
Supplementary: Aligning Silhouette Topology for
Self-Adaptive 3D Human Pose Recovery

In this supplementary, we provide details of the 3D pose prior module followed by additional
implementation details and qualitative results.We organize this supplementary document as follows:

• Section 1: Notations and compute details
• Section 2: Instilling 3D pose prior
• Section 3: Additional qualitative results and insights

1 Notations and compute details
For implementation we use the PyTorch [13] framework and train our networks on a machine with
NVIDIA TITAN RTX GPU (24 GB VRAM) and Intel i7-8700 CPU (48GB RAM). The source model
training on an average took 2-3 days to train, while the adaptation training varied by target dataset
size. A batched inference through the model takes around 20 milli-seconds. Table 1 briefly describes
and lists all the notations used in the main paper.

2 Instilling 3D pose prior
Typically pose priors [6, 2, 8] are imposed via an adversarial discriminator where the discriminator is
trained to discriminate between the real and regressor predicted poses. In such approaches, infusing
priors into the regressor requires jointly optimizing the primary learning objectives alongside the
cumbersome adversarial training. Despite this, the regressor may still hold the possibility of outputting
implausible poses when faced with unseen data. In the context of self-supervised adaptation, using
such prior infusion techniques makes the optimization highly unstable. Acknowledging this, we aim
to implement a 3D pose prior network, wherein constraining the 3D pose within natural plausible
distribution would just require integrating the frozen network into the framework.

We comprehend this 3D pose prior using an Adversarial Auto Encoder (AAE) [12], and train on
unpaired 3D pose data from Moshed [10] CMU-MoCap [9] and Human3.6M training-set [5]. The
AAE learns a bottleneck pose representation while regularizing it to follow a predefined uniform latent
distribution U [−1, 1]32. The AAE setup consists of an encoder Φ, a decoder Ψ, and an adversarial
discriminator Disc, as shown in Fig. 1. The latent pose encoding denoted as φ, is a 32 dimensional
vector.Here, the decoder Ψ functions as the generative model of 3D human pose, mapping all latent
codes φsam ∼ U [−1, 1]32 to plausible 3D pose articulations.

The question that arises is how to integrate this prior modeling into the CNN regressor framework. In
order to enforce plausible regressor predictions, one has to simply regress the latent pose representa-
tion φ during training. Note that, a simple tanh non-linearity at the regressor output ensures that the
regressed latent code follows U [−1, 1]32, which would always decode to plausible pose articulations.
Such a formulation is beneficial as it can generate realistic (plausible) 3D pose predictions without
relying on any explicit adversarial training during the self-supervised adaptation.

The following subsections provide more details:

a) θ: Parent-relative local representation. SMPL [11] pose parameter θ ∈ R3k expresses each
body joint as rotations with respect to its parent joint (i.e. a parent-relative local coordinate system),
and towards this, the axis-angle representation is used. The axis–angle representation compactly
parameterizes the 3D rotation by only two quantities: 1) a unit vector indicating the direction of an
axis of rotation, and 2) an angle denoting the magnitude of rotation about that axis. The direction of
rotation (i.e. clockwise or anti-clockwise) is given by the mnemonic of right-hand rule. This acts as
the input data representation in the AAE setup. Note that unlike 3D pose skeleton, θ also contains
joint rotation information. For example, twisting of wrist would yield a different θ vector depending
on the amount of axial rotation.
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Table 1: Notations used in the paper.
Symbol Description
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θ Canonical SMPL pose
β SMPL shape parameter
M SMPL module function
Rc Global orientation and camera parameters
V̂ 3D Vertex locations
Ŷ 3D Joint locations
Wp Frozen Vertex-to-joint regressor
Ẑ Camera projected 2D joint locations

3D
Po
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r {Φ,Ψ} Encoder-decoder pair of AAE

φ Latent pose vector
Disc Pose discriminator used to train AAE
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π Weak perspective camera projection
M2S Mesh to binary silhouette S via differentiable rendering
S2D Silhouette to distance-map D transformation
D2T Distance-map to topological-skeleton T transformation
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I Input image
U Image coordinate space
S Foreground silhouette
Din Inwards distance-map of S
Dout Outwards distance-map of S
T Topological skeleton

DT
out Outwards distance-map of T

Θ̂reg Regressor predictions including φ, β, and Rc
Θ

(opt)
reg In the loop optimized regressor predictions
N Convolutional neighbourhood kernel used in S2D module

Sc
al

ar
s k Number of body joints

u Index over image coordinate space
l Number of thinning iterations

L
os

se
s

L(sp)
S Proposed spatial alignment loss on raw silhouettes
L(sp)
T Proposed spatial alignment loss on topological-skeleton
L(p)

2D Point-set based 2D pose loss
L(p)
S Point-set based silhouette fitting loss
LΘ Loss on Θ̂reg

O
th

er
s

Dsrc Source domain distribution
Dtgt Target domain distribution

UAP-H3M Universal Adversary Perturbed Human3.6M [5]
LR-3DPW Low-resolution 3DPW [14]

b) Architecture details. The AAE architecture consists of two Fully-Connected (FC) layers with
1024 neurons each, followed by a 512 neuron FC layer, which finally outputs a 32 dimension latent
representation. We employ a symmetric encoder-decoder architecture i.e. 512, 1024, 1024 neuron FC
layers reconstructing back the input θ vector. The latent pose encoding φ, is a 32 dimensional vector
and is obtained through tanh non-linearity. For Disc, θ is forwarded through a common embedding
network of two fully-connected layers with 32 hidden neurons each. The outputs are then passed to
k = 23 different discriminators, which output 1D values. A global discriminator focusing on overall
pose plausibility is also employed, with two fully-connected layers of 1024 neurons each, this is
finally concatenated with the k outputs. All fully-connected layers use ReLU activations except the
final layer, similar to the pose discriminator formulation of HMR [6].

c) Training the pose prior. We train the AAE with an aim to learn a pose embedding that is smooth,
continuous and plausible in pose space. In order to enforce the learning of an one-to-one mapping in
a generative adversarial setup, we add cyclic reconstruction loss on both input pose θ and latent pose
φ as follows:
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Figure 1: A. Training setup of the AAE based 3D Pose prior. It decodes a plausible pose when
sampled in U [−1, 1]32 (green region) while sampling outside this bound may lead to implausible
poses (red region). B. Latent manifold traversal with smooth interpolative transition between poses.

Lcyc = |θ̂ − θ|+ |φ̂− φ| Where: θ̂ = Ψ ◦ Φ(θ) and φ̂ = Φ ◦Ψ(φ) (1)

Here, θ̂ represents the reconstructed output for the corresponding input θ. Similarly, φ∈ [−1, 1]32

and φ̂ are the latent pose and reconstructed latent pose of the autoencoder for a given θ.

On the adversarial training side, we train the discriminator Disc to distinguish between real latent
pose φreal and latent pose sampled as φsam ∼ U [−1, 1]32. Such an adversarial training setup ensures
that the entire sampled space i.e. U [−1, 1]32 is plausible, smooth and continuous as shown in Fig. 1.
The adversarial loss function can be written as:

min Ladv(Ψ) = Eφsam
[(Disc(Ψ(φsam))− 1)2] (2)

min Ladv(Disc) = Eφreal
[(Disc(Ψ(φreal))− 1)2] + Eφsam

[(Disc(Ψ(φsam)))2] (3)

Here, the Eq. 2 denotes generative adversarial loss on decoder Ψ and the Eq. 3 specifies the loss
on the pose discriminator Disc. We train encoder Φ using Lcyc and decoder Ψ using Lcyc + λLadv.
Here λ denotes the weight that steers the influence exerted by the loss terms. We empirically find that
an annealing scheme for λ helps training. Note that the Discriminator is jointly trained with Φ and Ψ
with the aforementioned losses. We use Adam solver [7] to optimize the losses.

3 Additional qualitative results and insights
a) Qualitative results on Real domain datasets. We present qualitative results of Ours(S→R,
weak) model in Fig. 2. It consists evaluation on 3DPW [14], Human3.6 [5], MPII [1] and other
in-the-wild datasets. We show mesh overlays as well as their corresponding multi-view visualisations.
Failure cases are highlighted in magenta. Fig. 2 clearly highlights generalized performance of our
model. The failure case in the middle column shows an erroneous prediction on a yoga posture. The
model fails in such complex postures as they are rarely encountered during training. The one on the
right (last row, rightmost column) shows a failure case on an acrobatic pose. We attribute the poor
prediction to limb depth ambiguity.

b) Qualitative comparison on UAP-H3M and LR-3DPW. We show additional qualitative comparisons
against SPIN [8] and the baseline A2 (defined at Sec. 4.2 of main paper ) in addition to comparing
our pre and post adaptatation networks. Fig. 3A shows articulation centric comparison on the low-
resolution 3DPW [14], LR-3DPW, and Fig. 3B shows articulation centric comparison on the Univeral
adversary perturbed Human3.6 [5], UAP-H3M, datasets (defined in Sec. 4 of main paper). Yellow
ellipses highlight the region of articulation errors. We obtain pre-adaptation results of the source
trained networks via direct inference on the shifted target (column 2 and 4 in panel A and B of
Fig 3). We show these in order to qualitatively compare the improvement. We observe that the
proposed adaptation method imparts superior recovery in target performance, despite accessing only
silhouettes. The strong baseline of A2, fails to recover from domain shift despite having access to
stronger supervision (see column 2 and 3 of Fig. 3). We observe that, OpenPose [4, 3, 15] itself
suffers from domain shift issues, and thus is ineffective towards improving target performance.
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Figure 2: Qualitative results of Ours(S→R, weak) on various datasets. Failure cases are highlighted
in magenta (see Sec. 3 for details).

Input Domain: Input Domain:

Input InputPre PostSPIN A2 Pre PostSPIN A2
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Figure 3: Qualitative comparison against baseline A2 on LR-3DPW and UAP-H3M (see Sec. 3 for
details). The proposed adaptation method imparts superior recovery in target performance, despite
accessing only silhouettes. Yellow ellipses highlight the region of articulation errors.
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Figure 4: Progression of our articulation-centric adaptation across various domains (across columns).
The gradual improvement in target prediction conveys the effectiveness of the proposed framework.
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Figure 5: With increase in the kernel size (3×3, 5×5, and 7×7), S2D module outputs distance maps
D with increasing intensity-quantization.

Table 2: A quantitative comparison of the proposed S2D module against various distance map
definitions. Kernel size here refers to the kernel size used by the proposed approach. The proposed
approach is closer in approximation to Chebyshev (or chessboard) distance map computation.

Comparison Vs. Kernel size SSIM PSNR (dB)
Exact Euclidean distance map 3×3 0.981 31.4

Taxicab distance map 3×3 0.961 24.3
Chebyshev distance map 3×3 0.996 75.8
Chebyshev distance map 5×5 0.930 17.9
Chebyshev distance map 7×7 0.882 12.3
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c) Visualizing adaptation progression. In Fig. 4, we visualize the gradual improvement in the
predicted mesh output across intermediate iterations of the training. We show several sequences on
R→UAP-H3M, R→LR-3DPW and S→R adaptation settings (see Sec. 4 of main paper).

d) Comparing S2D module against other distance map definitions. With increase in the kernel
size of N (3×3, 5×5, and 7×7), S2D outputs distance maps D with increasing intensity-quantization
error against the true distance map (refer Fig.5). In our experiments, we use 3×3 kernel size as it is able
to resolve and account for sharp deviations (such as at object corners or at thin foreground regions).
Table 2 reports the quantitative comparison of the proposed approach against various distance map
definitions. The quantitative analysis shows that the proposed approach is closer in approximation to
Chebyshev (or chessboard) distance map computation, primarily due to its convolutional nature.
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