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Mitigating Social Biases in Text-to-Image Diffusion Models via
Linguistic-Aligned Attention Guidance

Anonymous Authors

ABSTRACT
Recent advancements in text-to-image generative models have
showcased remarkable capabilities across various tasks. However,
these powerful models have revealed the inherent risks of social bi-
ases related to gender, race, and their intersections. Such biases can
propagate distorted real-world perspectives and spread unforeseen
prejudice and discrimination. Current debiasing methods are pri-
marily designed for scenarios with a single individual in the image
and exhibit homogenous race or gender when multiple individuals
are involved, harming the diversity of social groups within the
image. To address this problem, we consider the semantic consis-
tency between text prompts and generated images in text-to-image
diffusion models to identify how biases are generated. We propose
a novel method to locate where the biases are based on different
tokens and then mitigate them for each individual. Specifically, we
introduce a Linguistic-aligned Attention Guidance module consist-
ing of Block Voting and Linguistic Alignment, to effectively locate
the semantic regions related to biases. Additionally, we employ Fair
Inference in these regions to generate fair attributes across arbitrary
distributions while preserving the original structural and semantic
information. Extensive experiments and analyses demonstrate our
method outperforms existing methods for debiasing with multiple
individuals across various scenarios.

CCS CONCEPTS
• Applied computing; • Computing methodologies→ Com-
puter vision;

KEYWORDS
Text-to-image generation, Social biases, Diffusion model.

1 INTRODUCTION
Text-to-image generative methods develop rapidly based on the
diffusion models [19, 35, 42, 48], achieving impressive generation
fidelity and diversity on a large range of tasks including image
editing [5, 9, 16, 18, 32], style-transfer [12, 53, 59], concept learn-
ing [24, 26, 41, 56] and so on. However, these powerful models
have revealed severe potential risks of social biases such as gender,
race, and their intersections when conditioned on text prompts
describing human-related content including occupations, personal-
ity traits, or simply the term “person” [3, 8, 31, 31, 45]. As shown
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Figure 1: The frequency of different social groups across var-
ious occupations generated by Stable Diffusion, where I., B.,
A., and W. represent Indian, Black, Asian, and White respec-
tively, and F. and M. represent Female and Male respectively.

in Fig. 1, the classic text-to-image generative model Stable Diffu-
sion [39] demonstrates biases toward “Male” and “White” in most
occupations, whereas, for housekeeper, the model skews toward
“Female”. A similar pattern is observed in DALLE-v2 [8, 31]. These
biases may propagate a distorted worldview and spread unforeseen
prejudice and discrimination against certain groups.

Some progress has beenmade tomitigate these biases for diffusion-
based text-to-image generative models. Most of them [10, 15, 22,
25, 25, 32, 46] re-train or fine-tune different components of the
original model, necessitating expensive computational resources.
Other works [2, 11] are training-free and only require fair prompts
for debiasing. However, all these debiasing methods are designed
for scenarios involving only one individual. When applied to more
general contexts where multiple individuals appear in one image,
they often produce homogeneous social groups. As shown in Fig. 2,
current debiasing methods exhibit almost the same race or gen-
der to all individuals in an image, which harms the diversity of
social groups within the image. In contrast, our method enables
individualized debiasing and exhibits diverse genders and races.

To address the challenge of debiasing for more general scenarios
with multiple individuals and representing diverse social groups
within the image, we consider how these biases are generated. For
text-to-image generation, the generated results are semantically
instructed by the conditioned text prompts, benefitting from the ar-
chitecture of the diffusion model [39]. This property indicates that
the tokens of the prompt are accountable for the semantic informa-
tion within the image [23, 49], potentially introducing biases. For
instance, tokens like “faces” and “doctors” may be associated with
certain social groups in the generated results, such as “Male” and
“White”, which introduce biases for each individual related to them.
By identifying the semantic regions associated with these tokens,
we can locate where the biases are and subsequently debiasing
them for each individual.

In this work, we introduce a Linguistic-aligned Attention-Guided
Fair Generation Model, which locates the semantic regions related

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Results of generated “lawyers” of different methods.
Current methods debias across the entire image, exhibiting
homogenized attributes within the image, while our method
handles multiple individuals in the same image with diverse
genders and races.

to biases based on different tokens and generates fair attributes in
these regions tomitigate biases. To enhance the accuracy and robust-
ness of the extracted semantic regions, we introduce a Linguistic-
aligned Attention Guidance module consisting of Block Voting and
Linguistic Alignment. Block Voting aims to obtain more region-
effective cross-attention maps and avoid disturbance of global infor-
mation. Linguistic Alignment facilitates robust and stable semantic
regions from different thresholds by maintaining the linguistic
correlations of different tokens. Once the semantic regions are ob-
tained, we further employ Fair Inference to ensure each individual
exhibits fair attributes while preserving the original structural and
semantic information. Furthermore, the debiasing for each indi-
vidual is achieved by confirming the target distributions of social
groups. Given intended fair prompts, such as gender and race, our
method achieves fair generation in more general scenarios includ-
ing multiple individuals within the image and is free of training.

Our contribution can be summarized as follows:
• We introduce a Linguistic-aligned Attention-guided Fair Gen-
eration Model to mitigate social biases in general contexts
including multi-face scenarios. To the best of our knowledge,
this is the first debiasing method capable of dealing with
multiple individuals within the image.

• We propose a Linguistic-aligned Attention Guidance module
to effectively locate the semantic regions containing biases
and Fair Inference to achieve fair attributes for each indi-
vidual while preserving original structural and semantic
information.

• Comprehensive analysis and experiments are conducted to
demonstrate the superiority of our method in mitigating
biases with multiple individuals across various scenarios.

2 RELATEDWORK
2.1 Text-to-image Generation.
Text-to-image generative methods [13, 34, 54] used to based on
Generative Adversarial Networks (GANs) [17]. However, these
methods would encounter problems such as unstable training and

suboptimal generation quality. With the development of diffusion
models [19, 48], generative results with greater fidelity, higher reso-
lution, and more diverse conditions under stable training have been
achieved. Stable Diffusion [39], trained on large-scale text-image
dataset [44], exhibits impressive performance on text-to-image
generation, super-resolution, and unconditional image generation.
Furthermore, various text-to-image generation tasks such as image-
editing [1, 5, 16, 18, 30, 32], style-transfer [12, 59] and concepts
learning [24, 41] are also achieved and exhibit impressive perfor-
mance based on diffusion architecture.

2.2 Biases in Diffusion Models.
Pretrained on large image-text dataset [44] selected from the In-
ternet without adequate filtering and labeling, many text-to-image
diffusionmodels [37, 39] are discovered to present potential harmful
biases on social dimensions such as gender, race, culture, and so on.
For generating prompts describing occupations, personality traits,
or simply the word “person”, Stable Diffusion [39] and DALLE-
v2 [37] present severe biases excluding groups of people [31]. Luc-
cioni et al. [29] and Friedrich et al. [11] also uncover the gender bias
for different occupations in diffusion models. Similarly, Bianchi et
al. [3] discover that Stable Diffusion exhibits racial, ethnic, and gen-
dered stereotypes and stereotype amplification on neutral prompts.
Seshadir et al. [45] present that Stable Diffusion would amplify
biases from training data between gender and occupations. Further-
more, Cho et al. [8] discover that Stable Diffusion tends to generate
males and skin tone centered on few tones for occupations. Liu et
al. [28] uncover the cultural stereotypes with negative impacts on
various groups.

2.3 Bias Mitigation for Diffusion Models.
Existing bias mitigation methods focus on gender, race, and their
intersections for occupations. Most of these methods finetuning
certain components of the original model [10, 15, 22, 25, 25, 32, 46].
Shen et al. [46] employ biased direct fine-tuning for the sampling
process with a distributional alignment loss. Esposito et al. [10]
fine-tune text-to-image models on a synthetic fair dataset. Li et
al. [25] trained a semantic h-space to achieve fair generation. Kim et
al. [22] employ attribute classifiers to prompt-tune the text-to-
image models for debiasing, and Li et al. [25] train a mapping
network for text embeddings to guide the fair generation. TIME [32]
and UCE [15] update the cross-attention layers to achieve semantic-
aligned text-to-image editing and hence mitigate social biases.
Other works [2, 11] utilize fair prompts for debiasing, which are
free of re-training or fine-tuning the original model. Bansal et al. [2]
incorporate ethical prompt intervention to original prompts. Fair-
diffusion [11] employs semantic dimensions [4] to guide debiased
generation with a given fair prompt table. However, the above
methods focus on scenarios involving only one individual within
the images, which harms the diversity of social groups for general
contexts with multiple individuals.

3 METHOD
To achieve debiasing for each individual, our method consists of
two steps, as illustrated in Fig. 3. We first obtain the semantic re-
gions from text prompt tokens via the Linguistic-aligned Attention
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Figure 3: The pipeline of our method. In step one, we employ Linguistic-aligned Attention Guidance to obtain more accurate
semantic regions relative to biases. In step two, we employ Fair Inference to generate fair attributes in these regions while
persevering original structural and semantic information.

Guidance module. After that, we employ the Fair Inference to de-
bias each individual while preserving the original semantic and
structural information. Note that our method can achieve arbitrary
target distributions without re-training or fine-tuning the original
model.

3.1 Priliminary
Classifier-freeGuidance. Text-to-image generativemodels based
on Stable Diffusion [39] employ the classifier-free guidance [20] to
generate images conditioned on text prompts without additional
pre-trained classifiers. During training, the text prompts 𝑐𝑝 drops
randomly to facilitate unconditional and conditional objectives.
During inference, the conditioned text prompts are sent to the
noise predictor 𝜖𝜃 along with the latent code 𝑧𝑡 to predict noise at
different timestep 𝑡 as follows:

𝜖 (𝑧𝑡 , 𝑐𝑝 ) = 𝜖𝜃 (𝑧𝑡 ) + 𝑠𝑔 (𝜖𝜃 (𝑧𝑡 , 𝑐𝑝 ) − 𝜖𝜃 (𝑧𝑡 )), (1)

where 𝑠𝑔 is the guidance scale determining the extent of text-guided
instructions. The backbone 𝜖𝜃 is a conditional UNet [40] to predict
the added noises.

Attention in Diffusion Models. The attention maps in self-
and cross-attention layers of the diffusion UNet are discovered
to characterize semantic information such as spatial layout, seg-
mentations, and objects’ shapes [16, 33, 38, 49], which stem from
the fully convolutional nature of the UNet [14]. The self-attention
maps model the correlations between different patches of the latent
code, reflected in the generated image. While the cross-attention

maps present the correlations between each text prompt token
and generated image patches. Therefore, these attention maps can
be employed to obtain the semantic segmentations of the gener-
ated images and assess the relevance of image patches to specific
words [16, 49].

3.2 Linguistic-Aligned Attention Guidance
To understand how biases are generated and locate them, we ana-
lyze the text prompt and concentrate on the different tokens. As for
the text prompt “A photo of the faces of {number} {occupations}”,
the nouns “faces” and “{occupations}” are semantically responsible
for biases, as the text-to-image model predominately associates
these tokens with certain social groups, such as “Male” and “White”,
which introduces biases for each individual related to them.

Semantic Regions. Our goal is to locate the semantic re-
gions associated with these tokens. To achieve this, we first ob-
tain global semantic segmentation maps from self-attention maps
which contain rich information about spatial layouts and object
shapes [16, 33]. The self-attention maps act as similarity maps,
correlating different patches of generated images and generat-
ing semantic clusters [16] through spectral clustering [47, 51] as
𝑆𝐶𝑐 = 𝐹 (𝑆𝐴, 𝑐), where 𝑆𝐴 is the self-attention maps of a certain
resolution and 𝐹 is spectral clustering. 𝑆𝐶𝑐 are the semantic clus-
ters with the number of 𝑐 clusters presenting different semantic
segmentations.
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To obtain the semantic regions 𝑆𝑅 for different tokens 𝑡 , cross-
attention maps are employed as similarity maps denoting corre-
lations between tokens and generated image patches to correlate
different tokens and semantic clusters as follows:

𝑆𝑅𝑡 =

𝑐∑︁
𝑖

(𝑆𝐶𝑖 )1𝜏 (
∑(𝑆𝐶𝑖 ·𝐶𝐴𝑡 )∑(𝑆𝐶𝑖 )

> 𝜏), (2)

where 𝐶𝐴𝑡 is the cross-attention map of token 𝑡 .
∑(𝑆𝐶𝑖 ·𝐶𝐴𝑡 )∑(𝑆𝐶𝑖 ) is the

agreement score [33]. The 𝑆𝐶𝑖 is labeled as part of the semantic
region for token 𝑡 if the agreement score is larger than threshold 𝜏 .

However, recent work discovers that averaged cross-attention
maps can exhibit failures such as undesired attention to the cor-
responding area, denoted as attention leakage [55]. We observe
similar failures in our setting, as shown in Fig. 4 (a), the original
cross-attention maps of the token “faces” almost covered the whole
image, which may lead to the inaccurate assignment of seman-
tic regions. We further assess the effectiveness of cross-attention
maps for semantic regions from different cross-attention blocks
and timesteps. The metric denotes facial region accuracy evaluated
by IoU scores between semantic regions of different cross-attention
maps and facial regions detected by MTCNN face detector [57]. As
shown in Fig. 4 (b), there are blocks more effective for semantic re-
gions in early steps while some almost fail to work. This may stem
from some attention blocks being more sensitive to objects’ shapes
while others mainly contain global information like textures, with
limited contribution to local semantics. Therefore, averaging all
cross-attention maps may result in undesired attention assignments.
Besides, obtaining accurate semantic regions may require different
threshold 𝜏 following Eq. 2. As shown in Fig. 4 (c), we evaluate the
maximum facial region accuracy for the semantic regions of the
nouns “faces”, “{occupations}”, denoted as biased tokens 𝐵𝑡 and the
modifiers “the”, “of” and “{number}”, denoted as modifier tokens𝑀𝑡 ,
which are linguistically relative to 𝐵𝑡 . The facial region accuracy
corresponding to different tokens varies depending on different
thresholds, indicating less robust and stable acquisition of these
regions.

Based on these observations, we aim to obtain more accurate
semantic regions and mitigate the above failures. We propose Block
Voting to obtain cross-attention maps aligned with the semantic
regions from region-effective blocks. Linguistic Alignment is em-
ployed to achieve a more robust and stable acquisition of semantic
regions by linguistically correlating different tokens.

Block Voting. To mitigate attention leakage, we evaluate
whether the cross-attention maps from different blocks and steps ef-
fectively represent semantic regions. The cross-attention maps are
checked as follows to minimize disruptions of global information.

𝐵𝑉 (𝐶𝐴𝑏,𝑠
𝑡 ) =


𝑟𝑒 𝑗𝑒𝑐𝑡, 𝑖 𝑓

𝑐∑︁
𝑖

(𝑆𝐶𝑖 )1𝜏 (
∑(𝑆𝐶𝑖 ·𝐶𝐴𝑏,𝑠

𝑡 )∑(𝑆𝐶𝑖 )
> 𝜏𝑎) ∈ {𝑆𝐶𝑐 , 0}.

𝐶𝐴
𝑏,𝑠
𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

where 𝑡 is token, 𝑏 is attention block and 𝑠 is steps. If all semantic
clusters or no clusters are chosen, indicating 𝐶𝐴𝑏,𝑠

𝑡 hardly obtain
effective semantic regions, the 𝐶𝐴𝑏,𝑠

𝑡 will be rejected. After block
voting, accepted 𝐶𝐴𝑏,𝑠

𝑡 are summarized across different steps and

Figure 4: (a) Variations in cross-attention maps before and
after Block Voting. (b) The effectiveness of cross-attention
maps across different blocks and steps. (c) The influence of
different thresholds on the effectiveness of semantic regions
corresponding to different tokens. (d) The proposed modules
enhance the robustness and stability of obtaining semantic
regions.

scaled to the same resolution of different blocks, and then averaged.

˜𝐶𝐴𝑡 =
1
𝐵

∑︁
𝑏

𝑆𝑐𝑎𝑙𝑒𝑟 (
∑︁
𝑠

𝐵𝑉 (𝐶𝐴𝑏,𝑠
𝑡 )). (4)

The final semantic regions 𝑆𝑅𝑡 can be obtained with more region-
aligned cross-attention maps ˜𝐶𝐴𝑡 following Eq. 2. As shown in
Fig. 4 (a), after Block Voting, the cross-attention maps are more
consistent with the semantic clusters and identical to different
semantic regions.

Linguistic Alignment. To generally obtain effective seman-
tic regions, we aim to find a group of tokens containing semantic
information including modifier tokens. The key idea is the cross-
attention maps of the modifier tokens are supposed to largely over-
lap those of biased tokens in ideal conditions for semantic con-
sistency [7, 38]. For example, the cross-attention maps of biased
tokens 𝐵𝑡 “faces” and “{occupations}” are semantically aligned with
the modifier tokens𝑀𝑡 “the”, “of”, and “{number}”. The appropriate
threshold can be determined by preserving the linguistic correla-
tion between the semantic regions of these tokens. The ineffective
𝑆𝑅𝑡 with no semantic information is initialized with an extremely
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large value.

𝐿𝑙 = 𝜆𝑒 | |𝑆𝑅𝐵𝑖
, 𝑆𝑅𝐵 𝑗

| |22 + 𝜆𝑐 | |𝑆𝑅𝐵𝑖
, 𝑆𝑅𝑀𝑝

| |22 + 𝜆𝑚 | |𝑆𝑅𝑀𝑝
, 𝑆𝑅𝑀𝑞

| |22, (5)

where 𝐵𝑖 and 𝐵 𝑗 are different biased noun tokens, and𝑀𝑝 ,𝑀𝑞 are
different modifier tokens. 𝜆𝑒 , 𝜆𝑐 , 𝜆𝑚 are weights determining the
correlation degree of different tokens. The final semantic region
𝑆𝑅𝑓 is obtained as follows:

𝑆𝑅𝑓 = 𝑎𝑟𝑔𝑚𝑎𝑥 ( | |𝑆𝑅𝐵𝑖
, 𝑆𝑅𝑀𝑝

| |22 + ||𝑆𝑅{𝐵𝑖 ,𝑀𝑝 } | |
2
2) . (6)

As shown in Fig. 4 (d), the obtained semantic regions are more accu-
rate and stable for different thresholds. Furthermore, the obtained
semantic region 𝑆𝑅𝑓 presents where the biases are and is further
utilized in the Fair Inference stage for debiasing.

3.3 Fair Inference
To mitigate generated biases, we aim to represent fair attributes of
prompts for each individual in the semantic region 𝑆𝑅𝑓 of tokens
introducing biases in alignment with the target distribution. For
example, for gender debiasing, the fair prompts 𝑐 𝑓 are “female
person” and “male person”, which are supposed to be present for
individuals with equal probability given the target distribution is
equal. Furthermore, the original structure and semantic information
of the text prompts 𝑐𝑝 are supposed to be preserved. During the
inference stage, the latent noise conditioned on 𝑐𝑝 is originally
predicted by classifier-free guidance [20] as follows:

𝜖 (𝑧𝑡 , 𝑐𝑝 ) = 𝜖𝜃 (𝑧𝑡 ) + 𝑠𝑔 (𝜖𝜃 (𝑧𝑡 , 𝑐𝑝 ) − 𝜖𝜃 (𝑧𝑡 )) . (7)

Similarly, to generate the fair attributes 𝑐 𝑓 , the predicted noise is:

𝜖 (𝑧𝑡 , 𝑐 𝑓 ) = 𝜖𝜃 (𝑧𝑡 ) + 𝑠𝑓 (𝜖𝜃 (𝑧𝑡 , 𝑐 𝑓 ) − 𝜖𝜃 (𝑧𝑡 )). (8)

Directly employ 𝜖 (𝑧𝑡 , 𝑐 𝑓 ) would distort original structural and se-
mantic information of 𝜖 (𝑧𝑝 , 𝑐𝑝 ). To preserve the original informa-
tion while presenting fair attributes 𝑐 𝑓 , we consider the semantic
dimensions of the noises, which correspond to the upper and lower
tail of the noise distribution [4, 43]. These subtle semantic dimen-
sions to original noise preserve the structural and semantic infor-
mation of 𝑐 𝑓 while presenting fair attributes of 𝑐 𝑓 . The semantic
dimensions of 𝑐 𝑓 are obtained as follows:

𝜙 (𝑧𝑡 , 𝑐 𝑓 ) = Ω(𝜙, 𝑠𝑓 , 𝜔) (𝜖𝜃 (𝑧𝑡 , 𝑐 𝑓 ) − 𝜖𝜃 (𝑧𝑡 )), (9)

Ω(𝜙, 𝑠𝑓 , 𝜔) =
{
𝑠𝑓 |𝜙 | > 𝜂𝜔 ( |𝜙 |),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(10)

where 𝜂𝜔 ( |𝜙 |) is the 𝜔-th percentile of |𝜙 |.
Finally, the classifier-free guidance for generating prompt 𝑐𝑝

with the semantic dimensions of 𝑐 𝑓 is obtained as follows:

𝜖 (𝑧𝑡 , 𝑐𝑝 , 𝑐 𝑓 ) = 𝜖𝜃 (𝑧𝑡 ) + 𝑠𝑔 (𝜖𝜃 (𝑧𝑡 , 𝑐𝑝 ) − 𝜖𝜃 (𝑧𝑡 )) + 𝜙 (𝑧𝑡 , 𝑐 𝑓 ) . (11)

For fair generation, we present multiple fair attributes following
target distributions 𝑝𝑖 for each individual 𝑆𝑅𝑓𝑛 from the semantic re-
gions 𝑆𝑅𝑓 of tokens introducing biases. The final noise is predicted
as follows:

𝜖 (𝑧𝑡 , 𝑐𝑝 , 𝑐 𝑓𝑖 ) = 𝜖𝜃 (𝑧𝑡 ) + 𝑠𝑔 (𝜖𝜃 (𝑧𝑡 , 𝑐𝑝 ) − 𝜖𝜃 (𝑧𝑡 )) +
∑︁
𝑛

𝑆𝑅𝑓𝑛

𝑑∑︁
𝑖

𝑝𝑖𝜙𝑎 (𝑧𝑡 , 𝑐 𝑓 𝑖 ), (12)

where
∑
𝑝𝑖 = 1, 𝑖 ∈ [1, 2, ..., 𝑑], 𝑑 is the number of different fair

attributes. 𝑆𝑅𝑓𝑛 are the semantic regions obtained by segmentation
algorithm [50] for 𝑛 individuals.

4 EXPERIMENTS
In this section, we demonstrate our method outperforms the state-
of-the-art debiasing methods to mitigate the social biases with
multiple individuals within the image. We conduct both qualitative
and quantitative evaluations, and our method achieves superior
performance in terms of debiasing as well as preserving the struc-
tural and semantic consistency of the original results. Moreover,
we apply our method to various scenarios including daily activities,
personal descriptors, and style prompts. We further evaluate the de-
biasing performance with qualitative and quantitative comparisons
with the original model.

4.1 Experimental Setups
Social Biases.We consider social biases including gender, race, and
their intersections. For gender, we adopt binary attributes: {Male,
Female}, as non-binary attributes are hard determined by outward
appearance and are currently challenging for automatic algorithms
to identify. For race, we adopt four categories: {Black, White, Asian,
Indian} following [46], as these can be better distinguished by clas-
sifiers trained on fair racial dataset [21]. We consider the uniform
distribution of these attributes and the prompt template is “a photo
of the faces of {number} {occupation}” for the multi-face scenarios.
“{number}” including cardinal numbers such as “two”, “three” and
quantifiers “few”, “some” and “a group of”. We employ the occupa-
tions from the International Standard Classification of Occupations.

Compared Methods. We compare our method with four base-
lines. (1) Stable Diffusion with Ethical Interventions [2] (SD-EI),
which applies ethical interventions via text prompts to the original
model.(2) FairDiffusion [11], which promotes fairness using a fair
prompts table and semantic guidance. (3) Unified Concept Editing
(UCE) [15], debiasing concepts via multiple edit directions simulta-
neously by updating the cross-attention layers of the original model.
(4) Fine-tune [46], fine-tuning the original model for distribution
alignment with a biased gradient. To ensure fair comparisons, all
experiments are conducted on Stable Diffusion 1.4 [39].

Evaluation Metrics. We utilize the classifiers [46] trained
on CelebA [27] and FairFace [21] datasets for gender and race
identification. To access social biases in multi-face scenarios, we
evaluate the biases of generated results in two ways: across overall
results (Bias-W) and within an image (Bias-P).

𝐵𝑖𝑎𝑠 −𝑊 =

√︄
1
𝑛𝑎

∑︁
𝑎

(𝑓 𝑟𝑒𝑞𝑤𝑎 − 1
𝑛𝑎

)2,

𝐵𝑖𝑎𝑠 − 𝑃 =

√︄
1
𝑛𝑎

∑︁
𝑎

(𝑓 𝑟𝑒𝑞𝑝𝑎 − 1
𝑛𝑎

)2,
(13)

where 𝑎 represents different attributes, and 𝑛𝑎 denotes the number
of attributes. 𝑓 𝑟𝑒𝑞𝑤𝑎 , 𝑓 𝑟𝑒𝑞𝑝𝑎 indicate the frequency of attribute 𝑎
across all results and within one image. Specifically, the number of
𝑛𝑎 is 2 for gender, 4 for race, and 8 for their intersections.

Furthermore, to evaluate the performance of different methods
in preserving structural and semantic information of the original
results, we employ conventional metrics including SSIM [52], PSNR,
and LPIPS [58] to measure the structural consistency, and CLIP [36]
and DINO [6] embeddings to assess the semantic consistency via
cosine similarity.
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Figure 5: Qualitative comparison with different methods. Different social groups are highlighted with colored boxes:“White
Female”,“White Male”,“Black Female”,“Black Male”,“Indian Female”,“Indian Male”,“Asian Female”,“Asian Male”.

Implementation Details. Our framework is based on the
Stable Diffusion 1.4 [39] with default hyperparameters over 50
inference steps. The number of semantic clusters is 4, threshold
values 𝜏𝑎 ∈ (0.1, 0.2), and the hyperparameters 𝜆𝑒=1. During Fair
Inference, we set 𝑠𝑓 =10. All the experiments are conducted on a
single V100 GPU.

4.2 Qualitative Evaluation
We present the qualitative results of the comparing methods in
Fig. 5, and the generated occupation is “doctors”. Note that the
images in the same column are generated with the same random
seeds. For convenience, we highlight the demographic attributes in
the figure with colored boxes. More varied colored boxes within
an image and across the overall results indicate superior debiasing
performance. More qualitative results are provided in the Appendix.
As depicted in the figure, Stable Diffusion predominantly gener-
ates “White Male” individuals, potentially introducing social biases
regarding gender and race. SD-EI exhibits biases towards Asians
(“Asian Male” and “Asian Female”) and the generated categories are

almost the same within each image. FairDiffusion maintains good
structural and semantic consistency. However, it still exhibits identi-
cal gender or race within an image, particularly evident in the third,
fifth, and sixth columns in Fig. 5. Similar patterns are observed in
UCE, which predominantly generates “White Female” instead of
equitable representation for other groups. Fine-tune exhibits an
inclination toward Indians (“Indian Male” and “Indian Female”) and
the facial characteristics are similar across individuals, appearing as
the same person. As designed for single-face scenarios, current de-
biasing methods all exhibit homogenized attributes within images
containing multiple individuals. Besides, SD-EI, UCE, and Fine-tune
preserve less structural and semantic information of the original
results. This discrepancy may arise from the disruptions of the
original generation process caused by updated components or un-
controlled prompt instructions. In contrast, our method exhibits
more diverse and fairer results on different attributes within the
images and across all results, as well as the best performance at
preserving structural and semantic consistency.
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Method Bias-W (↓) Bias-P (↓) Structure Consistency Semantic Consistency (↑)
Gender Race G. × R. Gender Race G. × R. PSNR (↑) SSIM (↑) LPIPS (↓) CLIP-I DINO

Stable Diffusion .338 ± .14 .360 ± .06 .252 ± .04 .352 ± .14 .371 ± .06 .269 ± .04 - - - - -

Gender

SD-EI .188 ± .12 .337 ± .10 .214 ± .03 .242 ± .11 .356 ± .09 .242 ± .04 13.228 ± 0.54 .471 ± 0.01 .453 ± .02 .823 ± .02 .808 ± .04
FairDiffusion .252 ± .15 .371 ± .06 .231 ± .05 .279 ± .16 .384 ± .05 .252 ± .05 17.828 ± 1.47 .692 ± .06 .248 ± .04 .897 ± .02 .917 ± .01

UCE .299 ± .22 .431 ± .01 .279 ± .05 .323 ± .21 .432 ± .00 .287 ± .05 12.377 ± 3.10 .428 ± .18 .481 ± .13 .852 ± .04 .848 ± 0.07
Fine-tune .299 ± .12 .395 ± .07 .248 ± .05 .340 ± .10 .400 ± .07 .267 ± .05 14.217 ± 0.94 .515 ± .04 .412 ± .02 .859 ± .02 .842 ± .03

Ours .080 ± .04 .361 ± .07 .206 ± .02 .100 ± .03 .367 ± .07 .218 ± .03 17.929 ± 1.28 .686 ± 0.05 .254 ± .03 .897 ± .01 .908 ± .01

Race

SD-EI .260 ± .17 .322 ± .05 .212 ± .03 .300 ± .16 .362 ± .04 .242 ± .03 12.969 ± 0.44 .457 ± .03 .459 ± .02 .809 ± .02 .797 ± .05
FairDiffusion .310 ± .16 .243 ± .06 .207 ± .03 .340 ± .16 .294 ± .06 .242 ± .04 16.736 ± 1.74 .644 ± .08 .282 ± .06 .857 ± .02 .884 ± .02

UCE .354 ± .14 .364 ± .07 .249 ± .04 .354 ± .16 .387 ± .06 .264 ± .04 13.776 ± 1.06 .509 ± .07 .418 ± .07 .839 ± .02 .833 ± .04
Ours .290 ± .05 .177 ± .01 .201 ± .02 .214 ± .03 .225 ± .02 .193 ± .02 17.190 ± 0.95 .655 ± .04 .274 ± .02 .874 ± .02 .874 ± .03

G. × R.

SD-EI .307 ± .21 .233 ± .05 .173 ± .04 .333 ± .19 .296 ± .05 .211 ± .03 12.299 ± 0.53 .428 ± .03 .483 ± .02 .794 ± .02 .783 ± .04
FairDiffusion .263 ± .14 .297 ± .10 .216 ± .06 .296 ± .13 .325 ± .08 .236 ± .05 16.087 ± 2.42 .614 ± .12 .311 ± .09 .835 ± .04 .867 ± .04

UCE .325 ± .09 .403 ± .05 .271 ± .03 .354 ± .08 .408 ± .04 .286 ± .03 11.786 ± 0.78 .383 ± .08 .534 ± .08 .769 ± .07 .720 ± .12
Fine-tune .290 ± .13 .269 ± .06 .204 ± .04 .322 ± .14 .292 ± .06 .226 ± .04 11.426 ± 0.60 .376 ± .03 .519 ± .02 .793 ± .03 .808 ± .05

Ours .071 ± .02 .180 ± .01 .145 ± .02 .137 ± .10 .228 ± .02 .186 ± .03 16.698 ± 0.80 .637 ± .04 .290 ± .02 .862 ± .01 .883 ± .03

Table 1: Quantitative comparisons with different methods. The best results are highlighted in bold and the second to best is
highlighted by underline .

Figure 6: (a) The results of the ablation study. (b) Age dis-
tributions of Stable Diffusion and our method for different
occupations.

Metric w/o Both w/o F.I. w/o L.A.G. Full Model

Bias-W (↓)
Gender 0.336 0.105 0.270 0.101

Race 0.344 0.234 0.264 0.176
G. × R. 0.218 0.128 0.156 0.123

Bias-P (↓)
Gender 0.317 0.120 0.313 0.087

Race 0.338 0.306 0.269 0.185
G. × R. 0.213 0.168 0.174 0.135

Structure Consistency
PSNR(↑) - 11.315 11.347 12.631
SSIM(↑) - 0.380 0.393 0.448
LPIPS(↓) - 0.493 0.485 0.422

Semantic Consistency(↑) CLIP-I - 0.751 0.793 0.789
DINO-I - 0.795 0.833 0.847

Table 2: Quantitative ablation results for the components
of our model. F.I. and L.A.G. stand for Fair Inference and
Linguistic-aligned Attention Guidance respectively.

4.3 Quantitative Evaluation
We generate five hundred images for five occupations using the
prompt template involving multiple individuals within the images.
We assessed gender, racial, and intersectional biases in terms of
overall biases (Bias-W) and biases within images (Bias-P) following
Eq. 13. The results are presented in Table 1. As for gender debiasing,

all methods exhibit debiased results in terms of gender, However,
UCE and Fine-tune present greater racial bias than the original
results, possibly due to fine-tuning the original model with debi-
asing for one group may inadvertently introduce bias to another.
Additionally, they exhibit greater biases within images, indicating a
tendency to generate images featuring homogeneous attributes. SD-
EI and FairDiffusion demonstrate consistent debiasing performance
across three scenarios. However, similar to UCE and Fine-tune,
they also focus on the attributes across the entire image instead
of individuals, resulting in suboptimal debiasing performance for
multiple individuals within the image. In contrast, by identifying
the semantic regions from the attention guidance of tokens in-
troducing biases, we effectively locate the biased individuals and
debias them while preserving structural and semantic information.
Our method achieves consistent lowest biases across all the sce-
narios, showcasing the best performance at debiasing overall and
within images. Furthermore, considering the structural and seman-
tic consistency of the original results, SD-EI, UCE, and Fine-tune
exhibit suboptimal quantitative performance. Fair Diffusion bet-
ter preserves consistency for gender debiasing, while our method
outperforms across all scenarios in terms of debiasing, structural
integrity, and semantic consistency.

4.4 Ablation Study and Analysis
Ablation Study. The quantitative and qualitative results of the
ablation study are shown in Fig. 6 (a) and Tab. 2. As shown in the
results, the generated results without Fair Inference are less similar
to the original results in terms of structural and semantic consis-
tency, and without the Linguistic-aligned Attention Guidance, the
general debiasing performance declined. The full model performs
best at mitigating various biases as well as maintaining structural
and semantic consistency.

Age Distributions. In addition to biases related to gender, race,
and their intersections, we further explore age as another aspect of
social biases to facilitate a more comprehensive discussion. How-
ever, unlike gender and race, age features continuous discrete values,
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Figure 7: Qualitative results of Stable Diffusion and our method in other scenarios, including personal descriptors (e.g., smiling),
daily activities (e.g., standing next to flowers), and style prompts. The details of prompt templates are reported in the Appendix.

Metric Descriptors Activities Styles

SD Debiased SD Debiased SD Debiased

Bias-W (↓)
Gender 0.271 0.173 0.473 0.149 0.314 0.138

Race 0.228 0.208 0.417 0.257 0.311 0.131
G. × R. 0.165 0.143 0.320 0.220 0.192 0.077

Bias-P (↓)
Gender 0.243 0.164 0.486 0.228 - -

Race 0.285 0.279 0.426 0.328 - -
G. × R. 0.227 0.220 0.326 0.265 - -

Structure Consistency
PSNR(↑) - 15.552 - 14.602 - 17.866
SSIM(↑) - 0.556 - 0.572 - 0.648
LPIPS(↓) - 0.393 - 0.346 - 0.328

Semantic Consistency(↑) CLIP-I - 0.902 - 0.892 - 0.780
DINO-I - 0.918 - 0.890 - 0.764

Table 3: Quantitative results of Stable Diffusion and ours in
other scenarios.

making it challenging to categorize different groups and lacking
a standard criterion. We simply frame age fairness as broader age
distributions to assess whether certain groups are underrepresented
and ensure diversity in age proportions. To evaluate the age fairness
of Stable Diffusion in occupational scenarios, we visualize the age
distributions across different occupations in Figure 6 (b). The age
of each individual within the images is recognized by a lightweight
face analysis model, deepface1. As shown in the figure, Stable Diffu-
sion consistently generates individuals under the age of fifty with
a focus on ages between thirty and forty, resulting in a limited
age distribution and more underrepresented ages. With our debias
intervention, the age distributions are broader across different ages
and encompass older individuals. Note that our method for age
debiasing can also handle each individual within an image.

Other Scenarios. To further evaluate the effectiveness of our
method, we conduct qualitative (Fig. 7) and quantitative (Tab. 3)
experiments on more scenarios with prompt templates involving
personal descriptors for different occupations: such as “smiling” and
“reading”, daily activities: “persons standing next to flowers”, and
style prompts gathered from LAION-Aesthetics [44] dataset. The

1https://github.com/serengil/deepface

experimental details and more results are reported in the Appendix.
For all these scenarios, our method debiases the original Stable
Diffusion considering gender, racial, and intersectional biases. We
present more diverse social groups within the images and across
all results.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

In this work, the discussion of gender categories is restricted to
binary-valued attributes, as automated gender classification cur-
rently remains limited to binary-valued gender. Similarly, the cate-
gorization of race is simplified to four groups, which requires more
discussion when considering other racial categories. Additionally,
our method relies on fair prompts for debiasing. If there is a mis-
alignment of the original text-to-image model between prompts
and the visual results. Our method may fail to present fair attributes
accordingly.

6 CONCLUSION
In this work, we introduce a Linguistic-aligned Attention-guided
Fair Generation Model to mitigate social biases in terms of gender,
race and their intersections. We initially deal with multiple individ-
uals within images of diverse genders and races. Specifically, we
propose a Linguistic-aligned Attention Guidance module to identify
the semantic regions of tokens introducing biases. Fair Inference is
employed to achieve arbitrary target attribute distributions in these
regions for each individual, as well as preserving original struc-
tural and semantic information. Extensive experimental results and
analyses demonstrate our method achieves superior debiasing per-
formance in multi-face scenarios compared with state-of-the-art
debiasing approaches. Our method is intended to pave the way for
the advancement of more general and robust social-aligned T2I
generative AIs.

https://github.com/serengil/deepface
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