise caches
(mimicking different dataset sizes). Additionally, we also report the minibatch OT cost around the
training time where the reassignments are quite rare (Figures 10 and 12). It can be seen that LOOM-
CFM with different batch sizes despite starting at different number of reassignments (around the
batch size, since the intial assignments are random) converges roughly in the same amount of time
(see Figure 9). However, with larger batch size the method converges to a better matching, as can
be inferred from the minibatch OT cost (see Figure 10). At the same time, increasing the dataset
size leads to slower convergence, since the algorithm has to visit more minibatches to sort out the
assignments (see Figure 11). And the minibatch OT cost behaves accordingly (see Figure 12).

1https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/
vae-ft-mse-840000-ema-pruned.ckpt
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Training time. As for the time complexity, LOOM-CFM is comparable to OT-CFM (Tong et al.,
2023) or BatchOT (Pooladian et al., 2023) as it solves the same minibatch matching problem as
the prior methods. However, saving and loading the current assignments from the disk introduces
a small i/o overhead. Hence, the training time of LOOM-CFM is slightly longer than that of the
baselines. For instance, training for 1000 epochs on CIFAR10 with batch size 128 scattered across
4 Nvidia RTX 3090 GPUs takes 17.3 hours with LOOM-CFM compared to 13.9 hours when the
assignments are not stored.

Table 5: Detailed ablation results on CIFAR10.

Solver NFE FID↓
Fixed source, w/o reassignments
midpoint 4 22.57
midpoint 8 7.61
midpoint 12 6.17

dopri5 142 5.98
W/o saving local reassignments
midpoint 4 21.47
midpoint 8 8.69
midpoint 12 6.56

dopri5 131 4.52
Train after convergence

midpoint 4 12.62
midpoint 8 6.45
midpoint 12 5.53

dopri5 139 5.07
2 caches, bs 128

midpoint 4 12.28
midpoint 8 9.93
midpoint 12 9.81

dopri5 126 9.75
3 caches, bs 128

midpoint 4 11.30
midpoint 8 6.40
midpoint 12 5.92

dopri5 134 5.82
4 caches, bs 128

midpoint 4 11.60
midpoint 8 5.38
midpoint 12 4.60

dopri5 134 4.41
4 caches, bs 64

midpoint 4 19.39
midpoint 8 8.85
midpoint 12 6.68

dopri5 134 4.51
4 caches, bs 32

midpoint 4 20.83
midpoint 8 9.56
midpoint 12 7.40

dopri5 122 5.02

Figure 9: Number of reassignments within a mini-
batch along the training progress depending on the
batch size.

Figure 10: OT cost per minibatch along the train-
ing progress depending on the batch size. The
lines corresponding to the exponential moving av-
erage of the cost are shown.
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Figure 11: Number of reassignments within a
minibatch along the training progress depending
on the number of noise caches (the size of the
dataset). The lines corresponding to the expo-
nential moving average of the cost are shown.

Figure 12: OT cost per minibatch along the train-
ing progress depending on the number of noise
caches (the size of the dataset). The lines corre-
sponding to the exponential moving average of
the cost are shown.

E QUALITATIVE RESULTS

In this section, we provide some qualitative results that could not be included in the main paper due
to the page number limit.

Sampling Paths. We provide examples of sampling trajectories from our models. Starting from
a randomly sampled noise instance at t = 0, our models iteratively denoise those via numerically
integrating the ODE in Equation 1 to obtain clean images. In Figures 13, 14, 15 and 16 we show
intermediate points visited by the solver at t ≤ 1. For the model trained on CIFAR10, we also
compare the sampling paths to the version of the model that does not store reassignments. For
FFHQ, in Figure 17 we additionally provide samples using different number of steps in the ODE
solver, resulting in different NFEs.

Unconditional Generation. Lastly, we provide uncurated samples from our models in Figures 18,
19, 20 and 21.

F ALTERNATIVE APPROACHES

In the early stages of developing LOOM-CFM, we explored various approaches to prevent overfit-
ting to a fixed set of noise samples. Although none of these approaches yielded satisfactory out-
comes, we summarize them here for clarity and completeness.

1. Completely refreshing the noise. We experimented with replacing all the noise samples
every N epochs. While intuitive, this approach caused training instability since the newly
assigned noise samples did not necessarily align with the previous ones. Consequently, the
network’s targets could shift significantly when the noise was refreshed, impairing conver-
gence.

2. Gradual noise injection. In this approach, we introduced a hyperparameter, ϕ, to control
the noise refreshing. For each data point in a minibatch, the assigned noise was replaced
with a new sample with probability ϕ. Although this method allowed for a smoother re-
fresh, choosing an optimal ϕ proved to be challenging. For example, setting ϕ = 0.1 caused
approximately one third of each minibatch to be reshuffled, which weakened the effect of
LOOM-CFM. In contrast, a lower value of ϕ = 0.01 was insufficient to prevent overfitting.

3. Interpolation between LOOM-CFM and independent coupling. For each data point,
we coupled it with its assigned noise with probability ϕ and with freshly sampled noise
with probability 1− ϕ. Unlike approach 2, the new noise did not replace the cached noise.
We found this technique to be quite effective and the results indeed interpolated the results
of LOOM-CFM and the independent coupling. We also explored making ϕ a function of t,
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as the curvature of sampling paths depends on t (as shown in Figure 6). Unfortunately, this
hasn’t lead to substantial improvements. Nevertheless, we found this approach interesting
for its generality as it can interpolate any pair of coupling techniques. We leave further
exploration of this method for future work.

In contrast to these more complex methods, the approach with multiple noise caches in LOOM-CFM
is straightforward, as it artificially increases the dataset size and equalizes the settings for problems
with small and large dataset sizes.

G LIMITATIONS

One limitation of LOOM-CFM and other OT-based methods is that they are not directly compatible
with conditional generation, especially when the conditioning signal is complex. In any conditional
setup, the marginals of all label-conditional probability paths at t = 0 must match the source dis-
tribution. However, a naive implementation of any coupling-based method, by conditioning the
model without adapting the couplings, may introduce sampling bias, as certain labels could dispro-
portionately align with specific regions in the noise space. Although techniques like classifier(-free)
guidance (Ho & Salimans, 2022) could be adapted, we leave the exploration of those extensions to
future work.
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Figure 13: Sampling trajectories of LOOM-CFM (top) and the version of the algorithm that does
not save the reassignments (bottom) trained on CIFAR10. The i-th row in both grids starts with the
same initial noise. LOOM-CFM tends to produce sharper genereations and converges earlier.
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Figure 14: Sampling trajectories of the model trained on ImageNet-32.

Figure 15: Sampling trajectories of the model trained on ImageNet-64.
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Figure 16: Sampling trajectories of the model trained on FFHQ-256.

Figure 17: Samples from the FFHQ-256 model with different NFE (from left to right: 2, 4, 8 and 12
function evaluations).

Figure 18: Uncurated samples from the model trained on CIFAR10.
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Figure 19: Uncurated samples from the model trained on ImageNet-32.

Figure 20: Uncurated samples from the model trained on ImageNet-64.
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Figure 21: Uncurated samples from the model trained on FFHQ-256.
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