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A Analysis of Computational Complexity of DJL

We analyze the computational complexity for the proposed method as follows. There are three main
dominating parts of the computation: the adaptive discretization, the estimations of conditional mean
function and the propensity score function, and the construction of the final value estimator.

First, for the adaptive discretization on the treatment space (the main part of DJL, see Algorithm 1
Part III.3), we use the pruned exact linear time (PELT) method in Killick et al. (2012) to solve the
dynamic programing. This step requires at least O(m) computing steps and at most O(m2) steps
(Friedrich et al. 2008). According to Theorem 3.2 in Killick et al. (2012), the expected computational
cost is O(m).

Second, for each step in the linear complexity of adaptive discretization, we need to train the deep
neural network for the conditional mean function and the propensity score function to calculate
the cost function. Here, the time and space complexity of training a deep learning model varies
depending on the actual architecture used. In our implementation, we employ the commonly used
multilayer perceptron (MLP) to estimate the function Q and the propensity score in each segment.
Suppose we use the standard fully connected MLPs of w width and d depth with feedforward pass
and back-propagation under total e epochs. Then according to the complexity analysis of neural
networks, the computational complexity of modeling the function Q and the propensity score is
O{2 ∗ ne(d− 1)w2}.
For the last part, the construction of the final value estimator based on L-fold cross fitting, which
repeats the above two steps L times. Therefore, by putting the above results together, the total
expected computational complexity of the proposed DJL is O{L ∗m ∗ 2 ∗ ne(d − 1)w2}. Note
that the computation for the last part (i.e., cross-fitting) can be easily implemented in parallel
computing, and thus the total expected computational complexity of the proposed DJL can be reduced
to O{m ∗ 2 ∗ ne(d− 1)w2}.

B More on the implementation

We summarize our algorithm in Algorithm 1.

∗Equal contribution.
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Global: data {(Xi, Ai, Yi)}1≤i≤n; number of initial intervals m; penalty term γn; target policy π.
Local: Bellman function Bell ∈ Rm; partitions D̂; DNN functions {q̂I , b̂I : I ∈ D̂}; a vector τ ∈ Nm;

a set of candidate point listsR.
Output: the value estimator for target policy V̂ (π).
I. Split all n samples into L subsets as {L1, · · · ,LL}; V̂ (π)← 0;
II. Initialization:

1. Set even segment on the action space with m pieces:
{I} = {[0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1]};

2. Create a function to calculate cost C with inputs (l, r):
If C(l, r) == NULL:
(i). Let I = [l/m, r/m) if r < m else I = [l/m, 1];
(ii). Fit a DNN regressor: q̂I(·)← I(i ∈ Lc`)I(Ai ∈ I)Yi ∼ I(Ai ∈ I)DNN(Xi);
(iii). Store the cost: C(I)←

∑
i∈Lc

`
I(Ai ∈ I)

{
q̂I(Xi)− Yi

}2
;

Return C(l, r);
III. For ` = 1, · · · ,L:

1. Set the training dataset as Lc` = {1, 2, · · · , n} − L`;
2. Bell(0)← −γn; D̂ = [0, 1]; τ ← Null;R(0)← {0};
3. Apply the pruned exact linear time method to get partitions: For v∗ = 1, . . . ,m:

(i).Bell(v∗) = minv∈R(v∗){Bell(v) + C([v/m, v∗/m)) + γn};
(ii). v1 ← arg minv∈R(v∗){Bell(v) + C([v/m, v∗/m)) + γn};
(iii). τ(v∗)← {v1, τ(v1)};
(iv). R(v∗)← {v ∈ R(v∗ − 1) ∪ {v∗ − 1} : Bell(v) + C([v/m, (v∗ − 1)/m)) ≤ Bell(v∗ − 1)};

4. Construct the DR value estimator: r ← m; l← τ [r]; While r > 0:
(i) Let I = [l/m, r/m) if r < m else I = [l/m, 1]; D̂ ← D̂ ∪ I;
(ii) Recall fitted DNN: q̂I(·)← I(i ∈ Lc`)I(Ai ∈ I)Yi ∼ I(Ai ∈ I)DNN(Xi);
(iii) Fit propensity score: b̂I(·)← I(i ∈ Lc`)I(Ai ∈ I) ∼ I(Ai ∈ I)DNN(Xi);
(iv) r ← l; l← τ(r);

6. Evaluation using testing dataset L`:
V̂ (π)+ =

∑
I∈D̂

(∑
i∈L`

I(Ai ∈ I)
[
I{π(Xi)∈I}
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
;

return V̂ (π)/n .

Algorithm 1: Deep Jump Learning

C Additional Experimental Results

We include additional experimental results in this section. First, the number of initial intervals m
represents a trade-off between the estimation bias and the computational cost, as illustrated in Figure
1. In practice, we recommend to set m = n/10. When n is small, the performance of the resulting
value estimator is not overly sensitive to the choice of c as long as c is not too large. See the left
panel of Figure 1 for details. When n is large, we further investigate the computational capacity
of the proposed method by setting m = n/10 for large sample sizes and report the corresponding
computational time in Table 2. We use Scenario 1 and consider the sample size chosen from
n ∈ {1000, 2000, 5000, 10000} for illustration. It turns out that such a choice of c can still handle
datasets with a few thousand observations. Here, we use parallel computing to process each fold,
as our algorithm employs data splitting and cross-fitting. This largely facilitates the computation,
leading to shorter computation time compared to those listed in Table 1. Finally, when n is extremely
large, setting m = n/10 might be computationally intensive. In addition to parallel computing, there
are some other techniques we can use to handle datasets with large sample size. For instance, in
the change-point literature, Lu et al. (2017) proposed an intelligence sampling method to identify
multiple change points with long time series data. Their method would not lose much statistical
efficiency, but is much more computationally efficient. It is possible to adopt such an intelligence
sampling method to our setting for adaptive discretization. This would enable our method to handle
large datasets.

2



Table 1: The averaged computational cost (in minutes) under the proposed deep jump learning and
three kernel-based methods for Scenario 1.

Methods Deep Jump Learning SLOPE (Su et al. 2020) Kallus & Zhou (2018) Colangelo & Lee (2020)

n = 50 < 1 <1 365 < 1

n = 100 3 <1 773 < 1

n = 200 7 1 > 1440 (24 hours) < 1

n = 300 14 2 > 2880 (48 hours) < 1

Table 2: The averaged computational cost under the proposed deep jump learning for Scenario 1 with
large sample settings.

Sample Size n = 1000 n = 2000 n = 5000 n = 10000

Computational time 15.92 minutes 30.40 minutes 1.32 hours 2.86 hours

Table 3: The absolute error and the standard deviation (in parentheses) of the estimated values under
the optimal policy via the proposed deep jump learning and three kernel-based methods for Scenario
1 to 4.

n 50 100 200 300

Scenario 1 Deep Jump Learning 0.445(0.381) 0.398(0.391) 0.253(0.269) 0.209(0.210)

V = 1.33 SLOPE (Su et al. 2020) 0.392(0.377) 0.385(0.549) 0.329(0.400) 0.344(0.209)

Kallus & Zhou (2018) 0.656(0.787) 0.848(0.799) 1.163(0.884) 0.537(0.422)

Colangelo & Lee (2020) 1.285(1.230) 1.473(1.304) 1.826(1.463) 0.934(0.730)

Scenario 2 Deep Jump Learning 0.696(0.376) 0.502(0.311) 0.400(0.219) 0.411(0.168)

V = 1.00 SLOPE (Su et al. 2020) 0.620(0.634) 0.859(0.822) 0.749(0.878) 1.209(0.435)

Kallus & Zhou (2018) 1.061(1.124) 1.363(1.131) 1.679(1.032) 1.664(0.792)

Colangelo & Lee (2020) 1.827(1.371) 2.292(1.458) 2.429(1.541) 2.264(1.062)

Scenario 3 Deep Jump Learning 2.014(0.865) 1.410(0.987) 1.184(0.967) 1.267(0.933)

V = 4.86 SLOPE (Su et al. 2020) 3.660(0.496) 3.185(0.592) 2.897(0.781) 2.037(0.401)

Kallus & Zhou (2018) 2.196(2.369) 2.758(2.510) 3.573(2.862) 1.151(1.798)

Colangelo & Lee (2020) 2.586(2.825) 3.172(3.027) 3.949(3.391) 1.367(2.110)

Scenario 4 Deep Jump Learning 0.494(0.485) 0.412(0.426) 0.349(0.383) 0.321(0.315)

V = 1.60 SLOPE (Su et al. 2020) 0.586(0.337) 0.537(0.279) 0.483(0.272) 0.483(0.143)

Kallus & Zhou (2018) 2.192(1.210) 2.740(1.034) 3.354(1.324) 1.555(0.500)

Colangelo & Lee (2020) 2.975(1.789) 3.282(1.525) 3.921(1.927) 1.853(0.751)
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Figure 1: The absolute error of the estimated value and the computational cost (in minutes) under the
DJL with different initial number of intervals (m) when n = 100 in Scenario 1.
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Table 4: The averaged size of the final estimated partition (|D̂|) in comparison to the initial number
of intervals (m) under the proposed DJL for Scenario 1 to 4.

|D̂| / m n =50 n =100 n =200 n =300

Scenario 1 3 / 5 4 / 10 6 / 20 6 / 30

Scenario 2 4 / 5 6 / 10 9 / 20 11 / 30

Scenario 3 4 / 5 6 / 10 8 / 20 10 / 30

Scenario 4 4 / 5 6 / 10 8 / 20 10 / 30

Table 5: The mean squared error (MSE)6, the normalized root-mean-square-deviation (NRMSD)7,
the mean absolute error (MAE)8, and the normalized MAE (NMAE)9of the fitted model under the
multilayer perceptrons regressor, linear regression, and the random forest algorithm, via ten-fold
cross-validation.

Method Multilayer Perceptrons Regressor Linear Regression Random Forest
MSE 0.06 0.09 0.08

NRMSD 0.13 0.16 0.15
MAE 0.19 0.23 0.22

NMAE 0.10 0.12 0.12

D Rate of Convergence of Kernel-Based Estimators

D.1 Convergence Rate under Model 1

Consider the following piecewise constant function Q

Q(x, a) =

{
0, if a ≤ 1/2,
1, otherwise.

Define a policy π such that the density function of π(X) equals{
4/3, if 1/4 ≤ π(x) ≤ 1/2,
2/3, else if 1/2 ≤ π(x) < 4/3,
0, otherwise.

We aim to show for such Q and π, the best possible convergence rate of kernel-based estimator is
n−1/3.

We first consider its variance. Suppose the conditional variance of Y |A,X is uniformly bounded
away from 0. Similar to Theorem 1 of Colangelo & Lee (2020), we can show the variance of kernel
based estimator is lower bounded by O(1)(nh)−1 where O(1) denotes some positive constant.

We next consider its bias. Since the behavior policy is known, the bias is equal to

E

(
K[{A− π(X)}/h]

hb(A|X)
[Y −Q{X,π(X)}]

)
= E

(
K[{A− π(X)}/h]

hb(A|X)
[Q(X,A)−Q{X,π(X)}]

)
= E

(∫ π(X)+h/2

π(X)−h/2
K

{
a− π(X)

h

}
[I{π(X) ≤ 1/2 < a} − I{a ≤ 1/2 < π(X)}]da

)
.

Using the change of variable a = ht+ π(X), the bias equals

E

(∫ 1/2

−1/2
K(t)[I{π(X) ≤ 1/2 < π(X) + ht} − I{π(X) + ht ≤ 1/2 < π(X)}]dt

)
.

6MSE = 1
n

∑n
i=1(Yi − Ŷi)

2. See https://en.wikipedia.org/wiki/Mean_squared_error.
7NRMSD =

√
MSE

max(Y )−min(Y )
. See https://en.wikipedia.org/wiki/Root-mean-square_

deviation.
8MAE = 1

n

∑n
i=1 |Yi − Ŷi|. See https://en.wikipedia.org/wiki/Mean_absolute_error.

9NMAE = MAE
max(Y )−min(Y )

. See https://en.wikipedia.org/wiki/Root-mean-square_
deviation.
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Consider any 0 < h ≤ ε for some sufficiently small ε > 0. The bias is then equal to

4

3

∫ 1/2

1/2−ε/2

∫ 1/2

−1/2
K(t){I(a ≤ 1/2 < a+ ht)− I(a+ ht ≤ 1/2 < a)}dtda

+
2

3

∫ 1/2+ε/2

1/2

∫ 1/2

−1/2
K(t){I(a ≤ 1/2 < a+ ht)− I(a+ ht ≤ 1/2 < a)}dtda.

Under the symmetric condition on the kernel function, the above quantity is equal to

2

3

∫ 1/2

1/2−h/2

∫ 1/2

(1−2a)/2h
K(t)dtda ≥ 2

3

∫ 1/2−h/4

1/2−h/2

∫ 1/2

(1−2a)/2h
K(t)dtda

≥ 2

3

∫ 1/2−h/4

1/2−h/2

∫ 1/2

1/4

K(t)dtda =
h

6

∫ 1/2

1/4

K(t)dt.

Consequently, the bias is lower bounded by O(1)h where O(1) denotes some positive constant.

To summarize, the root mean squared error of kernel based estimator is lower bounded by
O(1){(nh)−1/2 + h} where O(1) denotes some positive constant. The optimal choice of h that
minimizes such lower bound would be of the order n−1/3. Consequently, the convergence rate is
lower bounded by O(1)n−1/3.

D.2 Convergence Rate under Model 2

Similar to the case under Model 1, we can show the variance of kernel-based estimator is lower
bounded by O(n−1h−1) in cases where the conditional variance of Y given (A,X) is uniformly
bounded away from zero.

Consider the conditional mean function Q

Q(x, a) = Ch−1K

{
a− π(x)

h

}
,

for some constant C > 0. We aim to derive the bias of kernel-based estimator under such a choice of
the conditional mean function Q. Using similar arguments in the case where Model 1 holds, we can
show the bias equals

E

(
C−1

K2[{A− π(X)}/h]

h2b(A|X)

)
≥ C−1E

(
K2[{A− π(X)}/h]

h2

)
.

Similarly, we can show the right-hand-side is lower bounded by O(1)h. This implies that the
convergence rate is at least O(1)(n−1h−1 + h) under Model 2.

E Technical Proof

Throughout the proof, we use c, C, c0, c̄, c∗, etc., to denote some universal constants whose values
are allowed to change from place to place. Let Oi = {Xi, Yi} denote the data summarized from the
ith observation. For any two positive sequences {an}n and {bn}n. The notation an � bn means
that there exists some universal constant c > 1 such that c−1bn ≤ an ≤ cbn for any n. The notation
an ∝ bn means that there exists some universal constant c > 0 such that an ≤ cbn for all n.

Proofs of Theorems 1 and 2 rely on Lemmas E.1, E.2 and E.3. In particular, Lemma E.1 establishes
the uniform convergence rate of q̂(`)I for any I whose length is no shorter than o(γn) and belongs to
the set of intervals:

I(m) = {[i1/m, i2/m) : for some integers i1 and i2 that satisfy 0 ≤ i1 < i2 < m}
∪ {[i3/m, 1] : for some integers i3 that satisfy 0 ≤ i3 < m}.

To state this lemma, we first introduce some notations. For any such interval I, define the function
qI,0(x) = E(Y |A ∈ I, X = x). It is immediate to see that the definition of qI,0 here is consistent
with the one defined in equation 4 for any I ⊆ D0.
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Lemma E.1 Assume either conditions in Theorem 1 or 2 are satisfied. Then there exists some
constant C̄ > 0 such that the following holds with probability at least 1 − O(n−2): For any
1 ≤ ` ≤ L, I ∈ I(m) and |I| ≥ cγn,

E[|qI,0(X)− q̂(`)I (X)|2{Oi}i∈Lc
`
] ≤ C̄(n|I|)−2β/(2β+p) log8 n. (1)

Here, the expectation in equation 1 is taken with respect to a testing sample X .

Lemma E.2 Assume either conditions in Theorem 1 or 2 are satisfied. Then there exists some
constant C̄ > 0 such that the followings hold with probability at least 1 − O(n−2): For any
1 ≤ ` ≤ L, I ∈ I(m) and |I| ≥ cγn,∑
I∈D̂(`)

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ ≤ C̄(n|I|)p/(2β+p)log8n.

Lemma E.3 Assume either conditions in Theorem 1 or 2 are satisfied. Then the following
events occur with probability at least 1 − O(n−2): there exists some constant c > 0 such that
minI∈D̂(`) |I| ≥ cγn for any 1 ≤ ` ≤ L.

We first present the proofs for these three lemmas. Next we present the proofs for Theorems 1 and 2.

E.1 Proof of Lemma E.1

The number of folds L is bounded. It suffices to derive the uniform convergence rate for each `. By
definition, q̂(`)I is the minimizer of the least square loss, arg minq∈QI

∑
i∈Lc

`
I(Ai ∈ I)|Yi−q(Xi)|2.

It follows that ∑
i∈Lc

`

I(Ai ∈ I)|Yi − q̂(`)I (Xi)|2 ≤
∑
i∈Lc

`

I(Ai ∈ I)|Yi − q(Xi)|2,

for all q ∈ QI . Recall that qI,0(x) = E(Y |A ∈ I, X = x), we have E[I(A ∈ I){Y −
qI,0(X)}|X] = 0. A simple calculation yields∑

i∈Lc
`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 ≤
∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2

+2
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)},

for any q and I.

The first term on the right-hand-side measures the approximation bias of the class of deep neural
networks. Since E[I(A ∈ I){Y − qI,0(X)}|X] = 0, the second term corresponds to the stochastic
error. The rest of the proof is divided into three parts. In Part 1, we bound the approximation error.
In Part 2, we bound the stochastic error. Finally, we combine these two parts together to derive the
uniform convergence rate for q̂(`)I .

Part 1. Under the given condition, we have Q(•, a) ∈ Φ(β, c), b(a|•) ∈ Φ(β, c) for some c > 0 and
any a. We now argue that there exists some constant C > 0 such that qI,0 ∈ Φ(β,C) for any I . This
can be proven based on the relation that

qI,0(x) =

∫
I Q(x, a)b(a|x)da∫
I b(a|x)da

.

Specifically, we have that supx |qI,0(x)| ≤ supa,x |Q(x, a)| ≤ c. Suppose β ≤ 1. For any
x1, x2 ∈ X , consider the difference |qI,0(x1)− qI,0(x2)|. Under the positivity assumption, we have
infa,x b(a|x) ≥ c∗ for some c∗ > 0. It follows that

|qI,0(x1)− qI,0(x2)| ≤
∫
I |Q(x1, a)−Q(x2, a)|b(a|x1)da∫

I b(a|x1)da

+

∫
I |Q(x2, a)||b(a|x1)− b(a|x2)|da∫

I b(a|x1)da
+

∫
I |Q(x2, a)|b(a|x2)da

∫
I |b(a|x1)− b(a|x2)|da∫

I b(a|x1)da
∫
I b(a|x2)da

≤ c‖x1 − x2‖β−bβc + 2
c2

c∗
‖x1 − x2‖β−bβc.
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Consequently, qI,0 ∈ Φ(β, c+ 2c2/c2∗).

Suppose β > 1. Then both Q(•, a) and b(a|•) are bβc-differentiable. By changing the order
of integration and differentiation, we can show that qI,0(x) is bβc-differentiable as well. As an
illustration, when β < 2, we have bβc = 1. According to the chain rule, we have

∂qI,0(x)

∂xj
=

∫
I{∂Q(x, a)/∂xj}b(a|x)da∫

I b(a|x)da
+

∫
I Q(a|x){∂b(a|x)/∂xj}da∫

I b(a|x)da

−
∫
I Q(a|x)b(a|x)da

∫
I{∂b(a|x)/∂xj}da

{
∫
I b(a|x)da}2

.

Moreover, using similar arguments in proving qI,0 ∈ Φ(β, c+ 2c2/c2∗) when β < 1, we can show
that all the partial derivatives of qI,0(x) up to the bβcth order are uniformly bounded for all I. In
addition, all the bβcth order partial derivatives are Hölder continuous with exponent β − bβc. This
implies that qI,0 ∈ Φ(β,C) for some constant C > 0 and any I.

It is shown in Lemma 7 of Farrell et al. (2021) that for any ε > 0, there exists a deep neural network
architecture that approximates qI,0 with the uniform approximation error upper bounded by ε, and
satisfies WI ≤ C̄ε−p/β(log ε−1 + 1) and LI ≤ C̄(log ε−1 + 1) for some constant C̄ > 0. These
upper bounds will be used later in Part 2. The detailed value of ε will be specified below. It follows
that for any I, the bias term can be upper bounded by∑

i∈Lc
`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ ε2
∑
i∈Lc

`

I(Ai ∈ I). (2)

We next provide an upper bound for the right-hand-side. Since A has a bounded probability density
function, the variance Var{I(Ai ∈ I)} is upper bounded by

√
EI(Ai ∈ I) ≤ c̄

√
|I| for some

universal constant c̄ > 0. It follows from Bernstein’s inequality that

pr

∑
i∈Lc

`

I(Ai ∈ I)− |Lc`|EI(A ∈ I) ≥ t

 ≤ exp

(
− t2/2

c̄2|Lc`||I|+ t/3

)
,

for any t and I. Set tI = 6 max(c̄
√
n|I| log n, |I| log n), the right-hand-side is upper bounded by

n−4. Since m � n and the number of intervals I in I(m) is upper bounded by m2, it follows from
Bonferroni’s inequality that

pr

 ⋃
I∈I(m)

∑
i∈Lc

`

I(Ai ∈ I)− |Lc`|EI(A ∈ I) ≥ tI


 ≤ m2n−4 = O(n−2).

As such, with probability at least 1−O(n−2), we have that
∑
i∈Lc

`
I(Ai ∈ I)−|Lc`|EI(A ∈ I) ≤ tI

uniformly for all I , or equivalently,
∑
i∈Lc

`
I(Ai ∈ I) ≤ |Lc`|c̄|I|+ tI . Consider a subset of intervals

I with |I| ≥ cγn for any constant c > 0. Under the given conditions on γn, we have∑
i∈Lc

`

I(Ai ∈ I) ≤ nc̄∗|I|, for any I such that |I| ≥ cγn, (3)

for some constant c̄∗ > 0. It follows from equation 2 that the following holds with probability at least
1−O(n−2): for any I ∈ I(m) such that |I| ≥ cγn, we have∑

i∈Lc
`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ c̄∗ε2n|I|.

Set ε to (n|I|)−β/(2β+p), it follows that∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q(Xi)|2 ≤ c̄∗(n|I|)−2β/(2β+p)(n|I|). (4)

WI and LI are upper bounded by C̄(n|I|)p/(2β+p)(β log(n|I|)/(2β + p) + 1) and
C̄(β log(n|I|)/(2β + p) + 1), respectively. This completes the proof for Part 1.
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Part 2. For the function class of deep neural networks QI , we use θI to denote the parameters in deep
neural networks. This allows us to represent QI as {qI(•, θI) : θI}We will apply the empirical
process theory (see e.g., Van Der Vaart & Wellner 1996) to bound the stochastic error. Let θ̂I be the
estimated parameter in q̂(`)I . Define

σ2(I, θ) = E
{
I(A ∈ I)|qI,0(X)− qI,0(X, θ)|2

}
,

for any θ and I. Consider two separate cases, corresponding to σ(I, θ̂I) ≤ |I|1/2(n|I|)−β/(2β+p)
and σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p), respectively. We focus our attentions on the latter class of
intervals. In Part 3, we will show that for those intervals,

σ(I, θ̂I) ≤ O(1)|I|1/2(n|I|)−β/(2β+p) log4 n,

for some universal constant O(1). This implies that for any I, we have

σ(I, θ̂I) ≤ O(1)|I|1/2(n|I|)−β/(2β+p) log4 n. (5)

We consider bounding a scaled version of the stochastic error,

1

σ(I, θ̂I)

∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}.

Its absolute value can be upper bounded by

Z(I) ≡ sup
θ

∣∣∣∣∣∣ 1

σ(I, θ)
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{qI,0(Xi, θ)− qI,0(Xi)}

∣∣∣∣∣∣ ,
where the supremum is taken over all θ such that σ(I, θ) > |I|1/2(n|I|)−β/(2β+p).
For a given θ, the empirical sum has zero mean. Under the boundedness assumption on Y , its
variance is upper bounded by some universal constant. In addition, each quantity σ−1(I, θ)I(Ai ∈
I){Yi − qI,0(Xi)}{qI,0(Xi, θ) − qI,0(Xi)} is upper bounded by O(1)|I|−1/2(n|I|)β/(2β+p) for
some universal constant O(1). This allows us to apply the tail inequality developed by Massart et al.
(2000) to bounded the empirical process. See also Theorem 2 of Adamczak et al. (2008). Specifically,
for all t > 0 and I that satisfies σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p), we obtain with probability at
least 1− exp(t) that

Z(I) ≤ 2EZ(I) + c̄
√
tn+ tc̄|I|−1/2(n|I|)β/(2β+p), (6)

for some constant c̄ > 0. By setting t = 3 log n, the probability 1− exp(t) = 1− n−3. Notice that
the number of intervals I is upper bounded by O(n2), under the condition that m is proportional to
n. By Bonferroni’s inequality, we obtain that equation 6 holds with probability at least 1−O(n−2)
for any I. Under the given condition on γn, for any interval I such that |I| ≥ cγn, the last term
on the right-hand-side of equation 6 is o(

√
n). It follows that the following occurs with probability

1−O(n−2),

Z(I) ≤ 2EZ(I) + 2c̄
√
n log n, (7)

for all I such that |I| ≥ cγn and σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p).
We next provide an upper bound for EZ(I). Toward that end, we will apply the maximal in-
equality developed in Corollary 5.1 of Chernozhukov et al. (2014). We first observe that the
class of empirical sum indexed by θ belongs to the VC subgraph class with VC-index upper
bounded by O(WILI log(WI)). It follows that for any I such that |I| ≥ cγn, σ(I, θ̂I) >
|I|1/2(n|I|)−β/(2β+p),

EZ(I) ∝
√
nWILI log(WI) log n+WILI log(WI) log n.

Based on the upper bounds on WI and LI developed in Part 1, the right-hand-side is upper bounded
by

O(1)(n|I|)p/(4β+2p)

√
n log4 n+O(1)|I|−1/2(n|I|)p/(2β+p) log4 n,
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where O(1) denotes some universal constant. It is of the order O{n1/2(n|I|)p/(4β+2p) log4 n}. This
yields that

EZ(I) ∝ n1/2(n|I|)p/(4β+2p) log4 n.

This together with equation 6 and equation 7 yields that with probability at least 1− O(n−2), the
scaled stochastic error is upper bounded by n1/2(n|I|)p/(4β+2p) log4 n. As such, with probability at
least 1−O(n−2), we obtain that∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ ∝ σ(I, θ̂I)n1/2(n|I|)p/(4β+2p) log4 n,

for any I such that |I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p). By Cauchy-Schwarz inequality,
the left-hand-side can be further upper bounded by

nσ2(I, θ̂I)

4
+O(1)(n|I|)p/(2β+p) log8 n,

where O(1) denotes some universal positive constant. This completes the proof for Part 2.

Part 3. Combining the results in Part 1 and Part 2, we obtain that for any I such that |I| ≥ cγn,
σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p),∑

i∈Lc
`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 ≤
nσ2(I, θ̂I)

4
+O(1)(n|I|)p/(2β+p) log8 n,

with probability at least 1−O(n−2). As for the left-hand-side, we notice that∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2

≥ |Lc`|σ2(I, θ̂I)−

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q̂(`)I (Xi)|2 − |Lc`|σ2(I, θ̂I)

∣∣∣∣∣∣ .
Using similar arguments in Part 2, we can show that the second line is upper bounded by
nσ2(I, θ̂I)/8 + O(1)(n|I|)p/(2β+p) log8 n, with probability at least 1 − O(n−2), for any I such
that |I| ≥ cγn, σ(I, θ̂I) > |I|1/2(n|I|)−β/(2β+p). Since Lc` ≥ n/2, we obtain(

1

2
− 1

4
− 1

8

)
σ2(I, θ̂I) =

1

8
σ2(I, θ̂I) ∝ (n|I|)−2β/(2β+p) log8 n.

This yields the desired uniform upper bound for σ2(I, θ̂I). We thus obtain equation 5 holds with
probability at least 1−O(n−2).

Under the assumption that the density function b(a|x) is uniformly bounded away from zero, we
obtain

σ2(I, θ̂I) ≤ c|I|E|qI,0(X)− q̂(`)I (X)|2,

for some constant c > 0. This assertion thus follows.

E.2 Proof of Lemma E.2

The assertion can be proven in a similar manner as Part 2 of the proof of Lemma E.1. We omit the
details to save space.

E.3 Proof of Lemma E.3

Consider a given interval I ∈ D̂(`). Suppose |I| < cγn. The value of the constant c will be
determined later. Then, for sufficiently large n, we can find some interval I ′ ∈ I(m) ∩ D̂(`) that is
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adjacent to I. Thus, we have I ∪ I ′ ∈ I(m), and hence
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 +
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ′){Yi − q̂(`)I′ (Xi)}2 (8)

≤ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2 − γn.

Notice that the left-hand-side of the above expression is nonnegative. It follows that

γn ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2.

By definition, we have

q̂
(`)
I∪I′ = arg min

qI∈QI

1

n

∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − qI(Xi)}2.

It follows that
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I∪I′(Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ∪ I ′){Yi − q̂(`)I′ (Xi)}2.

By equation 8, this further implies that
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I′ (Xi)}2 − γn,

and hence

γn ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I′ (Xi)}2.

Under (A2), the function q̂I′ is uniformly upper bounded from above. It thus follows from Cauchy-
Schwarz inequality that

γn ≤
2

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Y 2
i + q̂2I′(Xi)} ≤ c0n−1

∑
i∈Lc

`

I(Ai ∈ I),

for some constant c0 > 0. Using similar arguments in showing equation 3, we can show that with
probability at least 1−O(n−2), the following evens hold for all I ∈ I(m),

n−1
∑
i∈Lc

`

I(Ai ∈ I) ≤ c1(
√
n−1|I| log n+ |I|),

for some constant c1 > 0. The right-hand-side shall be larger than or equal to γn. Consequently, we
have either |I| ≥ c2γn or |I| ≥ c2nγ2n/ log n for some constant c2 > 0. Under the given condition
on γn, we obtain that |I| ≥ c2γn for sufficiently large n. The proof is hence completed.

E.4 Proof of Theorem 1

Since the number of folds L is a fixed integer. We will show the assertions in (i) and (ii) holds for
each `, with probability at least 1−O(n−2). The proof is divided into three parts. In Part 1, we show
the consistency of the estimated change point locations and that |D̂(`)| ≥ |D0| with probability at
least 1−O(n−2). In Part 2, we prove that |D̂(`)| = |D0| with probability at least 1−O(n−2) and
derive the rate of convergence of the estimated change point locations and the estimated function Q.
In Part 3, we derive the rate of convergence for the value estimator.

Part 1. We first show the consistency of the estimated change-point locations. Assume |D0| > 1.
Otherwise, the assertion |D̂(`)| ≥ |D0| trivially hold. Consider the partition D = {[0, 1]} which
consists of a single interval and a zero function Q. By definition, we have∑

I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2
+ |Lc`|γn|D̂(`)| ≤

∑
i∈Lc

`

Y 2
i + |Lc`|γn.
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Under the boundedness assumption on Y , we obtain that |Lc`|γn|D̂(`)| ≤ C0(|Lc`| + γn) for some
constant C0 > 0 and hence

|D̂(`)| ≤ 2C0γ
−1
n , (9)

for sufficiently large n, as γn → 0.

Notice that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}2︸ ︷︷ ︸
η∗1

+
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){q̂(`)I (Xi)− qI,0(Xi)}2

−2
∑
I∈D̂(`)

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI,0(Xi)}{q̂(`)I (Xi)− qI,0(Xi)}

∣∣∣∣∣∣ .
The second line is non-negative. Under Lemmas E.2 and E.3, the third line is lower bounded
by −C1

∑
I∈D̂(`)(n|I|)p/(p+2β) log8 n for some constant C1 > 0 with probability at least 1 −

O(n−2). In view of equation 9, it can be further lower bounded by −2C0C1γ
−1
n np/(p+2β) log8 n.

By equation 9 and the given condition on γn, the third line is o(n). It follows that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥ η∗1 + o(n), (10)

with probability at least 1−O(n−2).

Similar to equation 3, we can show that the following events occur with probability at least 1 −
O(n−2), ∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}{Q(Xi, Ai)− qI,0(Xi)}

∣∣∣∣∣∣ (11)

≤ c0
[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Q(Xi, Ai)− qI,0(Xi)}2 − EI(A ∈ I)|Q(X,A)− qI(X)|2
∣∣∣∣∣∣ (12)

≤ c0
[
n−1/2

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n+ n−1 log n

]
,

for some constant c0 > 0. For any interval I, the two upper bounds in equation 11 and equation 12
are o(1).

It follows that
η∗1 =

∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}2 +
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Q(Xi, Ai)− qI,0(Xi)}2

+2
∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi −Q(Xi, Ai)}{Q(Xi, Ai)− qI,0(Xi)}

=
∑
i∈Lc

`

|Yi −Q(Xi, Ai)|2 + |Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI(X)|2 + o(n),

with probability at least 1−O(n−2). It follows from equation 10 that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
i∈Lc

`

|Yi −Q(Xi, Ai)|2︸ ︷︷ ︸
η∗2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI(X)|2 + o(n),

(13)
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with probability at least 1−O(n−2).

Let us consider η∗2 . We observe that

η∗2 =
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − qI,0(Xi)|2.

By the uniform approximation property of deep neural networks, there exists some q∗I ∈ QI such
that ∑

i∈Lc
`

|qI,0(Xi)− q∗I(Xi)|2 ∝ n(n|I|)−2β/(2β+p).

See Part 1 of the proof of Lemma E.1 for details. Similar to equation 3, we can show that the
following events occur with probability at least 1−O(n−2),∣∣∣∣∣∣ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI(Xi)}{qI(Xi)− q∗I(Xi)}

∣∣∣∣∣∣ ≤ c0
√
|I| log n√
n

(n|I|)−β/(2β+p),

for some constant c0 > 0 and any I ∈ D0. It follows that

η∗2 −
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗I(Xi)|2 ≥ −
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|qI,0(Xi)− q∗I(Xi)|2

−2
∑
I∈D0

∣∣∣∣∣∣
∑
i∈Lc

`

I(Ai ∈ I){Yi − qI(Xi)}{qI(Xi)− q∗I(Xi)}

∣∣∣∣∣∣ ≥ −c̄np/(2β+p),
for some constant c̄ > 0. This together with equation 13 yields that∑

I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 ≥
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗I(Xi)|2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 + o(n) +O{np/(2β+p)},
(14)

with probability at least 1−O(n−2).

Let K = |D0|. For any integer k such that 1 ≤ k ≤ K − 1, let τ∗0,k be the change point location
that satisfies τ∗0,k = i/m for some integer i and that |τ0,k − τ∗0,k| < m−1. Denoted by D∗ the
oracle partition formed by the change point locations {τ∗0,k}

K−1
k=1 . Set τ∗0,0 = 0, τ∗0,K = 1 and

q∗∗[τ∗0,k−1,τ
∗
0,k)

= q∗[τ0,k−1,τ0,k)
for 1 ≤ k ≤ K − 1. Let ∆k = [τ∗0,k−1, τ

∗
0,k) ∩ [τ0,k−1, τ0,k)c for

1 ≤ k ≤ K − 1 and ∆K = [τ∗0,K−1, 1] ∩ [τ0,K−1, 1]c. The length of each interval ∆k is at most
m−1. It follows that∑

I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2
+ γn|Lc`||D∗|


−

∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2
+ γn|Lc`||D0|

 ≤ 2

K∑
k=1

∑
i∈Lc

`

I(Ai ∈ ∆k)

{
Y 2
i + sup

I⊆[0,1]
q∗2I (Xi)

}
.

Since Y is a bounded variable, q∗I is uniformly bounded for any I. The right-hand-side is upper
bounded by

∑K
k=1

∑
i∈Lc

`
I(Ai ∈ ∆k). Similar to equation 3, The later is upper bounded byO(log n),

with probability at least 1−O(n−2).It follows that∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2
+ γn|Lc`||D∗|

 (15)

−

∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2
+ γn|Lc`||D0|

 ≤ O(log n),
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with probability at least 1−O(n−2). By definition,∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 + γn|Lc`||D̂(`)|

≤
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗∗I (Xi)}2 + γn|Lc`||D∗|.
(16)

Combining this together with equation 15 yields that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂(`)I (Xi)}2 + γn|Lc`||D̂(`)|

≤
∑
I∈D0

∑
i∈Lc

`

I(Ai ∈ I){Yi − q∗I(Xi)}2 + γn|Lc`||D0|+O(log n).

It follows from equation 14 and the condition γn → 0 that∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 = o(1), (17)

with probability at least 1 − O(n−2). Under the event defined above, we show that
maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | ≤ δ for any constant δ > 0. This yields the consistency of
our estimated change point locations.

Specifically, under the condition that qI1,0 6= qI2,0 for any adjacent I1, I2 ∈ D0, we have
E|qI1,0(X) − qI2,0(X)|2 > 0. Let δ0 denote the minimum distance between two change point
locations. Since the change points are fixed, δ0 is a fixed positive value. For a given 0 < δ < δ0,
suppose maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | > δ. Then there exists a change point τ0 and I ∈ D̂(`)

such that τ0 ∈ I , |I| ≥ 2δ and that min(|a−τ0|, |b−τ0|) ≥ δ where a, b correspond to the endpoints
of the interval I. Under the event defined in equation 17, we have

EI(A ∈ [a, b])|Q(X,A)− qI,0(X)|2 = o(1). (18)

Since δ0 > δ, the conditional mean function Q is a piecewise function of A in the intervals [a, τ0]
and [τ0, b]. The left-hand-side thus equals

EI(A ∈ [τ0, b])|q[τ0,b],0(X)− qI,0(X)|2 + EI(A ∈ [a, τ0])|q[a,τ0],0(X)− qI,0(X)|2.
The function qI,0 that minimizes the above objective is given by

{EI(A ∈ [a, b]|X)}−1[q[a,τ0],0(X)E{I(A ∈ [a, τ0])|X}+ q[τ0,b],0(X)E{I(A ∈ [τ0, b])|X}].
Consequently, the left-hand-side of equation 18 is greater than or equal to

E{I(A ∈ [τ0, b])|X}{I(A ∈ [a, τ0])|X}|q[τ0,b],0(X)− q[a,τ0],0(X)|2,

which is not to decay to zero since min(|a− τ0|, |b− τ0|) ≥ δ and that qI1,0 6= qI2,0 for any adjacent
I1, I2 ∈ D0. This contradicts equation 18. As such, we obtain that maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ −
τ | ≤ δ for any sufficiently small δ. This yields the consistency of the estimated change point locations.
It also implies that |D̂(`)| ≥ |D0| with probability at least 1−O(n−2). This completes the proof of
Part 1.

Part 2. In this part, we show |D̂(`)| = |D0| with probability at least 1−O(n−2) and derive the rate
of convergence of the estimated change point locations. Similar to equation 14 and equation 15, with
a more refined analysis (see Part 1 of the proof), we obtain that∑

I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2

+|Lc`|
∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n+O(np/(2β+p))

−2c0|Lc`|1/2
∑
I∈D̂(`)

√
EI(A ∈ I){Q(X,A)− qI,0(X)}2 log n− 2c0|D̂(`)| log n.
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with probability at least 1−O(n−2). By Cauchy-Schwarz inequality, the third line is lower bounded
by

−|L
c
`|

2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − 2(c0 + c20)|D̂(`)| log n.

It follows that∑
I∈D̂(`)

∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
∑
I∈D∗

∑
i∈Lc

`

I(Ai ∈ I)|Yi − q∗∗I (Xi)|2

+
|Lc`|

2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 − C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n

−2(c0 + c20)|D̂(`)| log n+O(np/(2β+p)).

This together with equation 16 yields that

|Lc`|
2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 ≤ C1|D̂(`)|β/(2p+β)np/(p+2β) log8 n

+O(np/(2β+p)) + nγn(|D0| − |D̂(`)|) + 2(c0 + c20)|D̂(`)| log n.

Under the given condition on γn, we obtain that |D̂(`)| ≤ |D0|. Combining this together with
|D̂(`)| ≥ |D0|, we obtain that |D̂(`)| = |D0|. As such, we have that∑

I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2 ∝ n−2β/(p+2β) log8 n

Using similar arguments in establishing the consistency of the estimated change point locations,
we can show that under the above event, we have that maxτ∈J(D0) minτ̂∈J(D̂(`)) |τ̂ − τ | ∝
n−2β/(p+2β) log8 n. This completes the proof of this part.

Part 3. For any target policy π, we define a random policy πD̂(`) according to the partition D̂(`) as
follows:

πD̂(`)(a|x) =
∑
I⊆D̂(`)

I{π(x) ∈ I, a ∈ I} b(a|x)

b(I|x)
,

where b(I|x) denotes the propensity score function pr(A ∈ I|X = x). Note that
∫ 1

0
πD̂(`)(a|x)da =∑

I⊆D̂(`) I{π(x) ∈ I} = 1 for any x. Consequently, πD̂(`) is a valid random policy.

Since the behavior policy is known, the proposed doubly-robust estimator corresponds to an unbiased
estimator for L−1

∑L
`=1 V (πD̂(`)). Using similar arguments in the causal inference literature on

deriving the asymptotic property of doubly-robust estimators (Chernozhukov et al. 2017), we can
show that

V̂ (π)− 1

L

L∑
`=1

V (πD̂(`)) = Op(n
−1/2).

It suffices to show L−1
∑L
`=1{V (πD̂(`)) − V (π)} = Op{n−2β/(2β+p) log8 n}, or equivalently,

V (πD̂(`))− V (π) = Op{n−2β/(2β+p) log8 n}.
Based on the results obtained in the first two parts, it follows from Cauchy-Schwarz inequality that∑
I∈D̂(`)

E
[
I(A ∈ I)|Q(X,A)− q̂(`)I (X)|2|X

]
≤ 2

∑
I∈D̂(`)

EI(A ∈ I)|Q(X,A)− qI,0(X)|2

+2
∑
I∈D̂(`)

E
[
I(A ∈ I)|q̂(`)I (X)− qI,0(X)|2|X

]
∝ n−2β/(p+2β) log8 n.

(19)
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Note that

V (πD̂(`)) = E

∫
[0,1]

Q(X, a)
∑
I⊆D̂(`)

I{π(X) ∈ I, a ∈ I} b(a|X)

b(I|X)
da

=
∑
I0∈D0

EqI0(X)
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)
.

Similarly, we can show

V (π) =
∑
I0∈D0

EqI0(X)I{π(X) ∈ I0}.

It follows that

|V (πD̂(`))− V (π)| ≤
∑
I0∈D0

E|qI0(X)|

∣∣∣∣∣∣I{π(X) ∈ I0} −
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)

∣∣∣∣∣∣ .
As qI0 is uniformly bounded, the left-hand-side is upper bounded by∑

I0∈D0

E

∣∣∣∣∣∣I{π(X) ∈ I0} −
∑
I⊆D̂(`)

I{π(X) ∈ I}b(I ∩ I0|X)

b(I|X)

∣∣∣∣∣∣ . (20)

Based on the results obtained in Part 2, for each I0 ∈ D0, there exists some I(`)0 where the Lebesgue
measure of the difference I0 ∩ (I(`)0 )c + Ic0 ∩ I

(`)
0 is upper bounded by O{n−2β/(2β+p) log8 n},

with probability at least 1 − O(n−2). The upper bound in equation 20 is O{n−2β/(2β+p) log8 n},
under the positivity assumption and the assumption that pr(π(X) ∈ [τ0 − ε, τ0 + ε]) = O(ε) for any
τ0 ∈ J(D0) and sufficiently small ε > 0. This completes the proof.

E.5 Proof of Theorem 2

We break the proof into two parts. In Part 1, we introduce an auxiliary lemma and present its proof.
In Part 2, we derive the convergence rate of the proposed value estimator.

Part 1. We first introduce the following lemma.

Lemma E.4 For any interval I ∈ I(m) with |I| � γn and any interval I ′ ∈ D̂(`) with I ⊆ I ′, we
have with probability approaching 1 that

E|qI,0(X)− qI′,0(X)|2 ≤ C̄|I|−1γn,
for some constant C̄ > 0.

We next prove Lemma E.4. For a given interval I ′ ∈ D̂(`), the set of intervals I considered in Lemma
E.4 can be classified into the following three categories.

Category 1: I = I ′. It is immediate to see that qI = qI′ and the assertion automatically holds.

Category 2: There exists another interval I∗ ∈ I(m) that satisfies I ′ = I∗ ∪ I. Notice that the
partition D̂(`)∗ = D̂(`) ∪ {I∗} ∪ I − {I ′} forms another partition. By definition, we have

1

|Lc`|
∑
i∈Lc

`

∑
I0∈D̂(`)∗

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 + γn|D̂(`)∗|

≥ 1

|Lc`|
∑
i∈Lc

`

∑
I0∈D̂(`)

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 + γn|D̂(`)|,

and hence
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 +
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I∗(Xi)}2

≥ 1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I ′){Yi − q̂I′(Xi)}2 − γn.
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It follows from the definition of q̂I∗ that
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I∗(Xi)}2 ≤
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I∗){Yi − q̂I′(Xi)}2.

Therefore, we obtain
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − γn. (21)

Category 3: There exist two intervals I∗, I∗∗ ∈ I(m) that satisfy I ′ = I∗ ∪ I ∪ I∗∗. Using similar
arguments in proving equation 21, we can show that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − 2γn.

Hence, regardless of whether I belongs to Category 2, or it belongs to Category 3, we have
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 ≥
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 − 2γn. (22)

Notice that for any interval I0,
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 − E[I(A ∈ I0){Y − q̂I0(X)}2|{Oi}i∈Lc
`
]

=
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){q̂I0(Xi)− qI0,0(Xi)}{qI,0(Xi)− q̂I0,0(Xi)}2

+
1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I0){Yi − q̂I0(Xi)}2 − E[I(A ∈ I0){q̂I0(Xi)− q̂I0(X)}2|{Oi}i∈Lc
`
].

Using similar arguments in bounding the stochastic error term in Part 2 of the proof of Lemma
E.1, we can show with probability approaching 1 that the right-hand-side is of the order
O{n−2β/(2β+p) log8 n}, for any I0 ∈ I(m). As such, we obtain with probability approaching
1 that

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I(Xi)}2 = E[I(A ∈ I){Y − q̂I(X)}2|{Oi}i∈Lc
`
]

+O(1)|I|(n|I|)−2β/(2β+p) log8 n,

1

|Lc`|
∑
i∈Lc

`

I(Ai ∈ I){Yi − q̂I′(Xi)}2 = E[I(A ∈ I){Y − q̂I′(X)}2|{Oi}i∈Lc
`
]

+O(1)|I|(n|I|)−2β/(2β+p) log8 n,

where O(1) denotes some universal positive constant. Combining these together with equation 22
yields

E[I(A ∈ I){Y − q̂I(X)}2|{Oi}i∈Lc
`
] ≥ E[I(A ∈ I){Y − q̂I′(X)}2|{Oi}i∈Lc

`
]

−2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n,

for any I and I ′, with probability approaching 1. Note that qI,0 satisfies E[I(A ∈ I){Y −
qI,0(X)}|X] = 0. We have

E[I(A ∈ I){qI,0(X)− q̂I(X)}2|{Oi}i∈Lc
`
] ≥ E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc

`
]

−2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n.

Consider the first term on the right-hand-side. Note that

E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc
`
] = E[I(A ∈ I){qI,0(X)− qI′(X)}2|{Oi}i∈Lc

`
]

+E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc
`
]

−2E[I(A ∈ I){qI,0(X)− qI′,0(X)}{q̂I′(X)− qI′,0(X)}|{Oi}i∈Lc
`
].
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By Cauchy-Schwarz inequality, the last term on the right-hand-side can be lower bounded by

−1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]− 2E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc

`
].

It follows that

E[I(A ∈ I){qI,0(X)− q̂I′(X)}2|{Oi}i∈Lc
`
] ≥ 1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]

−3E[I(A ∈ I){q̂I′(X)− qI′,0(X)}2|{Oi}i∈Lc
`
],

and hence
1

2
E[I(A ∈ I){qI,0(X)− qI′,0(X)}2|{Oi}i∈Lc

`
]− 2γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n

≤ E[I(A ∈ I){qI,0(X)− q̂I(X)}2|{Oi}i∈Lc
`
] + 3E[I(A ∈ I){qI′,0(X)− q̂I′(X)}2|{Oi}i∈Lc

`
].

By Lemma E.1, Lemma E.3 and the positivity assumption, the right-hand-side is upper bounded
by O(1)|I|(n|I|)−2β/(p+2β) log8 n for some universal positive constant O(1), with probability
approaching 1. We obtain with probability approaching 1 that

E[I(A ∈ I){qI(X)− qI′(X)}2|{Oi}i∈Lc
`
] = 4γn +O(1)|I|(n|I|)−2β/(2β+p) log8 n,

uniformly for any I and I ′, or equivalently,

E

[
b(I|X)

|I|
{qI(X)− qI′(X)}2|{Oi}i∈Lc

`

]
=

4γn
|I|

+O(1)(n|I|)−2β/(2β+p) log8 n.

By the positivity assumption, we have with probability approaching 1 that

E[{qI(X)− qI′(X)}2|{Oi}i∈Lc
`
] = O(γn|I|−1) +O{(n|I|)−2β/(2β+p) log8 n},

uniformly for any I and I ′. The proof is hence completed by noting that γn is at least of the order
O(n−2β/(2β + p)) log8 n.

Part 2. Consider the bias of the proposed estimator first. Similar to Part 3 of the proof of Theorem 1,
the bias is given by L−1

∑L
`=1 V (πD̂(`))− V (π). By definition,

V (πD̂(`))− V (π) =
∑
I∈D̂(`)

∫
I
EQ(X, a)I(π(X) ∈ I)

b(a|X)

b(I|X)
da− EQ{X,π(X)}

=
∑
I∈D̂(`)

∫
I
E{Q(X, a)−Q{X,π(X)}}I(π(X) ∈ I)

b(a|X)

b(I|X)
da

=
∑
I′∈D̂(`)

E{qI,0(X)−Q{X,π(X)}}I(π(X) ∈ I).

It follows that

|V (πD̂(`))− V (π)| ≤ sup
I′∈D̂(`),a∈I′

E|Q(X, a)− qI′(X)|. (23)

For any I ′ ∈ D̂(`). Consider two separate cases, corresponding to |I ′| ≤ γ
1/3
n and |I ′| > γ

1/3
n ,

respectively.

In Case 1, it follows from the Lipschitz property of the conditional mean function Q that |Q(x, a1)−
Q(x, a2)| ≤ Lγ1/3n , for any a1, a2 ∈ I ′ and x. By definition, the function qI′ can be represented as
qI′(x) =

∫
I′ Q(x, a)ω(a, x)da for some weight function ω such that

∫
I′ ω(a, x)da = 1. It follows

that the right-hand-side of equation 23 is upper bounded by Lγ1/3n .

In Case 2, for any a ∈ I ′, we can find an interval I ⊆ I ′, a ∈ I with length proportional to γ1/3n .
Using similar arguments in Case 1, we can show that |Q(x, a)− qI,0(x)| ≤ Lγ1/3n . By Lemma E.4
and the Cauchy-Schwarz inequality, we have

E|qI,0(X)− qI′,0(X)| ≤
√
C̄γ

2/3
n = C̄1/2γ1/3n ,
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with probability approaching 1. It follows that the right-hand-side of equation 23 is upper bounded
by (L+

√
C̄)γ

1/3
n , with probability approaching 1.

As such, the bias of the proposed estimator is upper bounded by

(L+
√
C̄)γ1/3n ,

with probability approaching 1.

We next consider the standard deviation of our estimator. The proposed estimator is can be repre-
sented by L−1

∑L
`=1 V̂

`(π) where V̂ `(π) is the value estimator constructed based on the samples in
{Oi}i∈L`

. Since the propensity score function is known to us, each V̂ `(π) is unbiased to V (πD̂(`)).
Under the positivity assumption and the boundedness assumption on Y and q̂I , the variance of V̂ `(π)
is upper bounded by |L`|−1 infI∈D̂(`) |I|−1. By Lemma E.3, it is upper bounded by O(n−1γ−1n ). As
such, the standard deviation of our estimator is upper bounded by O(n−1γ−1n ).

As such, the convergence rate is given by Op(γ
1/3
n + n−1/2γ

−1/2
n ). By setting γn = n−3/5, the rate

is given by Op(n−1/5). The proof is hence completed.
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