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ABSTRACT

Human motion generation is a long-standing problem, and scene-aware motion
synthesis has been widely researched recently due to its numerous applications.
Prevailing methods rely heavily on paired motion-scene data whose quantity is
limited. Meanwhile, it is difficult to generalize to diverse scenes when trained
only on a few specific ones. Thus, we propose a unified framework, termed
Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired
motion-scene data are no longer necessary. In this framework, we disentangle
human-scene interaction from motion synthesis during training and then introduce
an interaction-based implicit policy into motion diffusion during inference. Syn-
thesized motion can be derived through iterative diffusion denoising and implicit
policy optimization, thus motion naturalness and interaction plausibility can be
maintained simultaneously. The proposed implicit policy optimizes the interme-
diate noised motion in a GAN Inversion manner to maintain motion continuity and
control keyframe poses though the ControlNet branch and motion inpainting. For
long-term motion synthesis, we introduce motion blending for stable transitions
between multiple sub-tasks, where motions are fused in rotation power space and
translation linear space. The proposed method is evaluated on synthesized scenes
with ShapeNet furniture, and real scenes from PROX and Replica. Results show
that our framework presents better motion naturalness and interaction plausibility
than cutting-edge methods. This also indicates the feasibility of utilizing the DIP
for motion synthesis in more general tasks and versatile scenes.

1 INTRODUCTION

Synthesizing human motion in real 3D scenes has attracted significant attention in recent years Cao
et al. (2020); Wang et al. (2021; 2022a); Zhao et al. (2023), due to its wide applications in scene
simulation, digital human animation, and virtual/augmented reality.

Thanks to learning-based 3D perception Qi et al. (2017); Zhao et al. (2021), pioneers Cao et al.
(2020); Wang et al. (2021); Zhao et al. (2023) have attempted to synthesize motion in scenes with
feasible human-scene interaction. However, in almost all previous works, paired motion-scene data
are required to learn scene-aware motion policies. The majority of prevailing methods Starke et al.
(2019); Zhao et al. (2023) learn Explicit Policies to directly predict the desired motion based on
current states and goals (Fig. 1 (a)). Some of them Wang et al. (2021; 2022a) utilized a second-stage
Implicit Policy optimization but sacrifice the motion naturalness for interaction plausibility (Fig. 1
(b)). Recent works Huang et al. (2023); Wang et al. (2024) utilized conditional Diffusion Policies to
achieve better performance (Fig. 1 (c)), where massive paired motion-scene data is also necessary.

In fact, captured human motion data Mahmood et al. (2019); Lin et al. (2023) is far more abundant
than paired motion-scene data Hassan et al. (2019); Wang et al. (2022b). Motion synthesis that relies
heavily on paired data will inevitably suffer from limited diversity. Meanwhile, the generalization
ability is hard to guarantee when trained on limited scenes and applied to various other scenes.

Based on this observation, we propose a unified framework, termed Diffusion Implicit Policy (DIP)
(Fig. 1 (d)), which disentangles human-scene interaction from motion synthesis during training and
then integrate motion denoising with implicit policy optimization during inference. In this way,
paired motion-scene data is no longer necessary for training, and motion naturalness and interaction
plausiblity can be ensured simultaneously for scene-aware motion synthesis.
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Figure 1: Policy learning frameworks. (a) Explicit pol-
icy is trained with paired motion-scene data given task to
predict the final motion. (b) Implicit policy optimizes the
motion from initialization accordingly. (c) Diffusion pol-
icy gradually denoise the motion based on current scene,
task, and noised motion. (d) Our diffusion implicit policy
iteratively denoises and optimizes the motion to ensure
motion naturalness, diversity, interaction plausibility si-
multaneously without need for any paired data.

In the DIP, a motion diffusion model
is employed to make the synthesized
motion more and more natural through-
out the entire denoising process(Fig. 2
(b)). We equipped the diffusion model
with a ControlNet Zhang et al. (2023a)
branch to provide keyframe joint hints
for historical motion and future goals.
Following previous works Tevet et al.
(2023); Xie et al. (2024), the diffusion
model is designed to predict the origi-
nal motion at each denoising step and
then sample the denoised motion from
a normal distribution accordingly. Thus,
we can well utilize the stochastic pro-
cess to pursue plausible human-scene
interactions. Specifically, interaction-
based reward functions are designed to
assess the consistency between motions
and scenes. These reward functions are
used as implicit policy to optimize the
sampling distribution, ensuring that the
sampled denoised motion corresponds
better to the 3D scenes at each denois-
ing step. As the denoising process can
also be viewed as optimization for mo-
tion naturalness, the entire scene-aware motion synthesis can be framed as an optimization problem
to simultaneously pursue both motion naturalness and interaction plausibility.

To synthesize reasonable motion in 3D scenes, we first train a motion diffusion model conditioned
on actions and keyframe joints, which can be derived from motion itself. Furthermore, we design
various reward functions to score motion naturalness and interaction plausibility. These rewards
will optimize the sample distribution during motion denoising. We choose to adjust the centroid
of the distribution in a GAN inversion manner, applying these reward functions to the outputs of
the diffusion model at the centroid rather than directly to the centroid itself. In this way, the pro-
posed method can identify a better intermediate noised motion with higher motion naturalness and
interaction plausibility in the final synthesized motions.

In addition, for long-term motion synthesis involving multiple tasks, we need to take historical
motion as constrain when synthesizing future motion. To maintain continuity between historical and
future motions, we employ a time-variant motion blending, where we interpolate the rotation matrix
in the power space and the translation in standard linear space. Thus far, the proposed framework
can synthesize long-term motion in general scenes without any training on paired motion-scene data.

For performance evaluation, we use scenes cluttered with furniture from ShapeNet Chang et al.
(2015) to assess the ability on human-object interaction. We also take PROX Hassan et al. (2019)
and Replica Straub et al. (2019) to demonstrate the generalization ability in scene-aware motion syn-
thesis. We compared the proposed method with prevailing works based on physical and perceptual
scores. Comprehensive experiments support our claims and indicate that the synthesized motion
produced by the proposed method demonstrates better performance.

Our main contributions can be summarized as follows: (1) We propose a brand-new framework,
termed Diffusion Implicit Policy, for scene-aware motion synthesis. In this framework, we disen-
tangle human-scene interaction from motion synthesis during training and transform scene-aware
motion synthesis into a joint optimization problem, where motion naturalness and interaction plau-
sibility are ensured by iterative diffusion denoising and implicit policy optimization. (2) We propose
to adjust the centroid of the sampling distribution during denoising process in a GAN Inversion
manner for higher interaction plausibility, where the motion representation is designed to be fully
differentiable with respect to the human mesh and joints. (3) We design to generate new motion
based on historical constrains via inpainting and blend the motion in the power space of the rotation
matrix using time-variant coefficients to synthesize long-term motion for multiple subsequent tasks.
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2 RELATED WORK

Human Scene Interaction. Generating realistic and plausible human-scene interactions has been
widely explored in the artificial intelligence and computer graphics communities Savva et al. (2014;
2016); Zhang et al. (2020a;b); Zhao et al. (2022). PLACE Zhang et al. (2020a) modeled the prox-
imity based on the distance between the human body and the 3D scene to synthesize reasonable
interactions. An optimization step was taken to adjust pose for plausible interactions under geo-
metric constraints. PSI Zhang et al. (2020b) generated human bodies in 3D scenes conditioned on
scene semantics and a depth map. Wang et al . Wang et al. (2021) generated a human body with
pre-defined translation and orientation based on the scene point cloud. POSA Hassan et al. (2021b)
designed a contact feature map for the human body, indicating the contact and semantic information
for each vertex in the human mesh. COINS Zhao et al. (2022) utilized a Transformer-based genera-
tive network to encode the human body and 3D objects into a shared feature space and synthesizes
diverse compositional interactions. Narrator Xuan et al. (2023) exploited the relationship between
the 3D scene and the textual description based on a scene graph for interaction generation.

Inspired by the optimization stage in static human-scene interaction, we design interaction-based
reward functions as an implicit policy for scene-aware motion synthesis.

Motion Synthesis. Motion synthesis is a long-standing problem that has been studied for a sig-
nificant period Clavet et al. (2016); Holden et al. (2017); Starke et al. (2019). This topic has been
researched conditioned on various signals, including motion prefixes Mao et al. (2019), actions Guo
et al. (2020); Petrovich et al. (2021); Xu et al. (2023), music Gong et al. (2023); Tseng et al. (2022),
and text Petrovich et al. (2022); Guo et al. (2022); Tevet et al. (2023). Action2Motion Guo et al.
(2020) employed a recurrent conditional VAE for motion creation, where historical data was uti-
lized to predict the subsequent pose. ACTOR Petrovich et al. (2021) encoded the entire motion
sequence into a latent feature space, significantly reducing the accumulative error in recurrent meth-
ods. TEMOS Petrovich et al. (2022) utilized a VAE to learn a shared latent space for motion and
textual description. The motion distribution and text distribution were well aligned by minimizing
the KL divergence. T2M Guo et al. (2022) further trained a text-to-length estimator, enabling the
network to automatically predict the length of the generated motion. MDM Tevet et al. (2023) and
MotionDiffuse Zhang et al. (2024) are the pioneers to leverage diffusion model for human motion
synthesis. Subsequent works Chen et al. (2023); Xie et al. (2023); Zhang et al. (2023b); Dai et al.
(2024); Zhang et al. (2023c); Karunratanakul et al. (2023); Xie et al. (2024) further improved the
controllability and quality of the generated results through database retrieval, spatial control, fine-
grained captioning.

Thanks to the advancements in motion synthesis, we follow the MDM Tevet et al. (2023) and extend
it to scene-aware motion synthesis, using interaction-based reward functions as an implicit policy.

Scene-Aware Motion Synthesis. Synthesizing realistic human motion in various scenes has gar-
nered much attention in recent years Zhang et al. (2022); Hassan et al. (2023); Mir et al. (2024).
Wang et al . Wang et al. (2021) utilized the PointNet Qi et al. (2017) to extract scene feature and
optimized the entire motion based on the scene after generation. Wang et al . Wang et al. (2022a)
brought more diversity into scene-aware motion synthesis by introducing three levels of diversity.
SAMP Hassan et al. (2021a) utilized a mixture of expert networks to first predict the action state
and then generate the motion. GAMMA Zhang & Tang (2022) modeled human pose using body
markers and learned a latent space for plausible motion, where a policy network was later trained
later to give appropriate motion under specific conditions. DIMOS Zhao et al. (2023) further in-
troduced human-scene interaction and used PPO Schulman et al. (2017) to learn a policy network
over a latent motion space. PAAK Mullen et al. (2023) placed human motion in scenes according
to keyframe interactions. SceneDiffuser Huang et al. (2023) proposed a diffusion-based framework
where a scene-conditioned diffuser is accompanied by a learning-based optimizer and planner to
achieve the goal. LAMA Lee & Joo (2023) introduced a test-time optimization stage for controller
network via reinforcement learning to predict the action cues for motion matching Clavet et al.
(2016) and motion modification. AMDM Wang et al. (2024) designed a two-stage framework with
a scene affordance map as an intermediate representation for final human motion synthesis.

Compared with these methods, we propose to disentangle scene-aware motion synthesis into mo-
tion prior learning via diffusion model and implicit policy learning via interaction-based reward
functions, and integrate them in a unified framework, termed Diffusion Implicit Policy.
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3 METHOD

3.1 PRELIMINARY

Motion Representation. For human motion, we take the SMPL-X model Pavlakos et al. (2019)
to represent the pose at each frame. Here, we mainly consider the global orientation represented in
axis-angle θglobal ∈ R3, joint rotation in axis-angle θj=1:21 ∈ R63 and the translation τ ∈ R3. Ac-
cordingly, for each frame s, the human pose can be defined as Ps = {θs,global, θs,j=1:21, τs} ∈ R69,
and the synthesized motion consisting of consequent poses can be annotated as P̂ = {P̂s}s=1:S .
The body shape β ∈ R10 and hand pose θh ∈ R24 are always keep the same as initial hu-
man body for simplicity. The first K joints J = J1:K ∈ RK×3 and body mesh with V vertices
M(τ, θglobal, β, θj , θh) ∈ RV×3 are taken as auxiliary representation for human pose.

Motion Diffusion Model. For the diffusion model, we take motion with S frames x0 = {Ps}s=1:S

as sample for training. The diffusion process will gradually add noise to the original motion x0

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I), (1)

where N is a normal distribution and αt=1:T are a series of hyper-parameters. The distribution of
final noised motion xT will approximate to N (0, I). Following MDM Tevet et al. (2023), we choose
to train a diffusion model to directly predict the original motion

x̂ϕ
0 = ϕ(xt, t, a), (2)

where t is the time step and a is the action label for easier control of human motion behavior. As for
motion synthesis, the denoising procedure can be formulated as:

P (xt−1|x̂ϕ
0 , xt) = N (xt−1;µt(x̂

ϕ
0 , xt), β̃tI), (3)

where β̃t =
1−ᾱt−1

1−ᾱt
βt, βt = 1−αt, ᾱt =

∏t
i=1 αi, and µt(x̂

ϕ
0 , xt) =

√
ᾱt−1βt

1−ᾱt
x̂ϕ
0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt.

Thanks to this formulation, we can easily adjust the distribution of denoised motion P (xt−1) to
pursue higher interaction plausibility in the final synthesized motion at each denoising step.

3.2 OVERVIEW

In this paper, we attempt to synthesize human motion in 3D scenes given a sequence of interaction
sub-tasks (Fig. 2 (a)).

We can first decompose the whole command into a list of sub-task (interaction behavior and object
pair) to be finished via current LLMs Achiam et al. (2023); Touvron et al. (2023). For each sub-task,
the human may go to some place or interact with the objects in the scene (e.g. sitting on the chair).

Given a sub-task, we will first locate the goal position as COINS Zhao et al. (2022). Then, we will
judge current action, and fetch feasible human-scene interaction reward functions accordingly.

We train a diffusion model conditioned on motion action and keyframe joints to synthesize natural
motion with easy control, where body meshes and joints are fully differentiable for Diffusion Im-
plicit Policy (Sec. 3.3). Later, we model the interaction-based reward functions (Sec. 3.4) and take
them to optimize the sampling distribution of denoised motion at each denoising step (Sec. 3.5). The
motion prior from diffusion model and implicit policy from reward function are integrated together
to synthesize scene-aware motion with desired interactions (as shown in Fig. 2 (b)).

Given historical motion, the synthesized future motion should be in consistent with it. Thus, we
design to derive the long-term motion via a time-variant blending (Sec. 3.6) where translation are
interpolated linearly and rotation are blended in the matrix power space for motion transition. By
now, we can synthesize long-term motion in 3D scenes when all sub-tasks are finished.

3.3 CONDITIONAL DIFFUSION MODEL

To ensure the body meshes and joints of synthesized motion are fully differentiable for Diffusion
Implicit Policy, we directly train diffusion model ϕ to predict the original motion x̂ϕ

0 for each noised
xt following MDM Tevet et al. (2023) as shown in Eq. 2. We also take x0 ∈ RS×69 consisting of
human translation, orientation, and joint rotations in S frames as the representation of motion.
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Figure 2: (a) indicates the overall pipeline of scene-aware motion synthesis. Any feasible command
will be first decomposed into sub-task with action-object pairs. Then, we will synthesize the future
motion according to history motion and current sub-task. Last, the synthesized motions will be
fused into the history motion to obtain the final long-term motion. (b) presents the framework of
Diffusion Implicit Policy (DIP). In each iteration of the DIP, the diffusion model will denoise the
motion and enable the synthesized motion to appear more natural, and implicit policy optimization
from reward will endow the motion with plausible interaction. The random sampling step can help
the framework synthesize motion with diverse styles.

For any original motion x0, we take the local coordinate of motion to reduce representation redun-
dancy. Specifically, we translate and rotate the whole motion according to the human pose in the
first frame. In the transformed motion, the human body in the first frame should be oriented towards
the y-axis, with the top of the head facing the z-axis, and the pelvis positioned at the origin. Based
on this setting, the motion in scenes can be derived via simple translation and horizontal rotation.

To assist the Diffusion Implicit Policy in maintaining the initial state and achieving goals, we also
take a ControlNet branch Zhang et al. (2023a) to provide the hint of keyframe human joints (available
from motion for training) that need to be controlled (Fig. 3 (b)). We choose to take the joint positions
rather than joint rotation as the external hint for easier understanding of the space information in
the diffusion model. Here, we mainly use the principle 22 joints from the SMPL-X human body
skeleton as the skeleton joint hint. Concretely, we will first calculate the joints’ positions according
to the original human motion, and then randomly select one from these joints in a few frames as
the hint and others are padded with zeros, thus the input of ControlNet branch take the form of
J = {Js,k}s=1:S,k=1:K where non-zero values provide the controlled joint position hints.

For training the ControlNet branch, all its parameters are randomly initialized, and the link layers
are initialized to zero to maintain the motion synthesis capability of the main branch. Meanwhile, all
parameters in original motion diffusion model ϕ are frozen during training. The controlled diffusion
model φ is also supervised to predict the origin motion represented by {Ps}s=1:S . After fine-tuning
the ControlNet branch, the controlled motion diffusion model can be formulated as

x̂φ
0 = φ(xt, t, a,J ). (4)

For simplicity, the action a and joint hint J are termed as the condition c. Later, the controlled diffu-
sion model φ are taken as motion prior to optimize the noised motion for higher motion naturalness.

To better control the poses at specific frames, especially for the historical motion constrains, we
maintain the fixed poses in an inpainting manner when t > Tinpaint. The predicted original motion
x̂φ
0 will be updated via inpainting that can be formulated as x̂φ

0 = m · xm +(1−m) · x̂φ
0 , where xm

indicates the poses that should be maintained and m ∈ RS×69 represents the inpainting mask.

Thus far, the diffusion model can provide motion prior with explicit joint control for later DIP.

3.4 REWARD DESIGN

Based on the diffusion model aforementioned, we further take the following reward functions as an
implicit policy for scene-aware motion synthesis to pursue plausible human-scene interaction.
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Figure 3: Illustration of conditional diffusion model. A diffusion
model is first pre-trained conditioned on action, and then a Con-
trolNet branch is introduced to provide keyframe joints’ hint.

Initial State Maintenance Re-
ward. To maintain continuity
with historical motion P̃1:S̃ when
inferring future motion P̂1:S , the
poses in the first H frames of
P̂1:S should be consistent with
P̃S̃−H+1:S̃ . Here, we choose to
constrain the body joints to en-
sure the pose maintenance. Such
reward can be formulated as:

Rinit =

H∑
i=1

−|Ĵi − J̃S̃−H+i|. (5)

Goal Achievement Reward. We also encourage the synthesized motion to achieve the goal, thus
we take the goal position or pose joints in the form of Jgoal as the guidance. Here, we decide the
frame g that need to be controlled according to the distance and sampled speed (which is correlated
with the action state). The goal achievement reward for the synthesized motion is defined as:

Rgoal = −|Ĵg − Jgoal|. (6)

Non-Skating Reward. To avoid body skating during motion synthesis, we need to make sure that
the velocity of contact body part to be close to 0. Here, we decide to fetch all possible contact parts
(e.g. feet during walking, gluteus and back during lying). Thus, the reward for non-skating can be
formulated as follows:

Rskt =
∑S−1

s=1 −ReLU(minc(||Mc,s+1 −Mc,s||2)× ν − ϵvel), (7)
where Mc,s indicates the contacted parts of mesh vertices at frame s, ν is the Frame Per Second
(FPS), and ϵvel is the tolerance for minor skating.

Non-Penetration Reward. For the human-scene interaction in the synthesized motion, penetration
should be avoided. We utilize the scene Signed Distance Function (SDF) as the guidance, and such
reward function will encourage the generated human body move away from the interior space of the
scene mesh. The non-penetration reward take the form of

Rpene =

S∑
s=1

∑
m

−ReLU(−fSDF (Mm,s)− ϵpene). (8)

Here, ϵpene is the tolerance for slight penetration and we take SSM2 marker Mm indicating 67 body
surface vertices to simplify the mesh like previous works Zhang et al. (2021); Zhao et al. (2023).

Contact Reward. The synthesized motion should keep in contact with the scene. For locomotion,
at least one foot vertices should be in touch with the floor, thus the contact reward is define as:

Rcont =

S∑
s=1

−ReLU(|min
f

(Mf,s[z])− hfloor| − ϵcont), (9)

where Mf represents the foot vertices, ϵcont is the tolerance for contact. As for other actions where
other parts of the body should be in contact with the scene, we also utilize the scene SDF for
guidance where reward can be defined as:

Rcont =

S∑
s=1

−ReLU(|min
m

(fSDF (Mm,s))| − ϵcont). (10)

Smoothness Reward. During motion synthesis, we should also ensure the motion smoothness, and
such reward is necessary when interaction-based implicit policy is taken into the diffusion model.
Thus, we introduce a reward for limited acceleration in case of abrupt pose changes:

Racc =
∑S−1

s=2 (||Mm,s+1 +Mm,s−1 − 2Mm,s||2 × ν2 − ϵacc). (11)
Here, ϵacc is the maximum tolerant acceleration.

The total reward function for implicit policy take the form of
Rip = λinitRinit + λgoalRgoal + λsktRskt + λpeneRpene + λcontRcont + λaccRacc (12)

where λ(·) are a series of hyper-parameters.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5 DIFFUSION IMPLICIT POLICY

In the denoising process, xt−1 is sampled according to noised motion xt, step t and condition c. In
this paper, we utilize a diffusion model with ControlNet branch φ to predict the origin motion x̂φ

0 .
Thus, similar to Eq. 3, we can sample the xt−1 according xt and x̂φ

0

P (xt−1|x̂φ
0 , xt) = N (xt−1;µt(x̂

φ
0 , xt), β̃tI). (13)

Such denoising process can also be considered as an optimization problem based on a motion natu-
ralness reward function Rnat which can be defined implicitly by its gradient ∇Rnat(xt) = µt − xt.
Meanwhile, the denoising process is also accompanied by a stochastic disturbance item following
N (0, β̃tI).

Thus, the stochastic item can be well utilized to search for motion with higher interaction plausibility.
We design the interaction-based implicit policy to partly play the role of such disturbance, and the
whole scene-aware motion synthesis can be treated as a joint optimization problem which both
maximize the motion naturalness and interaction plausibility for Diffusion Implicit Policy

x̂0 = argmax
x

Rdip(x), Rdip(x) = Rnat(x) +Rip(x̂
φ
0 (x)). (14)

In order to synthesize human motion that can maximize the total reward, we integrate the implicit
policy optimization into each denoising step where motion naturalness and interaction plausibility
can be enhanced iteratively.

We can observe that in Eq. 13, xt−1 is sampled from N (µt, β̃tI), thus we can adjust µt (i.e. the
mean value of xt−1) based on implicit policy and more suitable xt−1 can be sampled accordingly.
It is noteworthy, we need the final synthesized human motion x0 to be consistent with the scene and
achieve high reward. Thus, we propose to optimize µt through x̂φ

0 (µt, t− 1, c) rather than µt itself.
Here, we take t− 1 as denoising step because µt is the mean value of the denoised xt−1.

Thanks to the motion representation taken in Sec. 3.3, the reward functions are fully differentiable.
Meanwhile, we find that optimizing x̂φ

0 (µt, t − 1, c) shows better performance than directly modi-
fying µt itself as previous work Xie et al. (2024). That is because direct optimization over µt does
not ensure motion continuity. On the other side, optimizing µt via x̂φ

0 (µt, t− 1, c) can help search a
better distribution with higher interaction reward for the final synthesized motion x0, and µt can be
be adjusted as a whole in a GAN Inversion manner (adjusting latent code z through the Generator
G(z) to keep reality) Bau et al. (2019a;b). Thus, we optimize µt according the following formulation

µ̃t = µt + β̃t · ∇Rip(S, x̂φ
0 (µt, t− 1, c)), (15)

where S indicate the 3D scene information, including scene semantics, SDF, and floor height. Fur-
ther, µ̃t is taken as the mean of distribution to sample xt−1.

3.6 MULTI-TASK MOTION SYNTHESIS

As for the command for multi-task motion synthesis, such as “The person first sits on the bed, then
goes to the corner of the room, and finally sits on the chair.”, we need to infer future motion “Sit on
the chair” while maintaining continuity with previously synthesized motions “The person first sits
on the bed and then goes to the corner of the room”.

For any previous synthesized motion P̃1:S̃ , we will select the latest H = min(S̃,Hmax) frames as
external historical constrains for future motion synthesis. Explicitly, we extract those pelvis joints
{J̃s,pelvis}s=S̃−H+1:S̃ as trajectory hints for conditional motion diffusion. In addition, we take the
body skeleton joints from the historical frames to form J = {J̃s}s=S̃−H+1:S̃ , and use them for pose
constraints in the implicit policy optimization.

After a new round of motion synthesis, we obtain the generated motion {P̂s}s=1:S . For more natural
motion transition in the overlapping H frames, we take a time-variant motion blending. Different
from direct linear interpolation in the pose representation like priorMDM Shafir et al. (2024). We
only utilize linear interpolation for the human translation τ̌1:H . As for human orientation and joints’
rotations, we take the axis-angle representation θ̄rot,s = θ̃S̃−H+s and θ̂rot,s and convert them to the
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rotation matrix M̄rot,s and M̂rot,s. The blending occur in the power space of rotation matrix which
can be formulated as:

M̌rot,s = (M̂rot,sM̄
−1
rot,s)

γM̄rot,s (16)
where γ = (1 : H)/(H +1), and θ̌1:H is converted from M̌rot,1:H . Thus, the blended pose take the
form of P̌1:H = {θ̌s,global, θ̌s,j , τ̌s}s=1:H . The newly updated long-term motion is derived as

P̃1:S̃+S−H = {P̃1:S̃−H , P̌1:H , P̂H+1:S}. (17)
The whole motion can be synthesized in an iterative manner until all the tasks are finished.

4 EXPERIMENTS

4.1 DATASETS

Motion Datasets. Here, we use captured motion data from AMASS Mahmood et al. (2019), which
include action/description labels, to train our controlled motion diffusion model. Babel Punnakkal
et al. (2021) provided action labels and the start/end frames for several subsets of AMASS. Hu-
manML3D Guo et al. (2022) provided additional sentence annotations and start/end frames for more
motion data in AMASS. We match the keywords and categorize them into three states where details
are presented in the Appendix. All motions are downsampled to 40 FPS and split into 160-frame
motion clips with a 20-frame stride. Motion clips are all transformed according to the human pose in
the first frame, where the transformed initial pose is centered (with the pelvis located at the origin)
and oriented towards the y-axis with z-axis up. All the motion clips, along with the action labels,
are used to train the motion diffusion model. Additionally, skeletons are extracted to provide joint
position hints when training the ControlNet branch.

Table 1: Evaluation of motion synthesis on loco-
motion task. The up/down arrows (↑/↓) indicate
higher/lower is better. Metrics with best perfor-
mance are annotated in boldface.

time ↓ avg. dist ↓ contact ↑ loco pene ↑

SAMP 5.97 0.14 0.84 0.94
GAMMA 3.87 0.03 0.94 0.94
DIMOS 6.43 0.04 0.99 0.95
Ours 3.35 0.03 0.91 0.95

Scene Datasets. We evaluate the performance
of the proposed Diffusion Implicit Policy
framework in both synthesized scenes and real
scanned scenes. Following DIMOS Zhao et al.
(2023), we use randomly generated scenes con-
sisting of furniture from ShapeNet Chang et al.
(2015) to validate the performance on atomic
locomotion and human-scene interaction. As
for real scanned scenes from PROX Hassan
et al. (2019) and Replica Straub et al. (2019),
we take them to evaluate the performance of the pipeline in synthesizing long-term motions within
scenes that involve multiple tasks. All the experiments are conducted using the same controlled mo-
tion diffusion model and pipeline, thus indicating the generalization ability of the proposed method.

4.2 SCENE NAVIGATION

We take the generated scenes from DIMOS Zhao et al. (2023) for testing, where scenes are cluttered
with furniture from ShapeNet Chang et al. (2015). In this experimental setting, the human need to
walk from the starting point to the target point and avoid collisions with the furniture in scenes.

Metrics. We also evaluate the performance of synthesized motion for locomotion from four aspects
as DIMOS Zhao et al. (2023), where (1) finish time measured in seconds, (2) average horizontal
distance from final human body to target point measured in meters, (3) foot joint contact score

scontact = e−(|minjz|−0.05)+ · e−(min||jvel||2−0.075)+ , (18)
and (4) locomotion penetration score indicating the percentage of body vertices within the walkable
area are taken as our metrics.

Results. We compare our method with SAMP Hassan et al. (2021a), GAMMA Zhang & Tang
(2022), and DIMOS Zhao et al. (2023) for locomotion in 3D scenes and report the results in Tab. 1.
The results indicate our method can achieve the shortest finish time (3.35s), closest distance (0.03m),
and lowest penetration (0.95). It’s noteworthy, the locomotion speed of the proposed method is much
similar to that of real human than other methods. As can be seen, the performance on the contact
score is inferior. We believe that is because our method focuses more on foot vertex contact, whereas
the contact score calculation is based on foot joints.
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Figure 4: Visual results given by DIMOS and our
method for locomotion task. The dashed circles
indicate lower penetration, less skating and higher
diversity in the synthesized motion.

We visualize a few examples of DIMOS and
the proposed for locomotion task in Fig. 4.
As shown, the synthesized motion for locomo-
tion demonstrates lower scene penetration, less
skating and higher motion diversity. That is at-
tributes to the implicit policy and the stochastic
sampling procedure during denoising.

4.3 SCENE OBJECT INTERACTION

We take scenes with furniture from
ShapeNet Chang et al. (2015) to evaluate
the performance of the proposed method on scene object interaction, and 10 objects (3 armchairs, 3
straight chairs, 3 sofas and 1 L-sofa) are chosen for atomic interaction as previous work Zhao et al.
(2023). For each scene, the human is initialized to stand in front of the interaction object and guided
to interact with it and finally return to original position.

Metrics. We take 4 metrics to evaluate the performance of interaction, including (1) the time to
finish the task measured in seconds, (2) the foot contact score mentioned in Eq. 18, (3) mean human
mesh vertex penetration

∑
v∈M |(fSDF (v))−| over time, and (4) maximum penetration over time.

Table 2: Evaluation of motion synthesis on interaction
tasks. The up/down arrows (↑/↓) indicate higher/lower is
better. The best results are shown in boldface.

time ↓ contact ↑ pene. mean ↓ pene. max ↓

SAMP sit 8.63 0.89 11.91 45.22
DIMOS sit 4.09 0.97 1.91 10.61
Ours sit 3.71 0.89 1.86 7.13

SAMP lie 12.55 0.73 44.77 238.81
DIMOS lie 4.20 0.78 9.90 44.61
Ours lie 3.55 0.68 9.80 30.8

Results. We compare the proposed
method with prevailing methods Has-
san et al. (2021a); Zhao et al. (2023) on
human-scene interaction. The interac-
tion tasks for sitting and lying are eval-
uate separately, and the results are re-
ported in Tab. 2.

Fig. 5 visualizes the synthesized human-
scene interaction given by DIMOS and
the proposed method. The visual results
indicate the proposed present more plausible interaction with higher human-scene contact and lower
human-scene collision.

Figure 5: Visual results of synthesized motions given by DIMOS and our method for sitting (left)
and lying (right) task. The dashed circles indicates obvious advantages over DIMOS in less collision
(col. 1,3), higher motion diversity (col. 2) and better foot contact (col. 4).

4.4 LONG-TERM MOTION SYNTHESIS

For long-term motion synthesis in 3D scenes where multiple tasks are completed consecutively,
objects with feasible interaction in scenes are randomly selected. We utilize COINS Zhao et al.
(2022) to sample the static interactions with these objects as the goals. All compared methods use
the same initial state and task goals to synthesize long-term motions, ensuring a fair comparison.

Metrics. To better evaluate the motion naturalness, diversity, interaction plausibility and overall
performance, we conduct a user study where the synthesized motions given by different methods
are directly judged by humans. We totally generate 20 motion for each method, 10 for scenes from
PROX, and 10 for scenes from Replica. We present motions synthesized by different methods in the
same scene to the participants simultaneously, and ask the users to rate the results accordingly.

Results. Finally, 1, 200 ratings are collected for each method (60 results per sample from 4 aspects)
and we report the scores in Tab. 3. It can be seen, the proposed method achieve the best performance
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Figure 6: Visual comparison of different methods on motion synthesis in 3D scenes from PROX.

Figure 7: Visual results of synthesized motions given by compared methods in Replica scenes.

in motion diversity, interaction plausibility and overall performance even with no need of paired
motion-scene data for training. For motion naturalness, our proposed method is on par with DIMOS,
as no specific designs are taken to further improve motion naturalness.

Table 3: Comparison between competitive methods based on
user study. Users are asked to give scores (ranging from 1 to 5,
↑) according to motion naturalness, diversity, interaction plausi-
bility, and overall performance. Results on PROX/Replica are
reported on the left/right respectively.

Methods
Scores Naturalness ↑ Diversity ↑ Plausibility ↑ Overall ↑

DIMOS 2.72/3.09 3.00/3.21 2.55/2.85 2.86/3.11
OmniControl 2.66/2.67 2.83/3.07 2.26/2.5 2.61/2.69
Ours 2.81/3.03 3.34/3.36 3.15/3.17 3.17/3.26

We also show the results of
scene-aware motion synthesis in
scenes from PROX and Replica
dataset respectively in Fig. 6 and
Fig. 7 (please refer to the Ap-
pendix for additional visual re-
sults and the Supplementary Ma-
terial for a video). It can be
seen that the proposed Diffusion
Implicit Policy performs well in
terms of motion naturalness, interaction plausibility and motion diversity thanks to the integration
of motion denoising, implicit policy optimization, and random sampling within a unified framework.

5 CONCLUSION

Conclusion. In this paper, we propose a unified framework, termed Diffusion Implicit Policy, for
long-term motion synthesis in 3D scenes. In this framework, interaction is disentangled from motion
learning during training, and motion prior from diffusion model and implicit policy from interaction-
based reward are integrated together to iteratively optimize the motion from random noise, pursuing
motion naturalness, diversity and interaction plausibility simultaneously. We utilize joint hints and
inpainting to ensure that keyframe poses remain consistent with the historical motion. We adjust the
sample distribution centroid in a GAN Inversion manner achieve better interaction plausibility while
maintaining motion continuity. We introduce motion blending in the power space of the rotation
matrix and the linear space of translation with time-variant coefficients to ensure smooth transitions
between multiple tasks for long-term motion synthesis. Comprehensive experiments on generated
scenes with ShapeNet furniture, and scenes from PROX and Replica indicate the effectiveness and
generalization capability. This paper provides a promising solution for synthesizing scene-aware
motion without the need for paired motion-scene data during training. It also encourages future
works to learn from unpaired motion and scene data.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Motion Synthesis Details. The conditional motion diffusion model is designed to synthesize motion
lasting S = 160 frames within T = 103 steps. The first K = 22 joints from SMPL-X model are
selected to represent the body skeleton. Last H (at most Hmax = 10) frames are taken as historical
hints for motion blending. The keywords for action state categorization are shown in Tab. 4.

Reward Function Details.Commonly, we set ϵvel = 0.5, ϵpene = 0.03, ϵcont = 0.01, and ϵacc =
50. For reward functions, λinit and λgoal are set to 1, and λcont is set to 10−1. For locomotion, λskt

is set to 10−3. For sitting, λskt, λpene, and λacc are set to 3 × 10−4, 10−1, and 10−3. For lying,
λpene and λacc are set to 3× 10−2 and 10−3 respectively. All other coefficients are set to 0.

Table 4: Keywords used to match the action labels or sentence annotation in Babel and Hu-
manML3D, and the matched motions are categorized into specific actions.

Action locomotion sit lie

Keywords walk, turn, jog, run sit lie, lying
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A.2 MORE VISUAL RESULTS

We present additional visual results on PROX and Replica in Fig. 8 and Fig. 9. Thanks to integration
of motion denoising, implicit policy optimization, and random sampling within the proposed Dif-
fusion Implicit Policy framework, motion naturalness, interaction plausibility and motion diversity
can be obtained simultaneously.

Figure 8: More visual comparisons in 3D scenes from PROX.

Figure 9: Visual results of additional synthesized motions in 3D scenes from Replica dataset.
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Table 5: Average distance to desired goal position for synthesized interaction motions with/without
motion inpainting.

distance (sit ↓) distance( lie ↓)

w/o inpainting 0.14 0.11
w/ inpainting 0.08 0.09

A.3 ABLATION STUDY

In this section, we conduct more experiments to validate the proposed framework and prove our
claims.

A.3.1 DIRECT OPTIMIZATION V.S. GAN INVERSION

In the implicit policy optimization, we propose to optimize µt via x̂φ
0 (µt, t−1, c) rather than directly

optimize µt as OmniControl Xie et al. (2024). In this way, a better sample distribution centroid µt

can be searched in GAN Inversion manner to satisfy the interaction in final synthesized motion x̂ϕ
0 .

In addition, µt can be optimized as a whole instead of optimizing only one pose in one frame, thus
can better keep motion continuity. Here, we compare the synthesized motions of these two strategies
to prove the advantage of the proposed framework on final motion naturalness. Fig. 10 illustrates the
comparisons in a scene from PROX dataset, and we mark the synthesized motions with discontinuity
in red/green circles. Without motion searching through GAN Inversion, the reward will directly
guide the motion distribution centroid µt, and we can see the sparse constrains in reward function
will definitely make synthesized motions have abrupt changes.

A.3.2 INPAINTING

Figure 10: Comparison between two optimization strat-
egy. For each pair, the left sub-figures show the results
given by direct optimization, and the right sub-figures
present the synthesized motions derived from optimiza-
tion in GAN Inversion manner. Motions with obvious
discontinuity are marked in red/green dashed circles.

In order to keep consistent with the
historical motion and better achieve
the task goal, we decide to maintain
the poses in key frames that need to
be controlled in an inpainting man-
ner. We synthesize motion in scenes
with ShapeNet furniture with/without
the keyframe pose inpainting, and judge
the performance according to the goal
achievement. We report the average
distance to the desired goal position in
Tab. 5. As can be seen, the human can
get closer to the destination when the
motion are denoised with inpainting for
human-scene interaction.

A.4 DISCUSSION

According to the experiments in this paper, we could see entangling motion diffusion model and
interaction-based implicit policy makes full utilization of the stochastic procedure in motion denois-
ing, and can outperform current explicit policy method even without paired motion-scene data for
training. This also indicates the proposed Diffusion Implicit Policy can generalize to diverse scenes
as no specific scenes are required for training.

Even though, there are still some limitations in current method. As the implicit policy is introduced
into motion denoising with limited gradient scale, there is still occasional collision between hu-
man and scene. Meanwhile, the motion style cannot be controlled currently, where action may be
replaced by command in future work for easier style control.
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