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ABSTRACT

Hallucination remains a significant challenge in Large Vision-Language Models
(LVLMs). To alleviate this issue, some methods, known as contrastive decoding,
induce hallucinations by manually disturbing the raw vision or instruction inputs
and then mitigate them by contrasting the outputs of the original and disturbed
LVLMs. However, these holistic input disturbances sometimes induce potential
noise and also double the inference cost. To tackle these issues, we propose a
simple yet effective method named Self-Introspective Decoding (SID). Our em-
pirical investigations reveal that pre-trained LVLMs can introspectively assess the
importance of vision tokens based on preceding vision and text (both instruction
and generated) tokens. Leveraging this insight, we develop the Context and Text-
aware Token Selection (CT2S) strategy, which preserves only the least important
vision tokens after the early decoder layers, thereby adaptively amplify vision-
and-text association hallucinations during auto-regressive decoding. This strat-
egy ensures that multimodal knowledge absorbed in the early decoder layers in-
duces multimodal contextual rather than aimless hallucinations, and significantly
reduces computation burdens. Subsequently, the original token logits subtract the
amplified fine-grained hallucinations, effectively alleviating hallucinations with-
out compromising the LVLMs’ general ability. Extensive experiments illustrate
that SID generates less-hallucination and higher-quality texts across various met-
rics, without much additional computation cost.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Touvron et al., 2023a; Bai et al., 2023a;
Chiang & Li, 2023; Touvron et al., 2023b; Meta, 2024) have demonstrated great success over the
past few years. Many efforts have been made to extend LLMs to Large Vision-Language Models
(LVLMs) (Ye et al., 2023; Li et al., 2023a; Bai et al., 2023b; Li et al., 2023c; Dai & et al, 2023;
Liu et al., 2024b; Bavishi et al., 2023; Young et al., 2024; Li et al., 2024), achieving impressive per-
formance across various vision tasks (Li et al., 2023b; Zhang et al., 2023) as well as more complex
tasks like content comprehension (Lai et al., 2024) and generation (Geng et al., 2024).

Despite their extraordinary versatility, LVLMs face a significant challenge known as the ‘halluci-
nation’. Concretely, hallucinated texts are fluent and semantically coherent but contain incorrect
statements about the given image, e.g., generating irrelevant or meaningless responses, identifying
inaccurate colors, numbers, and locations of objects not present in the image (Huang et al., 2024).
This flaw in LVLMs poses a significant risk for real-world applications to become trustworthy Al
assistants. For instance, in model-assisted computer-aided diagnosis scenarios (Wang et al., 2023),
such misinterpretation of medical images could lead to serious medical accidents.

*This work is done when F. Huo works as an intern in Tencent AI Lab
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Figure 1: Contrastive Decoding strategies: (a) Visual Contrastive Decoding (VCD) (Leng et al., 2024) man-
ually distort vision inputs. (b) Instruction Contrastive Decoding (ICD) (Wang et al., 2024a; Kim et al., 2024)
also manually design noisy instruction (negative prompt). Detailed analyses are in Sec. 3.2. We ablate
other modules like the vision encoder and tokenizer for clarity. 2 ‘Please describe this image
in detail.’;sys.: system prompt. g: generated text tokens. o in Eq. 2 defaults to 1.

One mainstream approach to alleviating hallucinations in LVLMs involves developing training-free
decoding strategies known as Contrastive Decoding (CD) (Leng et al., 2024; Favero et al., 2024;
Wang et al., 2024a; Kim et al., 2024), which adjusts the next-token logits in a contrastive manner.
Concretely, Vision CD (VCD) manipulates vision inputs with Gaussian noise (Leng et al., 2024)
or directly ablates visual inputs (Favero et al., 2024) to amplify language priors. Instruction CD
(ICD) (Wang et al., 2024a; Kim et al., 2024) designs negative prompt.! The rationale is that dis-
turbed inputs significantly exacerbate hallucinations, and CD subtracts hallucinated concepts from
the original distribution to mitigate hallucinations. However, input disturbances require elaborate
designs for various downstream tasks, and the inference cost is inevitably doubled. Moreover, the
contrastive distributions are vision-and-text agnostic, not necessarily amplify desired hallucinations
but sometimes induce potential uncertainty noise for CD. Intuitive examples are illustrated in Fig.
1, and detailed analyses are in Sec. 3.2. In Fig. 1 (a) and (b), LVLMs directly infer the correct
next token from multimodal inputs. For Vision CD, distorted vision input exacerbates hallucinated
object logits such as football and basketball, while the holistic noise suppresses baseball to a low
logit value. Consequently, VCD might compromise normal decoding. Similarly, for Instruction CD,
LVLMs tend to refuse to answer negative prompts in open-end generation task (as seen in Fig. 5 and
10), and also suffer from potential uncertainty noise similar to VCD.

To address the aforementioned issues, we propose a novel decoding strategy called Self-Introspective
Decoding (SID). Our empirical investigations reveal that pre-trained LVLMs can introspectively as-
sess the importance of vision tokens adaptively, based on preceding vision and text (both instruction
and generated) tokens. SID leverages this capability to amplify and then subtract vision-and-text
association hallucinations by proposing token-level disturbances named Context and Text-aware
Token Selection (CT2S) strategy. This strategy induces multimodal contextual hallucinations, rather
than aimless ones, by conducting token selection in the early decoder layers. In summary, our main
contributions are three-fold:

* We re-think CD methods in LVLMs and attribute their failure cases to vision-and-text agnostic
input distributions that induce potential uncertainty noise.

« To address this, we propose Self-Introspective Decoding (SID), where the CT2S strategy adap-
tively amplifies and then subtracts vision-and-text association hallucinations. This approach is
grounded in our investigations that pre-trained LVLMs can introspectively assess visual importance
informed by preceding tokens.

¢ Through comprehensive comparisons, we demonstrate that SID generates high-quality texts with
fewer hallucinations. Additionally, SID significantly reduces inference cost of contrastive decoding.

2 RELATED WORK

We review recent advances in Hallucination in Foundation Models. More backgrounds about
Large Vision-Language Models and Decoding Strategy in LLMs are in Appendix A.1.

'negative prompts like *You are a confused object detector.’ and ‘Always respond
with the opposite of what you’re asked.’ for different tasks.
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Hallucination in Foundation Models. Hallucination, defined as the generation of irrelevant, fac-
tually incorrect, or meaningless text in a given context (Rohrbach et al., 2018; Zhang et al., 2024;
Guan et al., 2024; Wu et al., 2024b), is a significant bottleneck in current foundation models. This
issue can stem from overfitting specific patterns in the training data, a lack of understanding world
knowledge, or an inability to effectively contextualize a given input (Ji et al., 2023). In the context
of LLMs, hallucinations often manifest as generated content that conflicts with world knowledge or
common sense. For LVLMs, the primary concern is whether the generated answer conflicts with the
provided images. To mitigate the hallucination issue, several solutions have been proposed, includ-
ing robust instruction tuning with curated datasets (Lee et al., 2022; Gunjal et al., 2024; Liu et al.,
2024a; Zhao et al., 2024; Jiang et al., 2024; Yu et al., 2024b;a; Ma et al., 2024; Yue et al., 2024b),
post-hoc utilizing auxiliary analysis networks (Manakul et al., 2023; Zhou et al., 2024; Yin et al.,
2023; Chen et al., 2024b; Wu et al., 2024a; Feng et al., 2024), and various decoding strategies (Li
et al., 2022; Chuang et al., 2024; Liu et al., 2024c; Leng et al., 2024; Favero et al., 2024; Wang et al.,
2024a; Kim et al., 2024; Zhu et al., 2024). However, robust instruction tuning requires massive
high-quality datasets and advanced GPU clusters, making it resource-intensive; Post-hoc utilizing
auxiliary networks heavily rely on the auxiliary network, leading to high inference costs. As for
decoding strategies, representative LVLMs hallucination alleviation methods (Leng et al., 2024;
Favero et al., 2024; Wang et al., 2024a) manually disturb raw inputs to induce hallucinations then
contrast them to alleviate the issue. However, holistic disturbing raw inputs might bring additional
noise during contrastive decoding, and double the inference cost. In this paper, we propose an effi-
cient Self-Introspective Decoding (SID) that induces and then mitigates vision-and-text association
hallucination by token-level disturbances, greatly reducing the inference cost.

3  PRELIMINARY AND MOTIVATION

In the following, we first illustrate the generation paradigm of LVLMs to facilitate the understanding
of SID. We then re-think the contrastive decoding in LVLMs and propose our motivation for SID.

3.1 PARADIGM OF LVLMS GENERATION

Vision and Language Inputs. The inputs to LVLMs consist of both image (v) and text (¢). Gen-
erally, the raw images are commonly fed to the visual encoder, and then the cross-model projection
module maps vision information into LLMs’ input space, denoted as vision tokens v = {v1, v3...v, }
(n is the length of vision tokens). Similarily, text is processed by tokenizer and embedding modules,
which is denoted as text tokens ¢ = {t1,t2...t;, } (m is length of text tokens). Then, the image (v)
and text (t) tokens are concatenated as the final input of LLMs.

LVLMs Forward. The backbone networks of LVLMs are pre-trained LLMs like Vicuna (Chiang
& Li, 2023) and LLaMA 2 (Touvron et al., 2023b), parameterized by 6. Given multimodal tokens
{v,t}, LVLMs predict the next token probability (y;) at ¢ time step in an auto-regressive manner
following the methodology of LLMs, over the vocabulary set v:

p(yilv, t,y<i) = softmax(logite(y:|v,t,y<i)),ys € v (1)

Next Token Decoding. After obtaining the next token probability p(y;|v, t, y<;), different decoding
strategies (Appendix A.1) are proposed to predict next token. The decoded token is concatenated to
the last original input token, for the next round of generation until the end of the generation process.

3.2 RE-THINKING CONTRASTIVE DECODING IN LVLMS

Following the seminal works (Li et al., 2022) in natural language processing, which introduced the
Contrastive Decoding (CD) mechanism to enhance coherence and informativeness by considering
the differences between expert and amateur models, various studies have adapted this strategy to
LVLMs by distorting the visual or instruction inputs for contrastive purposes. As the vision and
instruction contrastive processes are symmetrical, we use visual contrastive decoding as an example.
The contrastive decoded probability of next-token (p.4) can be generally formulated as follows:

Ped(yilv, va, t, y<i) = softmax[(1 + a)logite(yi|v, t,y<;) — alogite(yi|va, t,y<i)]  (2)
where d and « indicate distortion operation and hyperparameter, respectively. Generally, CD meth-
ods employ an adaptive plausibility constraint to calibrate the entire output distribution, preventing
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Table 1: Efficacy Analyses on CD strategies on MSCOCO dataset. The Random setting means objects absent
from the image are chosen randomly, while the Adversarial setting prioritizes co-occurring objects which are
not present in the image. Results are from (Leng et al., 2024) or the average of three running times conducted
on LLaVA-1.5 7B for fair comparisons. « in Eq. 2 defaults to 1 and Eq. 3 has no effect on the greedy decoding.

Greedy Sampling
Setting Method Accuracy T F1 Score 1 Accuracy T F1 Score 1
Normal 88.8+0.05 88.6:0.08 84.920.03 83.2+0.01
"VCD  87.8x002  879:006 8773 8328
w/o Eq. 3 - - 83.3+0.04 82.2+0.02
Random ~ ICD ~ =~ 87.9z004 8812002 86.9:003  85.2:004
w/o Eq. 3 - - 82.7+0.02 81.8+0.03
" Ours  893:008  89.5:002  88.8:003 887002
w/o Eq. 3 - - 87.2+0.01 88.0x0.02
Normal 79.30.05 80.9x0.09 78.7x0.03 78.9 0.02
"VCD 809006  81.0:004  80.88° 8133
w/o Eq. 3 - - 76.220.04 76.0=0.04
Adversarial ~ICD ~ =~ 80.2:003  81.3z0010  79.1:002 ~ 80.4z004
w/o Eq. 3 - - 75.4+0.02 76.4+0.04
" Ours 833007  82.5:006  82.6:005  82.1:006
w/o Eq. 3 - - 82.2+0.03 81.9:0.01

implausible outputs from the augmented distribution (Li et al., 2022; Chuang et al., 2024; Leng
et al., 2024; Favero et al., 2024; Wang et al., 2024a; Kim et al., 2024; Zhu et al., 2024):

Vioken(Y<i) = {yz ev:po(yilv, t,y<i) > Bmgxm(w\v,t,yq)}, 3)

pcd(yih)a Ud, ta y<z)) = 07 if Yi ¢ Vtoken(y<i)

where v and 14,k are the output vocabulary and selected tokens. 3 controls the strength of trunca-
tion, with larger 3 indicating more aggressive truncation that retains only high-probability tokens.

However, we argue that manually disturbing raw inputs might not trigger the desired hallucinations,
while holistic disturbances will bring uncertainty noise that compromises the normal decoding. To
validate our claim, we analyze the performances of normal decoding, VCD, and ICD using the
POPE (Li et al., 2023d) metric, under both sampling and greedy decoding settings. POPE quantita-
tively converts the hallucination evaluation into a binary classification problem by using the question
format to prompt the model: ‘Is there a <object> in the image?’, with expected
answers being ‘Yes’ or ‘No’. From Table I, under the greedy decoding setting, CD methods
improve performance in the adversarial setting, which are more challenging as they prioritize co-
occurring confusing objects. CD methods achieve this by exacerbating and subtracting hallucinated
concepts from the original distribution. However, in random settings, where objects absent from
the image are chosen randomly and are easily recognized, CD methods slightly underperform nor-
mal greedy decoding, which indicates that the correct token logit is somewhat compromised during
contrastive decoding. In the sampling decoding setting, CD methods clearly outperform the normal
sampling decoding. However, CD methods rely on the adaptive plausibility constraint (Eq. 3) to fil-
ter out low-probability tokens. Without Eq. 3, CD methods are inferior to normal decoding in both
random and adversarial settings, validating that vision-and-text agnostic input distributions induces
potential uncertainty noise after Eq. 2 (More validations on other benchmarks are in Table 11.).
To address these issues, we propose a decoding strategy named Self-Introspective Decoding (SID).
SID adaptively amplifies vision-and-text association hallucinations informed by generated tokens to
guide LVLMs in exploring factualness. Details are illustrated in the Sec. 4 and Fig. 2.

4 METHODOLOGY

4.1 UNDERSTANDING THE SELF-INTROSPECTIVE PRE-TRAINED LVLMS.

LLMs (Bai et al., 2023a; Chiang & Li, 2023; Touvron et al., 2023b; Meta, 2024) have been scaled
up to billions of paramters and pre-trained on trillions of tokens, endowing LLMs with encyclopedic
ability like in-context learning (Wang et al., 2024b), zero (Kojima et al., 2022)/few-shot (Brown
et al., 2020) ability. LVLMs extend LLMs to multimodal understanding capabilities by visual in-
struction tuning. Some works (Cao et al., 2023; Shang et al., 2024; Chen et al., 2024a) pointed out
that vision information is redundant in LVLMs, and develop vision token reduction technologies
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Figure 2: Overview of Self-Introspective Decoding (SID). CT*S: Context and Text-aware Token Selection
strategy. LLaVA-1.5 7B is utilized as an example to visualize visual tokens with low and high scores (Eq. 5).

to prune (Rao et al., 2021) and merge (Bolya et al., 2023) tokens guided by importance metrics
without further re-training. Regarding the hallucination issue, we argue that vision tokens with low
attention scores induce vision-and-text association hallucination. Formally, for the transformer
block (Vaswani et al., 2017) in the auto-regressive decoder 2, vision (v), text instruction (), and
generated tokens (g) are concatenated and projected into three distinct vectors: the query vector Q,
the key vector K, and the value vector V, utilizing three linear transformations Wy, Wy, and W,,.
The self-attention (S'A) mechanism computes the relevance of each item to other items as follows:

R=SAQ,K,V)=A.V,
KT “4)
L + M))
Vi
where d; represents the dimension of Q, K, V, M represents the casual mask. A € R(b’h’"’”), where
b, h, and n denote batch size, number of key-value heads, and total token number, respectively. We

denote the A; as the attention matrix after Layer i of LVLMs. We then calculate vision token
importance scores (Score;(v)) as shown in Fig. 2 (Selector) based on A;:

A = softmax(

h
1 )j7 [N
Score; (v =5 z_: . -1], 5

where v means vision token indexes. Contrary to token pruning/merging (Rao et al., 2021; Bolya
et al., 2023), we preserve a certain number of the least important vision tokens based on Eq. 5

Analyses. Fig. 3 and 4 preliminarily validate the efficacy of Score;(v) qualitatively. In Fig. 3,
the preserved least important tokens mainly reflect areas opposite to the query. For instance, when
querying ‘cup’ in Fig. 3 (left), LVLMs focus on ‘cup’ in the foreground, thus preserving back-
ground tokens with low Score;(v). Conversely, LVLMs pay attention to background items when
querying ‘couch’. When querying existing items in Fig. 3 (right), vision tokens of unrelated
regions are mainly preserved. For open-end generative tasks in Fig. 4, auto-regressive decoded
tokens are generated based on preceding vision (v), instruction (¢), and generated text (g) tokens.
The preserved vision tokens are adaptively adjusted according to preceding tokens at each decod-
ing step, primarily focusing on spurious related regions. More quantitative analyses are provided in
Appendix A.7, where Table 12 illustrates that vision tokens with high Score;(v) greatly maintain
original ability, while tokens with low Score;(v) reach nearly 50% accuracy in binary classification.
Above evaluations suggest that Eq. 5 effectively assesses the importance of vision tokens.

We further demonstrate the open-end generated hallucinations induced by ours, Vision Disturbance
(VD) (Leng et al., 2024), and Instruction Disturbance (ID) (Wang et al., 2024a) in Fig. 5 and 10. The
hallucinations we amplified are more vision-and-text association compared to VD, while LVLMs

’Here we illustrate the transformer block without KV Cache for better understanding.
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Figure 3: Visualization Results of the least important vision tokens on discrimination tasks informed by
preceding vision and text tokens. LLaVA-1.5 7B with Layer ¢ = 3 is utilized.
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Figure 4: Visualization Results of Adaptively Selecting the least important vision tokens on open-end gener-
ative tasks informed by preceding vision and text tokens. LLaVA-1.5 7B with Layer ¢ = 3 is utilized.

usually refuse to response to ID. Additionally, we demonstrate the quantitative results for discrimi-
nation and generation tasks with VD and ID as inputs in Appendix Table 12. Interestingly, VD and
ID do not degrades much especially in discrimination tasks. Experiments imply that disturbed target
logits still have the highest probability in most cases, and therefore, contrastive decoded target logits
are not enhanced much after Eq. 2, while CD methods are susceptible to potential uncertainty noise.

4.2 CONTEXT AND TEXT-AWARE TOKEN SELECTION (CT?2S) STRATEGY.

Based on the above investigations, we argue that to induce context- and text-aware hallucinations
for contrastive decoding, only a small percentage of vision tokens with low attention scores should
be preserved after the early decoder layers. To validate our claims, we conduct the following ex-
periments: 1) In Vision Encoder (VE), we preserve tokens with low attention values between the

[CLS] token and vision tokens in the penultimate layer, calculated as: A = softmax(%).

2) In the LLM decoder, we preserve tokens with low importance score (Eq. 5) across varying layers

Original Ours ID

= (dynamic pruning important vision
token based on preceding tokens)

‘You are a confused

image caption model.’

Normal (Greedy): The image features a small white dog standing in front of a TV, which is mounted on a wooden cabinet. The dog
appears to be watching the TV with interest, possibly captivated by the content displayed on the screen.\n\nThe room also contains a
dining table, a chair, and a few vases placed. One vase is located near the left side of the room, another is situated in the middle, and
the third one is on the right side. These decorative items adds a touch of elegance to the living space.

Ours: The image features a large, well-lit room with a yellow color scheme. The room is furnished with a couch and a chair, both
placed against the wall. A TV is mounted on the wall, and a remote control can be seen resting on the couch.\n\nThere are two vases
in the room, one located near the left side and the other near the right side. A potted plant is placed in the room, adding a touch of
greenery to the space. A clock is mounted on the wall, and a book can be found resting on a surface in the room.

VD: The image features a dark room with a television turned on, displaying a TV show. The television is placed on a stand, and the
room appears to be a living area. There are several books scattered around the room, with some placed on the floor and others on
surfaces. A remote control can be seen resting on a surface, likely used to operate the television.

ID: What is this dog doing? I'm sorry, I'm not sure what you're asking for. Could you provide more context or clarify your question?

Figure 5: Instance Illustration of Different Disturbance Results. Examples are from MSCOCO inferred by
LLaVA-1.5 7B with ¢ = 3 and Top-k=50. Hallucinations are marked in red.

6
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(¢). Additionally, we adjust the number of preserved vision tokens. As shown in Fig. 6, firstly,
pruning vision tokens in VE based on [CLS] may not always yield positive gains, as the [CLS]
token lacks information about instructions and generated texts, which are crucial for multimodal
understanding. Specifically, pruning all vision tokens resembles VIG (Favero et al., 2024), which
contrastively amplifies the vision importance over the language prior by ablating vision inputs. Sec-
ondly, aggressive pruning of vision tokens (i.e., 0%) after Layer;—; is not optimal. As the ideal
induced hallucination distributions are farget-co-occurring but suppress target logits, the loss of vi-
sual information for subsequent decoding results in visual context diminishing, which can lead to
aimless hallucinations due to insufficient grounding in visual information. Thirdly, selecting tokens
in the late decoder layers degrades contrastive decoding to normal decoding, as preceding layers of
LVLMs already decode and understand multimodal information, which is consistent with LLMs’
early-exiting mechanisms (Schuster et al.,

2022; Elhoushi et al., 2024). In summary, 8
the proposed CT2S strategy selects Top-
k least important vision tokens after the
early layers based on attention score (Eq.
5), where the induced hallucinations are
aware of both visual contexts and text in- e
formation. Finally, following CD meth-
ods (Sec. 3.2), we contrastively subtract
amplified vision-and-text association hal-
lucinations for the next token prediction.

Accuracy(%)

Figure 6: Analyses of varying i and preserved ratios in CT2S.
VE: vision encoder; ¢: i-th decoder layer.

Discussion. Based on analyses of the self-introspective pre-trained LVLMs, could we enhance
vision information informed by the proceeding vision and text tokens rather than utilizing the con-
trastive decoding? To explore this, we rewrite Eq. 2 as follows:

Padd(yilv,v 1,1, y<;) = softmax((1 — a)logite(yi|v, t,y<;) + alogite(yilv T,t,y<i)]  (6)
where we preserve vision tokens with high importance scores (Eq. 5) denoted as v 1. From Table 2,
we observe that enhancing vision information (i.e., Add)
alleviates hallucinations to some extent, which also im-
plicitly validates the efficacy of Eq. 5. However, in the
adversarial setting, enhancing vision information does not

Table 2: Analyses of Contrastive Decoding
Mechanisms on the POPE metric. Hyperpa-
rameters are consistent with CD settings.

bring much benefits compared to ours. Because our am- Setting  Random _ Adversarial
plified hallucinations effectively associate co-occurring Sampling 84.7 78.7
objects, reflected in high logit values of hallucination veD 87.7 80.9
token, and then contrastively suppress them. In contrast, ‘(A)iis ggg ;gé
enhancing vision information primarily boosts the origi- Greedy 333 79j1
nal prediction’s target logits grounded in attention scores, vVCD 87.8 80.9
which does not significantly improve discrimination, es- Add 89.1 80.1
pecially in the adversarial setting. Ours 89.3 833

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Models and Baselines. We utilize four representative LVLMs: InstructBLIP (Dai & et al, 2023),
Shikra (Chen et al., 2023a), LLaVA-1.5 (Liu et al., 2024b) at the 7B scale, and LLaVA-NeXT (Li
etal., 2024) at the 8B scale. For detailed model descriptions and results at larger scales, please refer
to Appendix A.2 and Table 14 in Appendix A.7. Since our method aims to propose training-free
LVLM decoding strategies without the aid of auxiliary networks, we compare six decoding methods:
Sampling (Top-p=1), Greedy, Dola (Chuang et al., 2024), and LVLM decoding strategies (VCD
(Leng et al., 2024), ICD (Wang et al., 2024a), and OPERA (Huang et al., 2024)). For comprehensive
comparisons, we apply VCD and ICD in both sampling (Top-p=1) and greedy decoding settings.
Additionally, we validate SID with different decoding strategies, as detailed in Appendix A.7.

Implementation Details. As analyzed in Sec. 4.2, we set Layer i=3 and preserve top 10% least
important vision tokens for Shikra, LLaVA-1.5, and LLaVA-NeXT and 7=5 and top 10% least impor-
tant vision tokens for Q-former based LVLMs (InstructBLIP) to induce fine-grained hallucinations.
Hyperparameters in Eq. 2 and 3 follow VCD and ICD. More details are in Appendix A.2.
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5.2 EVALUATION RESULTS

In this section, we follow previous methods (Leng et al., 2024; Wang et al., 2024a; Huang et al.,
2024) to evaluate the SID on CHAIR (Rohrbach et al., 2018) and POPE (Li et al., 2023d) met-
rics. Besides manually designed metrics, we also leverage GPT-4 assisted benchmark (Zhao et al.,
2024) to evaluate attribute, location, and relation hallucinations. MME (Fu et al., 2023) and MM-
Bench (Liu et al., 2023b) benchmarks are employed to assess the LVLLM’s general ability. Moreover,
GPT4-V assisted evaluation (Appendix A.4) on both hallucination alleviation and generated text
quality, more general benchmarks evaluation (Appendix A.5) on MathVista (Lu et al., 2024),
MM Vet (Yu et al., 2024¢), LLaVA-Bench (Liu et al., 2023a), MMMU (Yue et al., 2024a), and case
studies (Appendix A.6) on LLaVA-Bench-in-the-Wild are in Appendix.

CHAIR and POPE Evalua-
tions. CHAIR (Rohrbach et al.,
2018) and POPE (Li et al.,

Table 3: Results on the CHAIR metric. * and * denote adopting the
same sampling and greedy decoding strategies, respectively.

.. . LLaVA-1.5 InstructBLIP Shikra LLaVA-NeXT

Setti
2023d) are quantitative metrics etting 0G0 ol Crl Csl Gl Csl Crl
to assess objection hallucina- Sampling 513 168  51.0 242 489 147 426 141
tions of VLMs. Please refer ICD* 487 139 483 167 478 145 427 136
; vCD* 480 143 479 172 481 138 413 129
to the Appendix A.3 for de- Ours” 450 117 436 131 460 129 384 114

tailed descriptions of CHAIR ~ Greedy 396 T 44T T5E6 TI36 T @I T 130T 7429 T 132
and POPE. As for CHAIR. Fol- Dola* 471 138 527 140 468 142 409 131

lowing (Wang et al., 2024a;  1cp* 474 139 463 153 473 141 421 126
Huang et al., 2024; Yue et al.,  VCD' 468 132 440 136 478 140 411 129
. 442 122 423 124 43 128 381 113

2024b), we randomly select 500 Ours
images from the validation set of

the MSCOCO (Lin et al., 2014) dataset and query different LVLMs with the prompt: ‘Please
describe this image in detail.’. We set the max new tokens to 512 to generate re-
sponses for fair comparisons. As shown in Table 3, our method outperforms other baselines in most
cases, validating the effectiveness of SID in open-end generation tasks. Compared to CD meth-
ods, SID online adaptively prunes attention-important vision tokens informed by instruction and
generated text to induce fine-grained hallucinations for contrastive decoding during open-end text
generations. For the POPE metric, which comprises three datasets, we average the results in Table 4.
Our method performs best overall in random, popular, and adversarial sampling settings. Specif-
ically, in the sampling decoding setting, SID surpasses the normal sampling decoding by a large
margin in a train-free manner. SID also clearly outperforms CD methods (Dola, ICD, and VCD)
because the self-introspective decoding strategy amplifies vision-and-text association hallucinations
then subtracts them, rather than coarsely disturbing raw inputs. Additionally, owing to the context
and text-aware token selection strategy, SID is more computation-efficient than CD methods, as an-
alyzed in Table 6. Note that beam-search based OPERA (Huang et al., 2024) shows almost no gain
in the POPE metric, primarily because answering the binary classification only requires a few tokens
and selecting the best beam score in a decoded sequence (IN=5) brings little improvement.

GPT-4 Assisted Benchmark. While CHAIR and POPE evaluate object-existence-level hallucina-
tions, these metrics are unable to identify other types of hallucination, such as positional, relational,
and attribute hallucinations. Therefore, the GPT-4 assisted benchmark (Zhao et al., 2024) utilizes
the fine-grained object-level descriptions in the Visual Genome (VG) dataset (Krishna et al., 2017) as
ground-truth and relies on the advanced GPT-4 to judge the fine-grained hallucinations and calculate
Sentence-level Hallucination Ratio (SHR). Please refer to the Appendix A.3 for detailed implemen-
tations. Moreover, we employ n-gram fluency (n = 1 and 2) metrics to measure the smoothness of
generated text, and the number of generated words/sentences per image (WPI/SPI) to compare the
detailedness of generated texts. As shown in Fig. 7, SID achieves the best results in the SHR met-
ric among the four LVLMs, outperforming others by a clear margin. Regarding the quality of the
generated texts, Sampling decoding outperforms ours slightly in terms of 1-gram fluency and WPIL.
However, compared to other baselines, our approach alleviates hallucinations with minimal sacrifice
in text generation quality regarding smoothness and detailness. For instance, OPERA generates text
with fewer words and sentences due to penalization of the over-trust mechanism, and VCD impairs
text fluency, possibly arising from the holistic and fixed disturbance of contrastive inputs.

MME and MMBench Evaluations. Besides, we test on two popular LVLMs’ general ability
benchmarks: MME and MMBench. MME comprises ten subtasks to evaluate models’ perceptual
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Table 4: Average results on the POPE metric. * and * denote adopting the same sampling and greedy
decoding strategies, respectively. Results are from the papers or re-implemented based on official codes.

Setting Random Popular Adversarial
Model  Decoding  Accuracy?  FI Scoret Accuracy?T  FI1 Score? Accuracy?T  FI Scoret
Sampling 84.77 82.28 79.98 79.34 76.03 76.26
ICD™ 87.51 83.28 83.15 83.91 79.13 80.41
" vCD* 86.84 86.83 82.65 83.37 77.31 79.28
- Ours”™ 88.91 88.84 83.97 85.42 82.54 81.98
<« " “Greedy” T T 88817 T T 8832 T T ®276 T T 8336 ~ T 79T~ T T80.92°
= Dola* 87.94 87.97 83.87 84.68 80.35 81.21
j OPERA 88.85 88.67 82.77 83.40 79.16 80.93
ICD* 87.97 87.84 84.03 84.22 80.21 80.97
VvCD* 87.02 86.96 83.53 84.56 78.12 80.16
Ours* 89.46 89.62 85.13 85.94 83.24 82.21
Sampling 80.42 80.94 76.09 77.65 72.37 75.42
ICD* 85.78 85.73 81.12 82.25 76.82 78.99
a VCD* 84.11 84.13 79.96 80.80 76.32 78.08
3 Ours™ 86.56 85.94 80.26 81.75 77.64 80.41
% " "Greedy ~ T 8456~ ~ T 8375 © T 71823 T T 7916 T T T7458 T T T 7634
g Dola* 84.67 83.38 78.21 79.19 75.69 77.98
g OPERA 84.57 83.74 78.24 79.15 74.59 76.33
= ICD* 84.36 83.82 77.88 78.70 7517 77.23
VCD* 84.52 83.63 78.04 78.45 75.95 77.76
Ours* 87.23 86.90 81.16 82.57 78.51 81.26
Sampling 81.42 82.46 79.60 80.78 73.85 76.39
ICD* 82.34 82.82 78.17 80.43 74.96 77.68
vCD* 82.31 82.73 79.34 80.93 75.61 77.96
g . Ous' 8387 8394 8026 _ _ 8201 7185 T84
i) Greedy 83.00 83.19 81.39 81.90 76.69 78.31
% Dola* 82.87 82.98 82.42 82.50 76.85 78.09
OPERA 83.05 83.20 81.40 81.89 76.73 78.31
ICD* 82.67 82.64 80.73 81.58 75.98 78.43
VCD* 82.96 82.63 80.68 81.27 76.94 78.32
Ours”* 84.46 84.62 82.38 82.73 78.67 79.34
Sampling 86.32 83.11 82.27 81.03 77.32 76.96
ICD* 87.32 84.03 83.62 83.54 80.31 80.41
3] vCD* 86.97 86.71 83.07 83.65 79.42 80.28
3 Ours™ 89.16 88.92 84.38 85.76 82.95 81.98
Z - “Greedy ~ ~ 89.377 T T 883827 T T 8368 ~ ~ 8462 ~ ~ T80.08  ~ " 80.74
§ Dola* 88.73 88.67 84.56 84.96 80.32 80.68
3 OPERA 89.36 88.80 83.65 84.60 80.10 80.75
~ ICD* 87.40 87.96 84.11 83.79 80.94 80.67
VCD* 87.83 87.09 82.68 83.55 79.61 81.20
Ours* 90.05 89.97 86.13 85.69 84.06 82.95
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Figure 7: GPT-4 assisted benchmark (Zhao et al., 2024). Hallucination (SHR), fluency (1&2-gram), and
detailness (WPI and SPI) aspects are compared. Larger areas mean better performances. VCD and ours adopt
the same sampling decoding. Please zoom in for details.

capabilities and four subtasks for assessing recognitive abilities in the form of the yes/no question.
MMBench systematically evaluates twenty ability dimensions of LVLMs. We present the results of
LLaVA-1.5 7B as a representative in Table 5, SID can maintain and improve the multimodal ability
on LVLMs benchmarks. In contrast, other CD methods tend to compromise the general multimodal
ability. More general benchmark evaluations are in Appendix A.5.

Table 5: LVLM benchmark evaluations. DoLa, ICD, VCD, and SID employ the same greedy decoding.

Greedy Sampling DoLa ICD VCD OPERA SID
MME 1510.8+12 1471.5s56  1480.7+13  1473.2:12  1488.5z08  1515.2x11  1520.4+09
MMbench 64.4:22 63.9+31 63.7:22 63.0<24 63.8£22 64.4+.13 65.0-23
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6 ABLATION ANALYSES

In this section, we conduct ablation analyses on the computation efficiency and hyperparameter
sensitivity. More analyses about Token Selection Strategies Analyses, Larger-scale Backbone,
Other Decoding Strategies, and Visual Enhancing Decoding Strategy are in Appendix A.7.

a analyses B analyses
Methods Time | Memory] Accuracyl 5
Normal 494 15673 79.11 Eaa
VCD 904 16753 78.12 g . o
ICD 9074 16843 80.21 3% \\ samping
OPERA 2643 21943 79.16 < a0 f w3 803
Ours,oy 704 15809 83.11 @=01 a=05 a-1 a-15B=03 B=01 B=0.05 B=0
Ours; oy 668 15767 83.24
Table 6: Efficiency Comparisons on NVIDIA V100. Figure 8: Hyperparameter Sensitivity of « and /3
10% and 409 mean tokens preserved ratios. with POPE metric (under the sampling decoding).

Computation Efficiency. One primary concern of hallucination alleviation decoding methods is the
computational burden. We evaluate the whole dataset inference time (seconds) and peak GPU mem-
ory (MB) on the LLaVA-1.5 7B under the POPE adversarial setting, as shown in Table 6. Contrastive
Decoding (CD) methods (Leng et al., 2024; Wang et al., 2024a) involve constructing distorted raw
inputs, resulting in twice the inference complexity. OPERA (Huang et al., 2024) is based on beam-
search decoding and maintains a set of beams to enlarge the candidate range. Additionally, roll
back mechanism in the retrospection-reallocation strategy further exacerbates computational com-
plexity. Our SID induces vision-and-text association hallucinations by pruning large-ratio attention-
important tokens in the early layers, which greatly reduces the inference time of CD up to ~30%.

Hyperparameter Sensitivity. Beyond the sensitivity analyses in Fig. 6, we validate the robustness
of SID concerning o and 5 of Eq. 2 and 3, compared to the contrastive decoding methods (i.e.,
VCD) on LLaVA-1.5 7B. From Fig. 8 (left), it is evident that as « decreases, the contrastive de-
coding mechanism diminishes. However, SID still achieves pleasant results, while VCD degrades
close to Sampling when a=0.1, as the CT?2S strategy induces informative vision-and-text association
hallucinations. When « increases, VCD degrades to some extent because holistic input disturbance
does not always trigger contextual-related hallucination and might exacerbate uncertainty noise. Re-
garding f3, a larger 3 indicates more aggressive truncation of the output vocabulary. Fig. 8 (right)
shows that VCD’s performance heavily relies on large 3 to retain only high-probability tokens. With
mild or no adaptive plausibility constraint (Eq. 3), VCD performs worse than the sample decoding
strategy due to output logits influenced by distorted visual inputs. Ours is robust to the 3 setting as
the CT?S strategy induces discriminative contrastive logits to generate plausible tokens.

7 CONCLUSION AND FUTURE WORK

In this paper, we firstly re-think contrastive decoding in LVLMs and empirically find that vision-
and-text-agnostic input disturbances in CD do not always amplify desired hallucinations rather than
induce potential uncertainty noise. To mitigate these issues, we propose a training-free decoding
strategy named Self-Introspective Decoding (SID). By developing Context and Text-aware Token
Selection (CT?2S) strategy, SID amplifies vision-and-text association hallucinations to guide LVLMs
in contrastive decoding, thereby improving faithfulness. Extensive experiments validate the effec-
tiveness and robustness of SID.

Future Work: 1) As the pruning ratios and layer are set manually, we consider training the external
network to automatically determine optimal hyperparameters, inspired by (Chen et al., 2023b). In
addition, to enhance the interpretability of hallucination alleviations, we consider resorting to pre-
trained analysis networks to intuitively locate spurious related vision regions. 2) Moreover, given
that SID amplifies fine-grained hallucinations, we consider leveraging the CT2S strategy to auto-
matically construct high-quality negative instruction for robust visual instruction tuning rather than
relying on expensive GPT-4 (Liu et al., 2024a; Zhao et al., 2024). Note that the self-generated hal-
lucination dataset ensures style consistency, which is crucial for preference learning (Zhao et al.,
2024). Codes are available at https://github.com/huofushuo/SID.
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A APPENDIX

Overview. More related work are described in Appendix A.1, including backgrounds about Large
Vision-Language Models and Decoding Strategy in LLMs. The detailed experimental settings
are in Appendix A.2 including Model Details and Implementation Details. Evaluation metric
details, including CHAIR Evaluations, POPE Evaluations, and GPT-4 Assisted Evaluations
are introduced in Appendix A.3. We demonstrate the GPT4-V Assisted Evaluation in Appendix
A4 for comprehensive evaluations. Moreover, we illustrate the results on More Benchmarks in-
cluding MathVista (Lu et al., 2024), MM Vet (Yu et al., 2024c), LLaVA-Bench (Liu et al., 2023a),
MMMU (Yue et al., 2024a) to evaluate the complex reasoning ability in Appendix A.5. We visualize
some Case Study from the LLaVA-Bench-in-the-Wild dataset for qualitative analysis in Appendix
A.6. More ablation experiments and analyses including More Analyses on Other Baselines, More
Analyses on Adaptive Plausibility Constraint (Eq. 3), Quantitative Attention Scores Analyses,
Token Selection Strategies Analyses, Larger-scale LVLM Backbone, Adopting Other Decod-
ing Strategies, and Visual Enhancing Decoding Strategy are illustrated in Appendix A.7

A.1 MORE BACKGROUNDS

Large Vision-Language Models. Motivated by the success of Large Language Models (LLMs)
(Touvron et al., 2023a; Bai et al., 2023a; Chiang & Li, 2023; Taori et al., 2023; Touvron et al.,
2023b; Meta, 2024), recent studies have extended LLMs to multimodal regions and provided Large
Vision-Language Models (LVLMs) (Liu et al., 2023a; Zhu et al., 2023; Chen et al., 2023a; Ye et al.,
2023; Li et al., 2023a; Bai et al., 2023b; Li et al., 2023c; Dai & et al, 2023; Liu et al., 2024b; Bavishi
et al., 2023; Chen et al., 2024c; Li et al., 2024) powered by pre-trained LLMs. LVLMs understand
and generate diverse content in a more comprehensive way by integrating user instruction and vision
inputs. LLaVA (Liu et al., 2023a) connects open-set vision encoder with LLMs (i.e., Vicuna (Chi-
ang & Li, 2023)) by instruction tuning with elaborated language-image instruction-following data.
Then, LLaVA-1.5 (Liu et al., 2024b) develops the vision-language connector that is data-efficient
and powerful for better multimodal understanding. Shikra (Chen et al., 2023a) further incorporates
grounding data and trains the model to understand the grounding knowledge in the given images.
BLIP-2, InstructBLIP, and MiniGPT-4 (Li et al., 2023c; Dai & et al, 2023; Zhu et al., 2023) in-
troduce a learnable querying transformer to fusion multimodal features and largely reduce image
tokens. Fuyu (Bavishi et al., 2023) proposes a vanilla decoder-only architecture without the vision
encoder and adapter that makes it easier to understand, scale, and deploy. InternVL (Chen et al.,
2024c) proposes three simple but effective improvements, including a strong vision encoder, dy-
namic high-resolution, and high-quality bilingual dataset. Recently, built on SOTA open-source
LLaMA 3 (Meta, 2024) and increasing the input vision resolution to 4 X more pixels, LLaVA-NeXT
(Li et al., 2024) exhibits excellent multimodal capabilities. Despite the impressive results, all of
the above LVLMs suffer from serious trustworthy issues (Liu et al., 2024f;e), especially the halluci-
nation problem, and we mainly conduct experiments on advanced LVLMs, including InstructBLIP,
Shikra, LLaVA-1.5, and LLaVA-NeXT.

Decoding Strategy in LLMs. Selecting decoding strategies in language models is crucial, as it
determines how models generate text. Greedy decoding selects the highest probability next token
at each step but might lead to less varied text. Beam search (Graves, 2012) is an accumulated-
score-based decoding strategy. It maintains a set of beams to enlarge the candidate range and finally
selects the best one in beams, which is more sophisticated than greedy decoding. Sampling de-
coding generates the next words by randomly selecting from the output distribution, where Top-k
sampling (Fan et al., 2018) samples from Top-k likely tokens (Fan et al., 2018) and brings diversity
but sometimes induces less coherent outputs. Top-p (Nucleus) sampling (Holtzman et al., 2020)
improves Top-k sampling that considers the dynamic number of words that reach the probability
p, achieving a balance between randomness and relevance. As demonstrated in Tables 1 and 3,
while greedy decoding consistently surpasses sampling decoding in terms of hallucination metrics,
most open-source and closed-source LVLMs default to using sampling decoding to promote diverse
and coherent chat interactions. Therefore, it is practically meaningful to consider the constraints
in Eq. 3 when analyzing sampling decoding. Recently, to alleviate the hallucination issue, DoLa
(Chuang et al., 2024) decoding emphasizes the knowledge of mature layers and downplays that of
pre-mature layers. OPERA (Huang et al., 2024) is established on beam-search decoding strategy
and finds the interesting phenomenon of high-probability co-occurrence between the hallucination

15



Published as a conference paper at ICLR 2025

and the knowledge aggregation patterns. OPERA penalizes ‘Over-Trust Logit’ in the beam score to
alleviate aggregation patterns. Self-Introspective Decoding (SID) can be seamlessly integrated into
different decoding strategies to mitigate hallucinations without sacrificing text generation quality,
such as diversity, coherence, and relevance.

A.2 DETAILED EXPERIMENTAL SETTINGS

Models Details. To validate the effectiveness of our SID, we conduct experiments on four repre-
sentative LVLMs: InstructBLIP (Dai & et al, 2023), Shikra (Chen et al., 2023a), LLaVA-1.5 (Liu
et al., 2024b), and LLaVA-NeXT (Li et al., 2024). InstructBLIP employs Q-former (Li et al., 2023c)
to condense image tokens to 32, as a result, we are unable to visualize the dynamic token pruning
process of InstructBLIP like Fig. 3 and 4. Shikra, LLaVA-1.5, and LLaVA-NeXT directly lever-
age linear projection layers as vision-language connectors to align multimodal features. Shikra and
LLaVA-1.5 encode 256 and 576 image tokens to LVLMs. LLaVA-NeXT increases the input vi-
sion resolution by 4 to capture more visual details, resulting in 4x more encoded vision tokens
than LLaVA-1.5. All LVLMs utilize pre-trained vision encoders like CLIP (Radford et al., 2021)
vision encoder, as well as pre-trained LLMs as language decoders, such as Vicuna v1.1 (Chiang &
Li, 2023), LLaMA 2 (Touvron et al., 2023b), and recently released LLaMA 3 (Meta, 2024). We
provide results at the 7 Billion (B) scale, and larger-scale results are in the Appendix A.7.

Implementation Details. For sampling and greedy decoding, we adopt the default hyperparameter
settings. As for Dola (Chuang et al., 2024), it is designed to alleviate hallucinations (i.e., improve
factuality) of LLM by contrasting the differences in logits obtained from projecting the later layers
versus premature layers. Dola is sensitive to the premature layer selection, we adapt Dola to LVLMs,
following OPERA (Huang et al., 2024) to utilize “0,2,4,6,8,10,12,14” as the indexes of candidate
premature layers and “32” as the index of the mature layer. The repetition penalty is set to 1.2, as
Dola suggests. OPERA, VCD, and ICD are proposed for LVLMs and we adopt the default settings.
For fair comparisons, SID’s hyperparameters of Eq. 2 and 3 follow VCD and ICD. Moreover, we
apply SID, VCD, and ICD in both sampling (Top-p=1) and greedy decoding settings for compre-
hensive comparisons. Note that due to amplified fine-grained hallucinations, SID is more robust to
hyperparameters compared to other CD methods (Sec. 5). Experiments are performed on NVIDIA
V100/A100 GPUs.

A.3 EVALUATION METRIC DETAILS

CHAIR Evaluations. The Caption Hallucination Assessment with Image Relevance (CHAIR)
(Rohrbach et al., 2018) metric is specially designed to assess objection hallucinations in the im-
age caption tasks. Concretely, CHAIR quantifies the degree of hallucinations in a generated image
caption by calculating the proportion of all objects mentioned in the caption that are not present in
the ground truth label pool. There are two common variants of CHAIR: CHAIRi (Cr) and CHAIRs
(Cs), which evaluate the degree of object hallucination in the instance and sentence level, respec-
tively. These two metrics are formulated as follows:

_ |{hallucinated objects}| _ |{captions with hallucinated objects}|

Cr s =

)

~ |{all mentioned objects}|’ [{all captions}|

The smaller the value of C; and C'g, the better the hallucination alleviation performance.

POPE Evaluations. The Polling-based Object Probing Evaluation (POPE) (Li et al., 2023d) was
recently developed to assess hallucination problems in LVLMs. POPE queries the LVLMs with
the template: Is there a <object> in the image? The ratio between queries about
existing and no-existing objects is balanced (i.e., 50%-50%). This benchmark consists of three
sampling settings: random, popular, and adversarial, each differing in the construction of negative
samples. Specially, in the random setting, objects that are not present in the image are selected at
random. The popular setting selects missing objects from the high-frequency pool, whereas in the
adversarial setting, co-occurring objects that are not present in the image are prioritized. POPE
consists of three different datasets, including MSCOCO (Lin et al., 2014), A-OKVQA (Schwenk
et al., 2022), and GQA (Hudson & Manning, 2019). POPE involves 500 images from each dataset
with six questions each, ultimately yielding 27,000 query-answer pairs. Accuracy and F1 score
are chosen as evaluation metrics. The larger the value of Accuracy and F1 score, the better the
hallucination alleviation performance.
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Table 7: GPT4-V assisted hallucination evaluations (Huang et al., 2024; Yin et al., 2023). VCD and ours
adopt the same sampling decoding strategy. C': correctness; D: detailedness

LLaVA-1.5 InstructBLIP Shikra LLaVA-NeXT
cr D1 (o) D1 cr D1 (o) Dt
Sampling 5.18 5.79 4.73 5.10 5.03 5.17 5.34 5.67

Setting

Ours 597 6.01 562 516 578 510 647 5.85
VCD 546 5.63 498 521 531 524 592 547
Ours 6.16 594 537 546 561 529 6.12 5.78
OPERA 6.16 557 529 486 534 487  6.11 5.24
Ours 6.15 594 576 542 597 588  6.63 6.23

GPT-4 Assisted Evaluations. Besides object-existence-level hallucinations evaluated by CHAIR
and POPE, GPT-4 assisted benchmark (Zhao et al., 2024) utilizes the fine-grained object-level de-
scription in the Visual Genome (VG) dataset (Krishna et al., 2017) as ground-truth and relies on the
advanced GPT-4 to judge the detailed (such as positional, relational, and attribute) hallucinations
and calculate Sentence-level Hallucination Ratio (SHR). With the generated sentences and manu-
ally annotated factual information, GPT-4 is prompted to evaluate whether existing hallucinations
sentence by sentence. The prompt template is provided in Appendix Fig. 11. Following (Zhao et al.,
2024), we utilize 200 images from the VG dataset and set max new tokens to 512, with the prompt
of ‘Please describe this image in detail.’ We conduct experiments on sampling
decoding strategies and representative LVLMs decoding strategies: VCD (Leng et al., 2024) and
OPERA (Huang et al., 2024).

A.4 GPT4-V ASSISTED EVALUATION.

To further analyze the hallucinations and text quality for open-end generation tasks, following
(Huang et al., 2024; Yin et al., 2023), we utilize the strong multi-modal assistant GPT4-V, which
simultaneously processes input from vision and text modalities. We strictly follow (Huang et al.,
2024), which utilizes 500 images from the MSCOCO dataset and prompts LVLM: ‘Please
describe this image in detail.’ with the maximum number of 512. To mitigate the
impact of the sequential order fed to GPT4-V, we simultaneously compare the generated texts ob-
tained from two decoding methods and instruct GPT4-V to judge the correctness and detailedness
score on a scale of 0-10 based on the input image. The detailed GPT4-V prompt is in Appendix
Fig. 12. We set up three representative pairs of comparison experiments: greedy decoding and ours,
CD-based VCD (Leng et al., 2024) and ours, and OPERA (Huang et al., 2024) and ours. As shown
in Table 7, our SID achieves the best results in terms of most metrics. Concretely, our method
improves correctness by about 15-20% compared to sampling decoding while not compromising
the detailedness level. Compared to advanced hallucination mitigation methods VCD and OPERA,
SID generates text with obvious more details and better mitigates the hallucination issue. Since the
perceptual and reasoning capabilities of GPT4-V are very close to those of humans, the results of
the GPT4-V evaluation reflect, to some extent, the strong performance of the compared methods in
terms of mitigating hallucinations and generating text quality from a human perceptual perspective.

A.5 MORE GENERAL BENCHMARKS EVALUATION.

To further validate the general ability of self-introspective decoding strategy, we conduct experi-
ments on complex reasoning benchmarks, including MathVista (Lu et al., 2024), MM Vet (Yu et al.,
2024c), LLaVA-Bench (Liu et al., 2023a), MMMU (Yue et al., 2024a). MathVista is a robust
mathematical reasoning evaluation benchmark that includes a series of challenging tasks requir-
ing detailed deep visual recognition and compositional reasoning skills. MathVista is composed of
6,141 examples derived from 31 multimodal datasets involving mathematics. We utilize the ‘test-
mini’ subset for testing. MM Vet is a benchmark designed to evaluate large multimodal models on
complex multimodal tasks. It outlines six fundamental vision-language capabilities: Recognition,
Knowledge, OCR, Spatial Awareness, Language Generation, and Math, and assesses their integra-
tion across 16 emerging tasks. MM Vet utilizes an LLM-based evaluator for open-ended outputs,
providing consistent scoring across diverse question types and answer styles. This benchmark offers
insights into the abilities of various large multimodal model paradigms and models, extending be-
yond mere performance ranking. LLaVA-Bench is a rigorous evaluation suite aimed at testing the
visual-language alignment and instruction-following capabilities of LVLMs. Here, we utilize the
LLaVA-Bench (In-the-Wild) subset, which includes 24 varied images from different domains, such
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Table 8: LVLM General Benchmark Evaluations. * denotes employing greedy decoding strategy.
Greedy VCD* OPERA SID*

MathVista 27.1 26.3 27.1 274
MM Vet 31.1 30.2 31.1 31.2
LLaVA-Bench  63.4 63.6 64.3 68.7
MMMU 32.6 31.0 32.6 334

Table 9: Object-level and Attribute-level Hallucination Evaluations. * and * denote adopting the
same sampling and greedy decoding strategies. Experiments are conducted on LLaVA-1.5 7B.

Object-level 1 Attribute-level 1 Total
Existence Count Position Color
Sampling 171.7 120.8 112.6 151.0 556.1

Dola* 173.2 122.4 115.2 152.8 563.6
VCD* 174.4 124.1 119.4 153.6 5715
Ours* 180.5 130.7 123.8 154.5 589.5

~ Greedy 1823 130.3 1268 1557 594.1
Dola* 180.1 127.4 119.3 1544 581.2
VCD* 179.5 128.1 123.8 155.5 586.9
Ours™* 183.9 132.2 127.8 1559 599.8

as memes, paintings, and sketches, with a total of 60 questions. MMMU serves as a benchmark
for assessing multimodal models on tasks that span multiple disciplines, necessitating college-level
subject knowledge, and deliberate reasoning. It includes 11,500 questions across 30 subjects and
183 sub-fields, focusing on advanced perception and reasoning in domain-specific knowledge areas.
We compare SID with two representative decoding methods (i.e., VCD and OPERA) on LLaVA-
1.5 7B. Table 8 indicates that our SID enhances reason abilities, particularly in the LLaVA-Bench
benchmark. However, VCD slightly degrades LVLM’s complex reasoning ability, as reflected in
MathVista, MM Vet, and MMMU benchmarks. OPERA has little gains in discrimination tasks.
These results are consistent with Table 5 (MME and MMbench benchmarks), Table 3, and Table 4.
We also illustrate experimental results of Existence, Count, Position, and Color subsets of the MME
benchmark in Table 9, which evaluate the object-level and attribute-level hallucinations. Without the
assistance of auxiliary analysis networks, our method achieves +33.4 and +18.0 compared to sam-
pling and VCD on MME subsets, validating the effectiveness in alleviating object- and attribute-level
hallucinations.

A.6 CASE STUDY.

In addition to using crafted metrics (CHAIR and POPE), GPT-4/GPT4-V-aided evaluations, and
MME (Fu et al., 2023) and MMBench (Liu et al., 2023b) benchmarks, we qualitatively present sev-
eral case studies of SID’s hallucination alleviation ability from LLaVA-Bench-in-the-Wild dataset
(Liu et al., 2023a). As illustrated in Appendix Fig. 13, 14, and 15, SID effectively mitigates hal-
lucination in these challenging scenes by dynamically amplifying vision-and-text association hal-
lucinations. Meanwhile, it preserves the detailness of each image. As we propose a training-free
decoding method that does not rely on auxiliary analysis networks, it inherently carries over the ex-
isting weaknesses of LVLMs. Intuitive case studies, as illustrated in Appendix Fig. 13, 14, and 15,
reveal that SID still generates some hallucinations, particularly in finer details such as eye color and
vehicle identification specifics. These failures may be attributed to the vision encoder’s relatively
limited visual perception ability. For future work, it is promising to integrate SID with InternVL
(Chen et al., 2024c), which scales the vision encoder up to 6B, or consider leveraging auxiliary
analysis networks like Grounding DINO (Liu et al., 2024d) or OWLv2 (Minderer et al., 2023) to
mitigate LVLMSs’ internal weaknesses.

A.7 MORE ABLATION ANALYSES

More Analyses on Other Baselines.
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Table 10: Comparisons with tuning-based and auxiliary networks-based baselines. All methods adopt the
greedy decoding strategy. LURE and HA-DPO adopt MiniGPT-4 13B and LLaVA-1.5 7B, respectively.

POPET CHAIRs] CHAIRL] MMET

Greedy  78.6 554 142 805.7
LURE 78.7 55.1 14.0 846.2
+VCD 78.3 55.0 14.3 813.4
+SID 82.5 52.1 13.6 854.9

O SID 822 519 132 7 83801
Greedy  83.6 49.6 14.4 1510.8
HA-DPO 854 44.7 13.6 1522.3
+VCD 83.0 46.1 13.8 1500.6
+SID 86.2 43.8 124 1532.7

- SID 859 442 122 15253

As SID is a training-free plug-and-play decoding strategy that do not requires robust instruction
tuning with curated datasets (Lee et al., 2022; Gunjal et al., 2024; Liu et al., 2024a; Zhao et al.,
2024; Jiang et al., 2024; Yu et al., 2024b;a; Ma et al., 2024; Yue et al., 2024b) and post-hoc utiliz-
ing auxiliary analysis networks (Manakul et al., 2023; Zhou et al., 2024; Yin et al., 2023; Chen
et al., 2024b; Wu et al., 2024a; Feng et al., 2024), we do not compare with above two types of
methods for fairness. To further validate the robustness of SID, we compare SID with the aux-
iliary analysis networks-based method (i.e., LURE (Zhou et al., 2024)) and the robust instruction
tuning-based method (i.e., HA-DPO (Zhao et al., 2024)) and apply the plug-and-play SID to LURE
and HA-DPO on POPE, CHAIR, and MME benchmarks, following their official implementations
as shown in Table 10. Experimental results indicate that SID outperforms LURE and HA-DPO in
most cases. Additionally, seamlessly integrating SID with LURE and LRV can significantly enhance
performance.

More Analyses on Adaptive Plausibility Constraint.

To further analyze the effectiveness of Eq.

3, we test cogtrastive decloding-ba}se.q meth-  Table 11: Efficacy Analyses of Eq. 3 on LLaVA-1.5
ods with and without adaptive plausibility con- 7B. All methods adopt the sampling decoding strategy,
straint (Eq. 3) on open-end generation task and results are the average of three running times with
(CHAIR (Rohrbach et al., 2018)) and more three random seeds.

comprehensive MME benchmark (Fu et al, CHAIRs] CHAIRi] MME T
2023). As shown in Table 11, the adaptive Sampling 31.3 16.8 14715
plausibility constraint (Eq. 3) greatly affects ICD 48.7 13.9 1479.7
generated texts, and most metrics underperform w/o Eq. 3 52.2 16.6 1448.5
vanilla sampling decoding without the adap- ~ VCD 480 143 14819
tive plausibility constraint (Eq. 3). The pro- _W0Eq.3 519 172 1457.1
posed SID avoids potential uncertainty noise SID 45.0 117 1487.3

by inducing fine-grained hallucinations, greatly
maintaining the performances when ablating
Eq. 3.

Attention Scores and Token Selection Strategies Analyses.

Quantitative Attention Scores Analyses. Here we quantitatively analyze vision attention score in
terms of POPE (Li et al., 2023d) and CHAIR (Rohrbach et al., 2018) metrics. Concretely, we select
the top-100 and least-100 important vision tokens out of a total of 576 vision tokens of LLaVA-1.5
7B based on attention score based on Eq. 5. Visual and Instruction Disturbance (VD and ID) are also
employed as inputs for analyses. Quantitative results in Table 12 illustrate that 100 out of 576 vision
tokens with high attention scores greatly maintain original ability, while low attention score tokens
reach almost 50% accuracy for the binary classification problem, which indicates attention scores
are a good indicator for vision token importance. As for VD and ID, disturbance in raw input does
not obviously harm the LVLMs’ discrimination ability, as indicated by the POPE metric. However,
VD and ID significantly compromise the open-end generation tasks reflected by the CHAIR metric
(LVLMs tend to refuse to ID as shown in Fig. 5 and 10).

Token Selection Strategies Analyses. To validate the effectiveness of SID in selecting low at-
tention scores to induce vision-and-text association hallucination, we further conduct quantitative
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Table 12: Efficacy Analyses on Vision Token Attention Scores with POPE metric on MSCOCO dataset and
CHAIR metric. We select the Top-100 and Least-100 important vision tokens out of a total of 576 vision tokens
of LLaVA-1.5 7B, based on Eq. 5 (4=3). VD: Visual Disturbance; ID: Instruction Disturbance.

. Random Adversarial .
Setting Accuracy T F1 Score 1 Accuracy T F1 Score 1 CHAIRs | CHAIRi |
Greedy 88.8 88.6 79.3 80.9 49.6 14.4
" +Top-100 ~ = 856 839 —  TILT T 763 527 152
+Least-100 55.3 66.1 54.0 65.3 63.2 38.7
T+VD 880 g1.6 189 798 567 169
+ID 88.2 87.7 79.1 80.1 - -

Table 13: Analyses of Different Token Selection Strategies with POPE on MSCOCO dataset and CHAIR
metrics. We select the high importance scores (Eq. 5) of vision tokens (-Top) and random vision tokens (-
Random) for contrastive decoding. Experiments are conducted on LLaVA-1.5 7B.

. Random Adversarial . .
Setting Accuracy T F1 Score?  Accuracy T F1 Score 1 CHAIRs | CHAIRi |

“Greedy 888 886 793 800 496 | i
Ours 89.3 89.5 83.3 82.5 442 12.2
-High 87.0 87.3 76.5 79.4 57.9 25.6
-Random 88.4 87.2 80.9 81.5 48.6 13.5
AVISC 88.4 88.1 79.8 80.5 45.3 14.7
Sampling 84.9 83.2 78.7 78.9 51.3 16.8

" Ours 88.8 887 i 826 81 450 1 117
AVISC 87.9 87.9 77.5 79.6 46.6 12.5

experiments under different vision token selection strategies with the same preserved vision to-
ken number and Layer ¢=3 as ours. Table 13 shows that vision tokens with high attention scores
degrade obviously, as it does not amplify contextual hallucinations rather than retain original impor-
tant information. Contrastive decoding does not benefit from subtracting hallucinations amplified
by the disturbed inputs rather than suffers from the potential disturbance noise. Selecting random
vision tokens brings improvements in the adversarial setting because randomly selected vision to-
kens amplify the over-reliance on statistical bias and language priors, similar to Vision CD (Leng
et al., 2024) and Instruction CD (Wang et al., 2024a). However, token-level random disturbance
also induces uncertainty noise, resulting in the inferior performance in the random setting to greedy
decoding. Moreover, AVISC (Woo et al., 2024), in contrast to ours, preserves outlier high attention
tokens (named ’blind token’) and substracts output logits to counteract the overemphasis of ’blind
token.” In this way, AVISC promotes balanced consideration of all tokens to alleviate hallucinations.
However, Table 13 illustrates that Top-100 vision tokens with high attention scores can largely main-
tain the original performance. ’blind token’ tends to have a high probability of target class logits,
and contrastive decoding does not improve the target class’s probability while might bring extra
noise. Table 13 indicates AVISC still degrades the greedy decoding to some extent, which indicates
the attentional vision re-calibration strategy of AVISC induces some annoying noise. Overall, these
experiments further validate the rationality of our token selection strategy based on attention sores.

Table 14: Results on Larger-scale Backbones. Sampling decoding is adopted and results average of three
running times.

POPE CHAIR
Methods Accuracy  F1 Score Cs Cr
LLaVA-1.5 81.60 80.31 49.6 16.1
+VCD 82.67 81.46 46.7 16.4
+OPERA 82.32 81.10 43.3 13.6
+Ours 84.75 83.17 43.5 12.7
InstructBLIP 77.26 79.23 50.8 19.7
+VCD 79.77 80.27 47.9 17.6
+OPERA 80.31 80.91 425 14.3
+Ours 81.97 82.21 41.7 13.3

Larger-scale LVLM Backbones.

We validate the effectiveness of SID in terms of 13B scale backbones on LLaVA-1.5 and Instruct-
BLIP architectures. We choose POPE (Li et al., 2023d) and CHAIR (Rohrbach et al., 2018) to
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validate the hallucination issues in both discrimination and open-end generation tasks. Table 14
shows that SID remains effective as backbone networks scale up.

MSCOCO(POPE)
90
Origin

88 1 Ours
g 86 - 85.4 853 85.7
> 84.4
© 84 1
3 82.3
g 871 81> 81.1

80 80.0

78 . ! ! :

Top-P Top-K t=1.5 t=0.8

Figure 9: Results of different decoding strategies.

Adopting Other Decoding Strategies.

Meanwhile, besides direct sampling and greedy decoding, we conduct experiments on LLaVA-1.5
7B using the MSCOCO dataset with various decoding strategies, including Top-p sampling (p=0.9),
Top-k sampling (k=50), Top-k sampling with varying temperature (k=50, t=1.5 and 0.8). Figure 9
shows that, regardless of the sampling strategy adopted, the application of SID consistently helps to
alleviate hallucinations and improve the overall performance of LVLMs. This consistency highlights
the versatility and effectiveness of SID across different sampling strategies.

Visual Enhancing Decoding Strategy.

Although LVLMs can accurately recognize visual elements, LVLMs have difficulty fully inter-
preting those elements in the context of the input cue and effectively linking that recognition
to their internal knowledge. @ We follow Visual Description Grounded Decoding (VDGD)
(Ghosh et al., 2024) by first generating a detailed description of the image and append-
ing it as a prefix to the instruction. The prompt template is adopted from (Ghosh et al.,
2024): <image> I have been given this image to complete the task
described as: inst. To help me complete the task, describe the
given image in detail. 1In the case of real-world scenes, please
include all foreground and background objects in the description,
their properties (like color, shape, etc.), their relations with
other objects, their count, and all other components in the image.
In case of non-real-world scenes, like charts, graphs, tables,
etc., please describe the table, mention all numbers (if any),
mention the written text, and all other details. Experiments are per-
formed on hallucination evaluation benchmarks( i.e., POPE and CHAIR) and the general ability
benchmark (i.e., MMbench). We re-implement VDGD based on official codes on LLaVA-1.5 7B.
Table 15 demonstrates the effectiveness of VDGD (Ghosh et al., 2024) in LVLM’s hallucination
alleviation and general reasoning ability. However, the grounding visual descriptions, generated
by LVLMs themself, enhance the visual perception reasoning capabilities while might inevitably
contain hallucinations. Therefore, VDGD is inferior in the POPE (adversial) subset, which
prioritizes co-occurring objects which are not present in the image. Meanwhile, VDGD shares
somewhat similar motivations in enhancing vision information via Eq. 6 as we analyzed. The
experiments in Table 2 are consistent with the above results, indicating that boosting the vision
information is effective in mitigating hallucinations but is less effective in complex (i.e., adversarial)
environments.
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Table 15: Comparisons with Visual Enhancing Strategy (VDGD). * denotes employing greedy
decoding strategy.

POPET POPET

(random) (adversarial) CHAIRs| CHAIRi] MMbencht

Greedy 88.8 79.1 49.6 14.4 64.4
OPERA 88.9 79.2 45.2 12.7 64.4
VDGD* 89.0 79.4 46.7 13.7 65.2
SID* 89.3 83.3 44.2 12.2 65.0
g Original ours ID )

VD
w B B - !”-g ‘You are a confused

(dynamlc pruhin'g 'important vision &
token based on preceding tokens) 7

Normal (Greedy): The image captures a beautiful beach scene with a man standing on the sand, flying a colorful kite. The kite is soaring
high in the sky, adding a vibrant touch to the scene. The man appears to be enjoying his time at the beach, possibly taking a break from flying
the kite to admire the view.\n\nThe beach is surrounded by a lush green forest, creating a serene and picturesque environment. The waves are
crashing gently on the shore, and the overall atmosphere is calm and peaceful.

Ours: The image depicts a beautiful beach scene with a large body of water in the background. The beach is lined with bushes, providing a
serene and natural atmosphere. There are several people scattered across the beach, enjoying the sun and the view.\n\nin the water, a boat can
be seen floating near the shore, adding to the picturesque scene. The combination of the beach, bushes, and water creates a perfect setting for
relaxation and leisure activities.

VD: The image features a beautiful beach scene with a large body of water in the background. The water appears to be a mix of blue and
white, creating a serene atmosphere. A kite can be seen flying in the sky, adding a touch of playfulness to the scene.\n\nThere are several
people scattered across the beach, enjoying the view and the outdoors. Some of them are closer to the water, while others are further back on
the sand. The combination of the kite, the people, and the water creates a lively and picturesque beach scene.

ID: What is this thing? I'm sorry, I'm not sure what you are asking. The image shows several persons on the beach.

image caption model.’

Figure 10: Instance Illustration of different disturbance results. Examples are from MSCOCO
(Lin et al., 2014) inferred by LLaVA-1.5 7B with ¢ = 3 and Top-k=50. Hallucinations are marked
in red.

/GPT—4 Prompt )
Please help me judge if the comment of this image is hallucination or correct.

I will give you a list of region description of a image. The format is [x1, y1, x2, y2]: region description,
where [x1, y1, x2, y2] is the bounding box of the region. Highly overlapping bounding boxes may refer
to the same object. This is the ground truth information of the image. Besides, | give you some factual
information about the content of the image (which is 100% accurate). Your judgement should base on
this information. However, this information only descibe the objects in the region of image, so it cannot
descibe the subjective part of the image, e.g., atmosphere, style, emotion. In that case, you can return
"Cannot judge".

Also, | will give you a list of comments of the image for you to judge if it is hallucination. Please give a
judgement one by one along with the reason.

Your output should be:

Judgement:

1. hallucination or correct or cannot judge: <reason>
2....

Here are the region descriptions of the image:

b

Factual Information:

{

Here is the comment for you to judge (hallucination, correct, or cannot judge):

{

Figure 11: Prompts of GPT-4 for evaluations.
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GPT4-V Prompt

You are required to score the performance of two Al assistants in describing a given image. You should
pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with
the image content, such as claiming the existence of something not present in the image or describing
incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate the responses of
the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the
following criteria:

1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer
hallucinations should be given higher

scores.

2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores

are separated by a space. Following the scores, please provide an explanation of your evaluation,
avoiding any potential bias and ensuring that

the order in which the responses were presented does not affect your judgment.

[Assistant 1]

{

[End of Assistant 1]

[Assistant 2]

{

[End of Assistant 2]

Output format:

Accuracy: <Scores of the two answers>

Reason:

Detailedness: <Scores of the two answers>

Reason:

Figure 12: Prompts of GPT4-V for evaluations.

Instruction

(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a dog wearing a gown, possibly painted as a mona lisa painting. The dog is looking at the camera with a
curious expression, displaying its unique attire. The gown appears to be a burgundy color and complements the dog's outfit.\n\nThe
setting of the painting includes a pond and a rock formation in the background, adding a sense of depth and atmosphere to the
artwork. Additionally, there is another small figure, possibly a dog or a human, in the upper-left corner of the picture.

OPERA: The image features a painting of a dog wearing a Renaissance-style dress, with a hood over its head. The dog appears to be
a poodle, and it is sitting in a chair, giving the impression of a human-like figure. The painting is quite detailed, capturing the dog's
facial expression and the intricate design of the Renaissance dress. The dog's attire and the overall composition of the painting create
a unique and interesting visual experience.

VCD: The image is a painting of a woman wearing a Renaissance-style dress and a hood, resembling a dog. The woman has a dog's
face painted on her forehead, and she is wearing a hat. The painting captures the unique and whimsical blend of human and canine
features.\n\nIn the background, there is a boat visible, adding a sense of depth and context to the scene. The woman's attire and the
dog's face on her forehead create a playful and imaginative atmosphere.

Ours: The painting features a dog wearing Renaissance paint makeup and a veil, posing as a Mona Lisa-style figure. The dog's
face is adorned with a mustache and hat, giving it a unique and artistic appearance. The dog's sitting position is also painted to
resemble a human's, adding to the creative and humorous nature of the painting.\n\nIn the background, there is a river visible, which
complements the overall composition of the painting. The dog's position and the artistic elements create a captivating and amusing

\scene. /

Figure 13: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B. Hallucinations are
marked in red.
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Instruction
(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a group of three animals sitting around a dining table, enjoying a meal together. The animals include a
large brown bear, a cat, and a rabbit. They are all seated on the grass, with the bear on the left side, the cat in the middle, and the
rabbit on the right side of the table.\n\nThe table is set with various food items, including a cake, a bowl, and a cup. The cake is
placed in the center of the table, while the bowl and cup are positioned closer to the edge. The scene appears to be a whimsical and
playful depiction of the animals sharing a meal.

OPERA: The image depicts a whimsical scene of a bear, a cat, and a rabbit sitting around a dining table, enjoying a meal together.
The bear is on the left side of the table, the cat is in the middle, and the rabbit is on the right side. Each animal has a plate of food in
front of them.\n\nThe table is set with various utensils such as forks, knives, and spoons, as well as cups and bowls. There are also a
couple of cakes placed on the table, adding to the delightful atmosphere of the gathering.\n\nln the background, a potted plant can
be seen, adding a touch of greenery to the scene.

VCD: The image features a whimsical scene of three animals sitting around a dining table, enjoying a meal together. A brown bear
is sitting on one side of the table, while a cat is seated on the opposite side, and a rabbit is sitting on the far right side of the table.\n\
nVarious food items are placed on the table, including a cup, a bowl, and several cakes. The cakes are spread across the table, with
one near the center, another closer to the rabbit, and the third one near the cat. The table is set in a lush green field, giving the scene
a peaceful and inviting atmosphere.

Ours: The watercolor illustration features three animals sitting around a dining table, enjoying cookies and doughnuts. A large
brown bear is on one side of the table, while a gray cat and a yellowish rabbit are on the other side. The cat has blue eyes and is
drinking from a blue cup, while the rabbit holds a pink cup as well.\n\nThe table is topped with a plate of various desserts, including
multiple cookies and doughnuts. The scene is set in a field surrounded by green grass and trees, giving the whole watercolor a
\natural and whimsical atmosphere.

J

Figure 14: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B. Hallucinations are
marked in red.

Instruction
(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a man standing on the back of a yellow taxi cab, holding a blue shirt. He appears to be ironing the shirt
while the taxi is in motion. The taxi is driving down a busy street, with other vehicles such as a truck and a car visible in the scene.\n\
nThere are also a few potted plants scattered around the area, adding some greenery to the urban environment. Additionally, a traffic
light can be seen in the background, indicating that the taxi is driving through an intersection.

OPERA: In the image, a man wearing a yellow shirt is standing on the back of a yellow taxi, ironing clothes. The taxi is driving down
a busy city street, surrounded by other vehicles such as cars and trucks. One car is positioned behind the taxi on the left side, while
another car can be seen further down the street on the right side. A truck is also visible on the right side of the street.\n\nThere are
several potted plants placed along the street, adding a touch of greenery to the urban environment. One potted plant is located near the
center of the scene, while two others are positioned closer to the right side of the street.

VCD: The image features a man ironing clothes on the back of a yellow SUV taxi. He is standing on a clothes iron, which is placed
on top of a metal frame mounted on the back of the vehicle. The man is focused on his task, and the scene is quite unusual as it takes
place on a busy city street.\n\nThere are several other vehicles in the scene, including a truck and a car on the left side of the image,
and another car on the right side. Additionally, there are two potted plants visible in the scene, one near the center and the other on
the left side.

QOurs: In the image, a man is ironing clothes while riding on the back of a yellow SUV taxi. He is standing on a portable desk, which
is strapped to the back of the vehicle. The taxi is driving down a busy city street, surrounded by various vehicles, including a yellow
taxi and a truck.\n\nThe man is wearing a yellow shirt and shorts, and he appears to be focused on his task. Green trees can be seen in
the background, adding a touch of greenery to the busy urban environment. The man's unconventional choice of transportation adds a
Qnique element to the bustling cityscape. /

Figure 15: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B. Hallucinations are
marked in red.
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