
A Proofs506

A.1 Proof of Proposition 1507

We start by recalling an important Lemma of [Achiam et al., 2017].508

Lemma 1. For any function f : S ! R, policy ⇡ and �f (s, a, s0) = r(s, a, s0) + �f(s0)� f(s):509
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a⇠⇡(·|s),
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[�f (s, a, s
0)] . (7)

Then, we propose this general Lemma that serves as a basis for our Proposition 1.510

Lemma 2. For any function f : S ! R, let:511
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✏Pt

f = max
s2S

|Ea⇠⇡,s0⇠Pt
[�f (s, a, s

0)]| . (9)

The following bound holds:512

J⇡
Pt

� J⇡
Ps

+
1

1� �

⇣
L⇡,Pt,Ps

f � 2✏Pt

f DTV

�
d⇡Ps

, d⇡Pt

�⌘
. (10)

Proof. According to Lemma 1:513
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The first term can be written, with �̄Pt
f (s) = E a⇠⇡(·|s)

s0⇠Pt(·|s,a)
[�f (s, a, s0)]:514
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We apply Holder’s inequality with p = 1 and q = 1, and get:515
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with ✏Pt
f = maxs2S |Ea⇠⇡,s0⇠Pt [�f (s, a, s

0)]|. The Total Variation distance comes from the 1-norm516

resulting from the application of Holder’s inequality. We obtain:517
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518
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To conclude the proof of Proposition 1, we choose f as the null function f : S ! 0 and upper bound519

the remaining term by reusing Holder’s inequality:520
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⇡
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Other choice for f The function f could also be chosen as the value function associated with the521

source system V ⇡
Ps

. In which case, we get with Lemma 2:522

J⇡
Pt

� J⇡
Ps

+
1

1� �

0

BB@E s⇠d⇡
Ps (·),

a⇠⇡(·|s),
s0⇠Ps(·|s,a)


Pt(s0|s, a)
Ps(s0|s, a)

�
r(s, a, s0) + �V ⇡

Ps
(s0)� V ⇡

Ps
(s)
��

�2✏Pt
f DTV

�
d⇡Ps

, d⇡Pt

�⌘
.

(18)

It also introduces an additional term than Proposition 2. Here, it is an importance sampling term523

between the transition probabilities that is difficulty optimized. In principle, it could be estimated with524

the classifiers proposed by DARC but would introduce a new level of complexity to the algorithm.525

Hence, we preferred focusing on proposing the simpler Proposition 2.526

A.2 Proof of Proposition 2527

We present here the proof of our simpler Proposition 2 that we restate below, as well as its extensions528

using different discrepancy measures.529

Proposition 3. Let ⌫⇡P (s, a, s
0) the state-action-state visitation distribution, where ⌫⇡P (s, a, s

0) = (1�530
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with DTV the Total Variation distance.533

Proof. It is known that J⇡
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The last inequality is an application of Holder’s inequality, by setting p to 1 and q to 1.535

536

An application of Pinsker inequality [Csiszar and Körner, 1981] provides a similar upper bound with537

the Kullback Leibleir divergence.538
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Corollary 1. Let ⌫⇡P (s, a, s
0) the state-action-state visitation distribution, where ⌫⇡P (s, a, s

0) = (1�539

�)E⇢0,⇡,P [
P1

t=0 �
tP (st = s, at = a, st+1 = s0)]. For any policy ⇡ and any transition probabilities540
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�
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�
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with DKL the Kullback Leibleir divergence.542

A lower bound with the Jensen Shannon divergence can also be found thanks to [Corander et al.,543

2021, Proposition 3.2].544

Corollary 2. We assume the state-action space. Let ⌫⇡P (s, a, s
0) the state-action-state visitation dis-545

tribution, where ⌫⇡P (s, a, s
0) = (1� �)E⇢0,⇡,P [

P1
t=0 �

tP (st = s, at = a, st+1 = s0)]. We assume546
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and ⌫⇡Ps

is S ⇥A⇥ S . Then, for any policy ⇡ and any transition probabilities Pt547

and Ps, the following holds:548
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Pt
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(1� �)

q
DJS

�
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�� ⌫⇡Pt

�
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with DJS the Jensen Shannon divergence.549

B Algorithms Details550

In this section, we further present the different algorithms used in this paper.551

B.1 Domain Adaptation with Rewards from Classifiers (DARC)552

We introduce our main baseline Domain Adaptation with Rewards from Classifiers (DARC), which553

is the prominent state-of-the-art algorithm that tackles the off-dynamics task by modifying the RL554

objective.555

DARC takes a variational perspective to this problem. Given a trajectory ⌧ = (s0, a0, s1, a1, . . . ),556

the target distribution p(⌧) over trajectories is defined as the one inducing trajectories that maximize557

the exponentiated rewards in the target environment:558

p(⌧) = ⇢(s0)

 
Y

t

Pt(st+1|st, at)
!
exp

 
X

t

r(st, at, st+1)

!
. (26)

Let the agent’s distributions over trajectories in the source environment q⇡✓ (⌧) be:559

q⇡✓ (⌧) = ⇢(s0)

 
Y

t

Ps(st+1|st, at)
!
⇡✓(at|st). (27)

DARC minimizes the reversed KL-divergence between q⇡✓ (⌧) and p(⌧), which results in the follow-560

ing objective expression:561

�DKL(q
⇡✓ (⌧) k p(⌧)) = E⌧⇠q⇡✓ (·)

"
TX

t=1

r(st, at, st+1) +H (⇡✓(·|st)) +�r(st, at, st+1)

#
,

(28)

with �r(st, at, st+1) = logPt(st+1|st, at)� logPs(st+1|st, at) and H(·) the entropy.562

The additional reward term incentivizes the agent to select transitions from the source that are similar563

to the target environment. Since the transition probabilities are unknown, DARC uses a pair of binary564

classifiers to infer whether transitions come from the source or target environment. These classifiers565

are then used to create a proxy equivalent to �r.566
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B.2 Generative Adversarial Imitation Learning Applied for Transition Distributions567

Generative Adversarial Imitation Learning (GAIL) [Ho and Ermon, 2016] is a state-of-the-art568

Imitation Learning algorithm. Its goal is to recover an expert policy ⇡e by minimizing the Jensen-569

Shanon divergence between the state-action visitation distributions of the expert and the learning570

policy. It has been proved that it is able to handle transition visitation distributions in [Desai et al.,571

2020] as follows. To comply with our previous notations, ⇡e is now denoted as ⇡✓k (fixed).572

The authors define the general objective to solve by introducing a convex cost function regularizer573

 : RS⇥A⇥S ! R and its convex conjugate  ⇤:574

min
✓ 2 ⇥

 ⇤(⌫⇡✓
Ps

� ⌫
⇡✓k
Pt

). (29)

Following Equation 13 of [Ho and Ermon, 2016] which defines  GAIL, the authors establish the575

following equivalence:576

 ⇤
GAIL(⌫

⇡✓
Ps
�⌫⇡✓k

Pt
) = sup

D2(0,1)S⇥A⇥S

E(s,a,s0)⇠⌫
⇡✓
Ps

[log (D(s, a, s0))]+E
(s,a,s0)⇠⌫

⇡✓k
Pt

[log (1�D(s, a, s0))]

(30)

where D : S ⇥A⇥ S ! (0, 1) is a classifier. Finally, it is demonstrated this specific convex cost577

function induces the following objective:578

min
✓2⇥

 ⇤
GAIL(⌫

⇡✓
Ps

� ⌫
⇡✓k
Pt

) = min
✓2⇥

DJS(⌫
⇡✓
Ps

k ⌫⇡✓k
Pt

). (31)

In practice, the classifier D is trained to distinguish between samples (s, a, s0) 2 (S ⇥A⇥ S) from579

⌫⇡✓
Ps

and ⌫⇡✓k
Pt

. The reward used for optimizing the RL agent is given by rimit = � log (D(s, a, s0)).580

B.3 Conservative Q-Learning (CQL)581

In the offline setting, agents aim to learn a good policy from a fixed data set of M transitions582

D = {(si, ai, si+1}Mi=0 that was collected with an unknown behavioral policy ⇡� , which is here ⇡✓k .583

Offline RL algorithms have demonstrated impressive results when the data set is gathered with a584

sufficiently good policy and possesses enough transitions, often outperforming the behavioral policy.585

Conservative Q-Learning (CQL) [Kumar et al., 2020] is a state-of-the-art offline RL algorithm. It586

modifies the learning procedure of the Q-functions to favor transitions appearing in the data set. At587

iteration k, the Q-values are updated as follows at step j:588

min
! 2 ⌦

� Es⇠D

" 
log
X

a2A
exp

⇣
Q

⇡✓j
! (s, a)

⌘
� Ea⇠⇡✓k

(·|s)

h
Q

⇡✓j
! (s, a)

i!#
+ E

⇣
Q

⇡✓j
!

⌘
, (32)

where E (Q) represents the traditional Bellman loss associated with the Q-functions. The regulariza-589

tion, controlled by the hyper-parameter �, penalizes the Q-values associated with state-action pairs590

not appearing in the data set.591

C Experimental Details592

In this section, in addition to the values of the hyperparameters necessary to replicate our experiments,593

we provide further details of the experimental protocol and training. In this section, considering the594

possible high variance of RLs, the standard deviation is multiplied by a factor of 0.3. The original595

variance can be found in Table 2.596

C.1 Environment Details597

In all the considered environments, one property is modified in the target environment.598

16



Gravity Pendulum Gravity is increased to 14 instead of 10. Since the pendulum requires more599

time to reach the objective, we also increase the length of each episode to 500 time-steps in the target600

environment, while keeping the original length of 200 time-steps in the source system.601

Broken Joint or Leg environments In these environments, the considered robot - either HalfChee-602

tah or Ant - is crippled in the target domain, where the effect of one or two joints is removed. In603

practice, this means that it sets one or two dimensions of the action to 0. These environments were604

extracted from the open source code of [Eysenbach et al., 2020].605

Heavy Cheetah The total mass of the HalfCheetah MuJoCo robot is increased from 14 to 20.606

Friction Cheetah The friction coefficient of the HalfCheetah MuJoCo robot’s feet is increased607

from 0.4 to 1.608

Low Fidelity Minitaur The original Minitaur environment uses a linear torque-current linear609

relation for the actuator model. It has been improved in [Tan et al., 2018] by introducing non-610

linearities into this relation where they managed to close the Sim-to-Real gap for a real Minitaur611

environment. In practice, the Minitaur environment can be found in the PyBullet library [Coumans and612

Bai, 2016 2021]. The high fidelity is registered as MinitaurBulletEnv-v0. The low fidelity environment613

can be recovered by calling MinitaurBulletEnv-v0 and by setting the argument accurate motor614

model enabled to False and pd control enabled to True.615

C.2 Learning Curves616

We report in Figure 2 the learning curves of the different agents mentioned in this paper. For clarity617

purposes, we keep all baselines fixed except for our agent and DARC, our main competitor. Here,618

FOOD uses the regularization with d⇡P for Gravity Pendulum and ⌫⇡P for the other environments as619

GAIL proved to be more stable when FOOD used PPO.620

C.3 Global Hyper-parameters621

Our experiments are based on the A2C and PPO implementations proposed by the open-source code622

[Kostrikov, 2018]. We also found that it may be profitable to add a TanH function at the end of623

the network’s policy for the PPO agent to increase the performance of RLs. We have selected their624

hyper-parameters according to the source [Raffin, 2020] and included them in Table 3.625

Table 3: Chosen hyper-parameters for both A2C and PPO. The PPO hyper-parameters were fixed for
the other environments.

Hyperparameters A2C PPO

num-processes 8 8
num-steps 200 1000
lr 2.5 ⇤ 10�4 3.0 ⇤ 10�4

� 0.99 0.99
use-gae True True
gae-lambda 0.9 0.95
entropy-coef 0.01 0.001
value-loss-coef 0.4 0.5
use-linear-lr-decay True True
ppo-epoch N/A 5
num-mini-batch N/A 32
clip-param N/A 0.1
TanH Squash False True
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Figure 2: Learning curves of FOOD and DARC for all the proposed environments.

The Minitaur environments As proposed by the PyBullet library [Coumans and Bai, 2016 2021],626

� is set to 0.995 for the Minitaur environments. Besides, unlike the Gym and Mujoco environments,627

they do not use a Tanh squashing function in their policy and the num-processes hyper-parameter628

is set to 1.629

Algorithms optimization To allow a fair comparison between the different agents, FOOD, DARC,630

and ANE use the same underlying agent to optimize their objective. It is A2C for Gravity Pendulum631

and PPO for the others.632

Discriminators training Both FOOD and DARC incorporate classifiers in their objective. At each633

epoch, 1000 data points are sampled from both source and target transition data sets. The classifiers634

are then trained with batch sizes of 128 for Pendulum and 256 for the MuJoCo environments. They635

share the same network structure: a 2 hidden layer MLP with 64 (for Pendulum) or 256 (for MuJoCo)636

units and ReLU activations. We did not find that the size of the networks play an important role in637

the results.638

C.4 FOOD Hyper-parameters Sensitivity Analysis639

This subsection investigates the impact of our main hyper-parameter ↵, which regulates the strength640

of regularization that defines a threshold between maximizing the rewards of the source MDP and641

staying close to the target trajectories. All FOOD results are summarized in Figure 3, where, similar642

to the previous section, FOOD uses the regularization with d⇡P in Gravity Pendulum and ⌫⇡P for the643

other environments. Note that for the Gravity Pendulum environment, ↵ 2 {0, 1, 5, 10}.644
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Figure 3: Complete hyperparameter sensitivity analysis for the best FOOD agent on the different
off-dynamics environments.

In all the studied environments where PPO was used, we observe that unless for the low or high645

values of ↵ (↵ 2 {0.5, 5}), the FOOD agent improves performance compared to RLs. Both cases can646

be explained. If the value is too high, it may disrupt the gradients and prevent convergence to a good647

solution. As mentioned in the main paper, this phenomenon also affects the performance in the source648

environment, so it would be easy for practitioners to remove such bad hyper-parameters. It may also649

happen that the strength of the regularization is too low. In that case, FOOD has approximately the650

same performance as RLs, as illustrated in Broken Joint HalfCheetah.651

Hence, we recommend setting the regularization to have approximately the same weight as the652

average return. For this, since its advantages are normalized, we recommend using PPO and setting653

the ↵ parameter to 1.654

C.5 Comparison Between the Different IL Algorithms for the FOOD Agent655

FOOD is a general algorithm that may use any chosen Imitation Learning algorithm. Each algorithm656

minimizes a certain type of divergence between state or state-action visitation distributions, as657

summarized in Table 1. Here, we investigate which IL is better suited for the considered environments.658

We compare GAIL-µ⇡
P [Ho and Ermon, 2016], GAIL-d⇡P , GAIL-⌫⇡P , AIRL-µ⇡

P [Fu et al., 2017],659

PWIL-µ⇡
P [Dadashi et al., 2020], PWIL-d⇡P and PWIL-⌫⇡P in Table 4. GAIL and its extensions660

were extracted directly from [Kostrikov, 2018], AIRL from [Gangwani, 2021], and PWIL and its661

extensions were recoded from scratch.662
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Environment GAIL-d GAIL-µ GAIL-⌫ AIRL-µ PWIL-d PWIL-µ PWIL-⌫

Gravity Pendulum �485± 54⇤ �2224± 43 �2327± 14 �1926± 572 �980± 838 �948± 789 �978± 816

Broken Joint Cheetah 3888± 201 3801± 155 3921± 85⇤ 3617± 225 3537± 248 2999± 752 3797± 389

Heavy Cheetah 4828± 553 4876± 181⇤ 4519± 240 4604± 184 2945± 856 2771± 1235 3494± 318

Broken Joint Ant 5547± 204 6145± 98⇤ 6135± 122 5014± 401 3725± 988 3483± 747 3182± 1337

Friction Cheetah 3212± 2279 3890± 1495 3289± 236 2957± 1526 3451± 361 3926± 735 4227± 740⇤

Broken Joint Minitaur 13.6± 3.8 14.9± 3 16.9± 4.7⇤ 15.8± 2.3 14.6± 1.9 12.1± 5.2 10.5± 6.1

Low Fidelity Minitaur 15.7± 2.8 17± 2 17.6± 0.4⇤ 7.5± 5.7 13.6± 5.1 11.4± 3.5 12.1± 5.5

Broken Leg Ant 2345± 806 2652± 356 2977± 85⇤ 1634± 857 1490± 714 1554± 886 1697± 393

Table 4: FOOD sensitivity analysis with respect to the Imitation Learning agent used. We report the
average return over 4 seeds associated with their best hyper-parameter ↵.

Overall, we observe that all GAIL-associated algorithms have the best results. We attribute this663

success to the implementation we used, which was optimized for the PPO agent. In addition, FOOD664

with PWIL has poor results in some environments. This can be attributed to two factors. First,665

we cannot rule out an error in our code, as we coded it from scratch. Second, this algorithm was666

introduced in the D4PG agent [Barth-Maron et al., 2018]: it is possible that PPO does not leverage667

well the PWIL’s rewards.668

An interesting discussion is about GAIL-d⇡P , GAIL-µ⇡
P and GAIL-⌫⇡P . Intuitively, the one that669

focuses on state visitation distributions should give the FOOD agent more freedom to find a better670

action. This is for example what is observed in the Gravity Pendulum environment. However, in most671

cases, GAIL-µ⇡
P or GAIL-⌫⇡P provide better results as they provide more information regarding the672

target trajectories. GAIL-⌫⇡P is the one directly derived from Proposition 2, and it seems GAIL-µ⇡
P is673

implicitely able to optimize the second term in Proposition 1.674

C.6 Data Sensitivity Analysis675

In this sub-section, we conduct a comparative analysis between FOOD and DARC across the676

environments where PPO is used on the number of source trajectories they use. The trained agent677

RLs samples 5, 10, 25 and 50 trajectories on the source environment. During certain trajectories, the678

robot directly falls: we exclude them for both FOOD and DARC to avoid misleading regularization.679

As depicted in Figure 4, both methods demonstrate relative robustness to the number of source680

trajectories. Their reliance on a discriminator explains why a small number of trajectories appears681

to be sufficient for the development of a good agent. Additional insights can be extracted from682

Figure 4. First, in Friction Cheetah, a larger amount of target data allows DARC to outperform683

FOOD. Second, in Broken Leg Ant and Heavy Cheetah, an increased number of trajectories decreases684

FOOD’s performance. This decline may result from including trajectories that have medium to poor685

performance in the target environment, leading to misguided regularization.686

C.7 DARC Hyperparameters Sensitivity Analysis687

We detail in Figure 5 DARC’s sensitivity to its main hyper-parameter �DARC. We observe a clear688

dependence on the noise added to the discriminator, although there seems to be no pattern for689

choosing the right hyper-parameter. For instance, the best hyper-parameter for Broken Joint Cheetah690

and Broken Joint Ant is �DARC = 0.1, but this value leads to worse performance than RLs on the two691

other presented environments.692
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Figure 4: Data sensitivity analysis for both FOOD and DARC agents on the environments where PPO
is used.

Figure 5: Hyper-parameter sensitivity analysis for the DARC agent on the different environments
where DARC works well.
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C.8 ANE Hyperparameters Sensitivity Analysis693

We also detail the ANE’s results for all environments in Figure 6. As a reminder, ANE adds a centered694

Gaussian noise with std �ANE 2 {0.1, 0.2, 0.3, 0.5} to the action during training.695

Figure 6: Hyper-parameter sensitivity analysis for the ANE agent on the different environments.

These figures are not easily interpretable. This technique may work very well as observed for Heavy696

Cheetah, but may fail for other environments such as Broken Joint Ant or Low Fidelity Minitaur.697

C.9 H2O Results698

Finally, we report H2O results in Figure 7. This method combines the regularization of DARC699

and CQL in the off-dynamics scenario when the agent has access to a large amount of target data.700

Since the agent also uses data from the source domain in its learning process, the strength of the701

regularization is lower than in CQL. It was set to 0.01 in most of the benchmarks in H2O and to702

1 for the others. We did a grid search on these 2 values. Given its poor results on the 2 out of 3703

environments we tried and the high resources it requires, we did not try it on the other environments.704
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Figure 7: H2O results on 3 environments.
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