Table 1: Additional experimenst on GPT-J and GPT2-XL to illustrate our method's generalization ability. The mean and standard deviation are reported for 3 repetitions with different ICL examples.

	GPT-J					GPT2-XL				
Method	ICL	CC	DC	PC	UniBias	ICL	CC	DC	PC	UniBias
SST-2	90.67 _{1.06}	90.75 _{1.88}	91.90 _{1.12}	89.14 _{1.68}	92.01 _{1.04}	56.69 _{3.39}	81.35 _{4.36}	87.00 _{2.66}	88.69 _{1.03}	88.69 _{1.10}
WiC	50.21 _{0.99}	51.83 _{0.53}	50.89 _{0.90}	51.67 _{0.59}	52.77 _{0.52}	49.060.25	$50.88_{0.92}$	50.31 _{1.33}	48.69 _{1.79}	51.22 _{0.69}
COPA	47.33 0.47	$47.00_{0.35}$	$48.66_{0.94}$	52.99 _{5.88}	55.33 _{2.62}	49.00 1.63	46.331.70	49.33 _{1.25}	52.33 _{2.36}	52.00 _{3.74}
MR	89.261.65	85.31 _{2.36}	90.29 _{0.45}	89.660.27	90.39 _{0.36}	51.11 _{1.76}	$72.00_{4.44}$	82.631.80	83.07 _{1.56}	83.53 _{1.02}
RTE	50.543.19	53.99 _{0.68}	54.13 _{1.19}	$49.58_{4.85}$	56.20 _{1.80}	52.37 _{0.34}	$52.91_{0.45}$	53.15 _{0.29}	$53.30_{1.28}$	56.16 _{1.23}
Avg.	65.60	65.78	67.17	66.61	69.34	51.65	60.69	64.48	65.32	66.32

Table 2: Additional experiments on streamlining grid search by adopting a fixed set of thresholds. The **best** and <u>second-best</u> results are marked by bold and undrline, respectively. Experiments are conducted using Llama2-7b.

	SST2	MMLU	COPA	RTE	MR	Trec	Avg.
ICL	87.226.03	41.732.25	67.602.30	66.217.30	89.371.83	72.9212.42	70.84
CC	92.24 _{3.39}	43.72 _{0.97}	$67.80_{2.17}$	64.33 _{3.68}	$91.77_{1.42}$	76.443.21	72.72
DC	94.15 _{1.22}	$43.57_{1.38}$	$60.40_{2.79}$	65.49 _{2.09}	92.35 _{0.23}	77.163.94	72.19
PC	93.90 _{1.54}	34.123.41	67.803.70	62.594.71	91.39 _{1.65}	74.925.78	70.79
UniBias	94.54 _{0.62}	44.83 _{0.24}	69.00 _{2.74}	67.65 _{6.44}	92.19 _{0.37}	80.80 _{3.17}	74.84
UniBias with fixed thresholds	<u>94.42</u> 0.80	<u>44.47</u> 0.93	<u>68.20</u> 1.79	<u>67.51</u> 4.97	92.35 _{0.17}	<u>80.32</u> 4.40	74.54

Table 3: Shared biased attention heads and their frequency of occurrence across 12 datasets in the Llama2-7b model. Each entry represents a specific (layer index, head index) combination.

(19, 10)	(19, 14)	(16, 29)	(19, 21)	(25, 21)	(16, 11)	(18, 31)	(18, 1)
6	5	4	4	3	3	3	3

Table 4: Additional experiments on eliminating common biased components. Attention heads list in Table 3 are removed from the original Llama2-7b model, and the modified model is then evaluated across multiple tasks.

	SST2	MMLU	COPA	RTE	MR	Trec	Avg.
ICL Unibias	87.22 _{6.03} 94.54 _{0.62}	41.73 _{2.25} 44.83 _{0.24}	67.60 _{2.30} 69.00 _{2.74}	66.21 _{7.30} 67.65 _{6.44}	$\begin{array}{c} 89.37_{1.83} \\ 92.19_{0.37} \end{array}$	72.92 _{12.42} 80.80 _{3.17}	70.84 74.84
Eliminating Common Biased Components	94.32 _{0.60}	44.201.14	68.00 _{2.87}	$67.37_{4.60}$	92.43 _{0.09}	77.60 _{4.75}	73.98

1

Figure 1: Performance of Unibias using unlabeled samples as support set. It is compared against standard ICL and the original Unibias method.

Identified Biased Attention Heads in Llama2-7b

Figure 2: Identified biased attention heads across 12 datasets with 5 repetitions for each dataset.