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A DEDO Environment Details380

DEDO: Dynamic Environments with Deformable Object [7] is a suite of task-based simulation en-381

vironments (hanging a bag, dressing a mannequin, etc.) involving highly deformable, topologically382

non-trivial objects. The environments are built on the PyBullet physics engine [28].383

Figure 6: Sample demonstration of the HangProcCloth task.

A.1 HangProcCloth - Task Definition384

For our experiments, we focus on the HangProcCloth task (Figure 6), in which a procedurally385

generated cloth must be placed on a hanger. More specifically, the cloth is generated to contain a386

hole in its topology - to successfully the complete the task, the vertical part of the hanger should be387

aligned through the hole.388

The hanger (anchor) is loaded into the PyBullet engine as a pre-defined rigid body, and contains two389

components: a ‘tall rod’, and the ‘hanger’ itself. While we randomize the anchor pose throughout390

our experiments, this geometry remains fixed. The goal of the task is explicitly formulated in the391

environment as the center of the ‘hanger’ component (Figure 6) - while this goal definition is not392

passed as input to our models, it is used later by our success metric for evaluation.393

A.2 Cloth Generation394

Following DEDO’s implementation, every cloth in our experiments is procedurally generated as a395

rectangular mesh, and can be represented using the following parameters:396

node density 25 The amount of vertices to initialize the cloth mesh
with. Every cloth is initialized as an evenly spaced
node density × node density grid (25 ×25 =
625 vertices for all of our cloths). Vertices are
then removed during the hole generation process.

width [0.25, 1.0] The width of the cloth.

height [0.25, 1.0] The height of the cloth.

num holes (1..2) The number of holes in the cloth.

holes See A.2.1 See A.2.1

A.2.1 Hole Generation397

Holes are created by removing mesh vertices. All generated holes are rectangular - as such, they398

can be represented topologically with respect to the procedurally generated cloth by their bottom-left399
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and top-right corners. Accordingly, the holes parameter is a list, where each element corresponding400

to a specific hole in the cloth is a dictionary with elements:401

x0 The x vertex coordinate of the bottom-left corner of the hole.

y0 The y vertex coordinate of the bottom-left corner of the hole.

x1 Similar to x0, for the top-right corner.

y1 Similar to y0, for the top-right corner.

For reference, the single-hole cloth used in our first experiment (Generalization to Unseen Scene402

Configuration) is defined as:403

404
1 {405

2 "node_density": 25,406

3 "width": 1.0,407

4 "height": 1.0,408

5 "num_holes": 1,409

6 "holes": [410

7 {"x0": 8, "y0": 9, "x1": 16, "y1": 13}411

8 ]412

9 }413414

In general, holes are randomly generated under the following constraints:

x range (2, node density - 2) The range of possible values for
x0.

y range (2, node density - 2) The range of possible values for
y0.

width range (1, int(round(node density * 0.3))) The range of possible values for
wh, such that x1 = x0+ wh.

height range (1, int(round(node density * 0.3))) The range of possible values for
wh, such that x1 = x0+ wh.

415

More precisely, when generating holes, x0 and y0 are first sampled based on x range and y range,416

respectively - x1 and y1 are then sampled based on width range and height range. To ensure417

that the resulting cloth geometry is valid topologically, DEDO generates cloths using a Monte Carlo418

method, only returning valid holes if they pass a boundary check (all vertices lie within the cloth419

boundary) and an overlap check (different holes do not overlap). For further implementation details,420

we refer to the DEDO codebase [7].421

Since holes are generated by directly manipulating the cloth mesh, they can also be represented as422

deformable loops, defined by a set of “loop vertices” (Figure 6) - while information about these423

vertices is not passed as input to our models, it is used later by our success metric for evaluation.424

A.3 Cloth Control425

The HangProcCloth environment does not model a robot grasp - instead, the cloth is manipulated426

by applying force controls to floating “grippers”1 attached to the top-left and top-right corners of the427

cloth (Figure 6). The grippers themselves are zero-mass and collision free.428

Pseudo-expert Policy: To generate demonstrations, we hard-code a pseudo-expert policy with429

access to privileged environment information. In particular, at the initial state of the scene, this430

policy computes the distance vector from the centroid of the loop vertices to the goal location in the431

1DEDO refers to these grippers as “anchors.” We refrain from this terminology since “anchor” denotes an
entirely different object for our purposes.
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hanger. If the cloth has multiple holes, a single hole is selected. This distance vector is then scaled432

by a hard-coded value (0.04) to convert it to a velocity within the DEDO action space, and passed433

as the target velocity for both grippers to DEDO’s default velocity controls2 (a simple proportional434

controller, where force is applied proportional to the velocity error) with a velocity gain of 50 and a435

maximum output force3 of 5.436

Evaluation Policy: To evaluate our models, we implement a separate evaluation policy without437

access to privileged environment information (e.g. goal location, deformable loop vertices). At438

the initial state of the scene, we run TAX3D on the full point cloud of the cloth4, and obtain the439

predicted position in the world frame of the two grippers (which are attached to the top-left and top-440

right corners of the cloth). These target positions are then passed as inputs (in addition to a target441

velocity of zero) to a custom proportional-derivative controller, with a position gain of 50, a velocity442

gain of 50, and a maximum output force of 5.443

A.4 Episode Rollout444

A.4.1 Rollout Phases445

Each episode rollout consists of two phases (Figure 6): a manipulation phase, in which the grippers446

receive force control inputs at each time step to manipulate the cloth, and a release phase, in which447

the grippers “release” the cloth and allow it to fall. The release phase is fixed at 500 simulation448

steps, whereas the manipulation phase has a variable episode length depending on the setting (with449

each environment step corresponding to 8 simulation steps).450

If the task is completed successfully, the cloth should be supported by the rigid anchor after the451

release phase. However, because we are learning a goal-prediction module to condition a policy’s452

control outputs, we use the post-manipulation, pre-release state of the cloth to label ground truth453

demonstrations.454

A.4.2 Success Metric455

To robustly determine whether or not the task has been successfully completed, we implement our456

own success metric consisting of two components:457

1. Centroid Check: a post-manipulation binary metric that checks if the centroid of the458

deformable loop vertices is within a threshold distance (1.0) of the goal location.459

2. Polygon Check: a post-release binary metric that projects the loop vertices and goal lo-460

cation onto the xy-plane, and then checks if the projected goal point lies on the interior of461

the polygon defined by the projected loop vertices. This is an intuitive heuristic that checks462

whether or not the hole “wraps” around the vertical rod of the hanger.463

If the cloth has multiple holes, these metrics are computed individually for each hole - the task is464

considered successful if both are true for at least one hole.465

A.5 Demonstration Generation466

A.5.1 Randomizing Scene Configuration467

For all demonstrations across all experiments, the objects in the scene are initialized to the following468

pose, shown in Figure 6:469

2Before passing to the controller, we also add 0.01 to the z-component of both target velocities - we found
that this empirically produced better aligned placements.

3Following the DEDO implementation, this is not an overall maximum force magnitude - it is the maximum
magnitude of the force along the x-, y-, and z-axes.

4Note that this is different from our training procedure ( B.2), where we downsample cloth point clouds to
512 points.
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position (xyz) orientation (Euler)

cloth (0, 5, 8)
(
−π

2 , 0,
3π
2

)
hanger (0, 0, 8) (0, 0, 0)
tall rod (0, 0, 0) (0, 0, 0)

For each demonstration, a speed factor is also randomly sampled, such that speed factor =470

es, s ∼ U(0.0, 0.7). The episode length and the target velocity of the pseudo-expert policy are471

linearly scaled based on the speed factor (the former by the speed factor itself and the latter472

by its reciprocal), with a speed factor of 1 corresponding to an episode length of 200. Intuitively,473

the speed factor adds noise to the deformation undergone by the cloth during the task completion.474

To generate a demonstration, the pseudo-expert policy is rolled out under these initial conditions,475

with (PA,P∗
A,P∗

B) all collected under the same initial configuration. The success metric is then used476

to evaluate the pseudo-expert rollout, with the entire demonstration discarded if unsuccessful. To477

randomize scene configuration, the goal point clouds (P∗
A,P∗

B) are then transformed with a randomly478

sampled translation, and a randomly sampled rotation about the z-axis.479

Unseen Unseen (OOD)

x-translation (−5, 5) (−10,−5) ∪ (5, 10)
y-translation (0, -10) (0, -10)
z-translation 0 (1, 5)
z-rotation

(
−π

3 ,
π
3

) (
−π

3 ,
π
3

)
All transformations are sampled uniformly at random from their respective ranges, with one small480

caveat: x-translations are chosen such that their signs match the sign of the sampled rotation. That481

is, if the z-rotation is sampled to be non-negative, then the x-translations are only sampled from482

the non-negative subset of the corresponding range. This ensures that the anchor always “faces” the483

cloth, such that the cloth need not undergo significant rotations for a successful placement. Note484

that this simplification assumes a canonical configuration of the grippers with respect to the hanger485

for all demonstrations (namely, that the grippers are aligned along the length of the hanger’s “shoul-486

ders”), despite the fact that a viable placement could be achieved with any arbitrary configuration487

(for example, if the grippers were aligned perpendicularly to the hanger’s shoulders). We leave an488

exploration of more generalized placements for future work.489

As for the point clouds themselves, we obtain P∗
B as a partial point cloud from an RGB-D render of490

the initial state of the environment (since the anchor is static). To guarantee correspondences, PA491

and P∗
A are directly extracted from the mesh vertices of the cloth at its initial and post-manipulation492

states, respectively.493

A.5.2 Experiment Datasets494

As a reminder, cloth geometry (including holes) is randomized by following the parameter ranges495

and procedures described in A.2.1. The datasets for each experiment are generated as follows, where496

each tuple entry corresponds to the (Train, Unseen, Unseen (OOD)) settings, respectively:497

# cloths # holes per cloth # demos per cloth # total demonstrations

Unseen Scenes (1, 1, 1) (1, 1, 1) (400, 40, 40) (400, 40, 40)
Unseen Cloths (100, 10, 10) (1, 1, 1) (4, 4, 4) (400, 40, 40)

Multimodal Goals (200, 20, 20) (1/2, 1/2, 1/2) (4, 4, 4) (800, 80, 80)

For the Unseen Scenes experiment, all demonstrations use the same cloth geometry. For the Multi-498

modal Goals experiment, training cloths are split evenly into 100 single-hole cloths and 100 double-499

hole cloths (and similarly for Unseen and Unseen(OOD)). For double-hole cloths, 2 demonstrations500

are generated for each hole, preserving a total of 4 demonstrations per cloth. For all demonstrations501

across all experiments, the anchor pose is randomized as described in A.5.1.502
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B Training Details503

B.1 Model Architecture504

Figure 7: TAX3D model architecture. (Left). During inference, randomly sampled displacements
∆XT ∼ N (0, I) are de-noised conditioned on action (PA) and anchor (PB) features; the final
∆X0 is predicted to displace the action into a goal configuration. (Right). Our modified DiT [25]
architecture combines self-attention and cross-attention for object-centric and scene-level reasoning.

As discussed in 5.2, we modify the standard DiT block [25] to include an additional cross-attention505

head 7. For all of our experiments, we train the same architecture:

depth 5 # of DiT blocks
num heads 4 # heads per block

hidden size 128 hidden size per block

506

These settings (namely, num heads and hidden size) are applied identically to the self-attention507

and cross-attenion layers. During training and inference, our model always uses 100 diffusion steps,508

with a linear noise schedule.509

B.2 Training Pre-Processing & Hyperparameters510

For training, both the action and anchor point clouds are downsampled to 512 points using furthest511

point sampling5. The anchor point cloud is additionally augmented with z-axis rotations sampled512

uniformly at random from [0, 2π].513

All models are trained under the same hyperparameters with AdamW optimization and cosine514

scheduling with warmup:515

learning rate 1× 10−4

learning rate warmup steps 100
weight decay 1× 10−5

epochs 20,000
batch size 16

C Evaluation Metrics516

As discussed in Section 6, our method’s modeling of point-wise displacements allows us to directly517

use root-mean-squared-error (RMSE) as a distance metric between predicted and ground truth con-518

figurations of the cloth. To appropriately evaluate distributional predictions in our setting, we define519

two evaluation metrics6:520

5During policy evaluation, only the anchor point cloud is downsampled, as the full action point cloud is
need to obtain target positions for the grippers.

6Both metrics bear strong similarity to the MMD metric, but are essentially modified to aggregate across
different reference sets.
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1. Coverage RMSE: For each demonstration with ground truth P∗
A,i, we sample 20 predic-521

tions {P̂A,j} , and keep the minimum RMSE. This is aggregated across all demonstrations522

in the dataset. Intuitively, this metric captures how well a model can produce all of the523

modes in a given dataset - that is, how well it covers a distribution.524

2. Precision RMSE: We first collect demonstrations corresponding to a specific cloth geom-525

etry (for our experiments using this metric, there are 4 demonstrations per cloth) - for some526

cloth C, this serves as a cloth-specific reference set {P∗
A,i}C . We then sample 80 predic-527

tions conditioned on cloth C, and compute for each prediction P̂A,j the minimum RMSE528

to ground truth point clouds in the reference set {P∗
A,i}C7. This is aggregated across all 80529

predictions, and then across all cloths. Intuitively, this metric captures how well a model530

can consistently produce predictions that are close to the dataset configurations - that is,531

how precisely it models a distribution.532

D Experiments533

The following pages contain visualizations of our method (as well as all baseline methods) across534

classes of cloth geometry (single- and double-hole) on out-of-distribution scene configurations. For535

every visualized prediction, both the cloth and configuration were unseen by the model during train-536

ing.537

Within each table row, the top displays the result of the evaluation policy rollout on the correspond-538

ing model’s predicted cloth configuration; the bottom displays the predicted configuration itself.539

Zooming in may be necessary to properly view the policy executions. For more visualizations,540

including videos of the policy rollout and the full reverse diffusion process, see our anonymized541

project page.542

7Because demonstrations are sampled with random scene configurations, we additionally invert the anchor
transformation from A.5.1 so that RMSEs are computed relative to the same anchor pose. Without this step,
the RMSEs would be meaningless, as different ground truth point clouds P∗

A,i would be in different positions
in the world frame.
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D.1 Single-Hole Cloth, Unseen Configuration (Out-of-distribution)543

SD CD-W CD-P CD-NAC TAX3D-CD (Ours) TAX3D-CP (Ours)

18



D.2 Double-Hole Cloth, Unseen Configuration (Out-of-distribution)544

SD CD-W CD-P CD-NAC TAX3D-CD (Ours) TAX3D-CP (Ours)
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