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ABSTRACT

Reinforcement learning (RL) often relies on trial and error, which may cause un-
desirable outcomes. As a result, standard RL is inappropriate for safety-critical
applications. To address this issue, one may train a safe agent in a controlled
environment (where safety violations are allowed) and then transfer it to the real
world (where safety violations may have disastrous consequences). Prior work
has made this transfer safe as long as the new environment preserves the safety-
related dynamics. However, in most practical applications, differences or shifts
in dynamics between the two environments are inevitable, potentially leading to
safety violations after the transfer. This work aims to guarantee safety even when
the new environment has different (safety-related) dynamics. In other words, we
aim to make the process of safe transfer robust. Our methodology (1) robus-
tifies an agent in the controlled environment and (2) provably provides—under
mild assumption—a safe transfer to new environments. The empirical evaluation
shows that this method yields policies that are robust against changes in dynamics,
demonstrating safety after transfer to a new environment.

1 INTRODUCTION

A prevalent strategy to render reinforcement learning (RL, Sutton & Barto, 2018) safe involves the
use of transfer learning, where agents are initially trained in a controlled training environment, such
as a simulation or a laboratory (Zhang et al., 2020). Since unsafe interactions with the controlled
environment pose no real harm, these agents can be trained via standard safe reinforcement learning
methods. The intention is to later transfer these trained agents to target environments where safety
may be imperative (Garcı́a & Fernández, 2015; Peng et al., 2021).

While numerous works have successfully maintained safety after transferring from a controlled
training environment to the target (Yang et al., 2023; Feng et al., 2023; Gimelfarb et al., 2021;
Karimpanal et al., 2020), their theoretical guarantees of safety rely on the strong assumption that
safety-relevant dynamics remain unchanged between the two environments. However, the target
environment likely differs from the training environment. Therefore, robustness to changes or shifts
in dynamics plays a crucial role in realistic settings involving safety (Meng et al., 2023).

Problem statement. This work aims to train an agent in a controlled environment (where safety
violations are allowed) to maintain safety throughout the process of transfer-learning, even under
the worst-case transition dynamics in the new environment.

Taking inspiration from the method developed by Yang et al. (2023), we focus on a setting where an
agent is trained within a reward-free environment, called the source task (⋄). Here, the agent learns
to navigate the environment safely without a reward signal. To account for potential differences in
dynamics, we robustify this agent during the training in the source task by adding different kinds
of action disturbances. These try to mimic changes in dynamics (different friction, mass, etc.)
that would happen in an actual sim-to-real transfer setting, as these changes in dynamics can be
viewed as additional disturbances in the system (Başar & Bernhard, 2008). More specifically, we
use randomly sampled action noise (Hollenstein et al., 2022), adversarial action noise (Tessler et al.,
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Figure 1: Training the guide under action disturbances in the source task and transferring it to teach
the student in a target task with unknown dynamics.

2019), and entropy maximization (Ziebart et al., 2008; Eysenbach & Levine, 2022). Subsequently,
this trained agent is transferred to a different environment, called the target task (⊙), where the
reward is revealed. The trained agent, referred to as the guide, is then used to train a new agent, the
student, while making sure that no safety-violations occur during training, as visualized in Figure 1.

Contributions. The key contributions of this paper are: 1. Introduce a mathematical framework
for modeling robustness in the context of safe transfer learning. 2. Examine and compare how
robustness during transfer is affected by entropy maximization, action noise, and adversarial ac-
tion perturbations. 3. Propose an adaptation of an algorithm for safe transfer-learning developed
by Yang et al. (2023) that accounts for uncertainties in the target environment. 4. Empirically and
qualitatively analyze the proposed algorithm.

The empirical analysis shows that guides trained with action disturbances tend to have lower worst-
case cumulative costs without compromising their overall performance. Furthermore, guides that are
robust to changes in dynamics in the source task are better at transferring knowledge in challenging
environments, with some achieving completely safe transfers, unlike non-robust ones.

2 RELATED WORK

Safety in RL. Traditionally, in RL, unsafe behavior is avoided through reward shaping by inte-
grating the safety-related information into the reward signal (Laud & DeJong, 2003). However, such
approaches demand significant engineering effort (Kamran et al., 2022; Roy et al., 2022). To avoid
reward engineering, safety can be imposed through constraints (Garcı́a & Fernández, 2015). The
literature provides multiple types of constraints (Wachi et al., 2024). For instance, state-wise safety
involves establishing state-specific hard constraints (Zhao et al., 2023; Zhan et al., 2024). Shielding
is an example of a state-wise safe algorithm, where unsafe actions are blocked at runtime (Alshiekh
et al., 2018; Carr et al., 2023). We focus on constraints in expectation, which provides a good
trade-off between safety and performance (Altman et al., 2019).

Robust MDPs. Robustness is an essential component in sequential decision-making tasks when
the transition function is unknown (Suilen et al., 2022; Cubuktepe et al., 2021; Moos et al., 2022;
Gu et al., 2025). Robust constrained Markov decision processes (RCMDP) consider a set of po-
tential transition dynamics, called uncertainty set (Russel et al., 2021). An agent is robustified in
this framework by iteratively exposing it to the worst-case dynamics. Solving RCMDPs may in-
volve computing the worst-case using linear programs (Russel et al., 2021), training an adversary to
suggest such dynamics (Bossens, 2024), applying perturbations to the transition function (Goyal &
Grand-Clement, 2023), as well as combining homotopy continuation with bisection methods (Be-
hzadian et al., 2021). In contrast to the RCMDP framework, we assume that the uncertainty set is
unknown during training to reflect realistic scenarios. We aim to train agents capable of generaliza-
tion to complete the task in an environment with newly revealed dynamics.

Adversarial training. Adversarial training is a common method of achieving robustness (Moos
et al., 2022). We may adversarially perturb observations by adding noise to sensors (Liu et al.,
2023; Zhang et al., 2021), or the dynamics of the environment, for instance, by applying adversarial

2



Published as a conference paper at ICLR 2025

physical forces to the agent (Li et al., 2023). We adopt perturbations to the agent’s actions, as
preliminary benchmarks showed that they consistently yielded the best results in our setting.

3 BACKGROUND

This section covers the theoretical foundations of our method.

Constrained Markov decision processes. A constrained Markov decision process (CMDP, Alt-
man, 1999) is characterized by a tuple M = (S,A, P, r, c, d, γ), where S is the continuous state
space, A is the continuous action space, P : S ×A → Distr(S) is the transition probability function
with Distr(S) being the set of probability measures on the Borel sets of S, r : S × A → R+ is the
reward function, c : S × A → R+ is the cost function, d ∈ R+ is the cost-budget, and γ ∈ [0, 1)
is the discount factor. A stationary stochastic policy is a function π : S → Distr(A) that suggests
a possibly stochastic action given the current state. We define the set of stationary stochastic poli-
cies as Π. The expected cumulative reward of policy π in state s over a finite horizon of length T

is V π(s) = Eπ

[∑T
t=0 r(st, at)γ

t
∣∣∣s0 = s

]
, and the expected cumulative cost is defined similarly

as Cπ(s) = Eπ

[∑T
t=0 c(st, at)γ

t
∣∣∣s0 = s

]
. The goal of the CMDP framework is to find an opti-

mal policy π∗, that is, a policy that maximizes the expected cumulative reward while keeping the
expected cumulative cost below d for all states s ∈ S:

max
π∈Π

V π(s) s.t. Cπ(s) ≤ d.

The CMDP objective can be transformed with the Lagrangian relaxation method (Bertsekas, 1997),

max
π∈Π

min
λ≥0

V π(s)− λ(Cπ(s)− d).

We also define the expected return as Qr
π(s, a) = Eπ

[∑T
t=0 γ

tr(st, at)
∣∣∣s0 = s, a0 = a

]
, and the

expected cost-return, Qc
π , is defined analogously.

Safe transfer-learning. In the transfer learning framework for RL, an agent must leverage the
knowledge gained from the source task (⋄) to learn the target task (⊙) more efficiently (Zhu et al.,
2023). Said tasks are modeled by CMDPs in safety-critical applications, where the constraints
model aspects concerning safety (Garcı́a & Fernández, 2015; Peng et al., 2021). Yang et al. (2023)
propose a reward-free source task M⋄ = (S⋄, A⋄, P ⋄, ∅, c⋄, d⋄, γ), where one can train an agent
called the guide, with policy π⋄, that can safely navigate it without relying on a reward signal.
This trained guide can then be used to train the student agent, with policy π⊙, in the target task
M⊙ = (S⊙, A⊙, P⊙, r⊙, c⊙, d⊙, γ).

Various transfer metrics exist for evaluating the extent to which one agent benefits from leveraging
the knowledge of another agent (Taylor & Stone, 2009; Yang et al., 2023). One such metric is safety
jump-start, which measures the difference in cumulative costs during the initial epoch between an
agent that uses prior knowledge and one learning from scratch. Similarly, ∆ time to safety assesses
the difference in time required to reach safe behavior. Analogously, return jump-start and ∆ time to
optimum concern the reward signal.

4 ROBUST SAFE TRANSFER-LEARNING FRAMEWORK

This paper focuses on training a guide in the source task and transferring it to a target task
that has different dynamics, which are unknown during the training of the guide, to then train
a student while avoiding safety violations. Our source task is modeled by a reward-free CMDP
M⋄ = (S⋄, A⋄, P ⋄, ∅, c⋄, d⋄, γ) as already introduced in the previous section. Since the dynamics
of the target task are not known, we choose a more robust model. In particular, we model the tar-
get task as a CMDP where the transition function has been replaced by a set of possible transition
dynamics functions, M⊙ = (S⊙, A⊙, U⊙, r⊙, c⊙, d⊙, γ), where every P⊙ ∈ U⊙ is a dynamics
function P⊙ : S⊙×A⊙ → Distr(S⊙). We refer to U⊙ as the uncertainty set. One possible instance
of such an uncertainty set is to define intervals of probabilities on transitions, creating infinitely
many potential dynamics of the target task.
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4.1 SAFETY GUARANTEES IN WORST-CASE ENVIRONMENTS

Since the intention is to transfer the policy of the guide, π⋄, from M⋄ to M⊙, both environments
should share the same action space:
Assumption 1. A⋄ = A⊙ = A.

Additionally, notice that the guide can only process observations from the source task’s state space
S⋄. Thus, to transfer the guide to the target task, we need to be able to map the state space of the
target task to the source space of the target task. In particular, we are interested in cases where this
mapping preserves information about the dynamics concerning safety to guarantee a safe transfer.
This concept is introduced by Li et al. (2006):
Definition 1. Function σ : S → S† is a Qc-irrelevant abstraction for M = (S,A, P, r, c, d, γ)
whenever ∀s, s′ ∈ S,∀a ∈ A,∀π ∈ Π, σ(s) = σ(s′) ⇒ Qc

π,M(s, a) = Qc
π,M(s′, a).

Similar model-invariant abstractions have been used in the CMDP setting to guarantee that safety
constraints are satisfied (Simão et al., 2021). Now, we assume that such a mapping exists from S⊙

to S⋄, and that this function preserves boundedness:
Assumption 2. There is a Qc-irrelevant abstraction σ:S⊙→S⋄ forM⊙ that preserves boundedness.

Given an arbitrary Qc-irrelevant abstraction, we consider how this function can map any CMDP M
to a new CMDP M†, the latter being referred to as the abstracted task (Li et al., 2006). Refer to
Appendix C for an explicit construction.

To clarify, even though σ maps the states in the target task to states in the source task, it does not
imply that the dynamics in the two tasks are similar, and it in fact does not concern the source task’s
dynamics in any manner. More precisely, Assumption 2 implies that the states in the target task can
be mapped to the states in the source task, where the information about the target task’s dynamics is
preserved, but the source task’s dynamics are not referenced and could thus be vastly different from
those of the target task.

Intuitively, σ strips away information that is not safety-relevant, to return a new abstracted CMDP
where the dynamics concerning safety are the same as in the initial CMDP. Therefore, it has been
formally proven that an agent that is safe in the initial task is also safe in the abstracted task:
Lemma 1. (Abel et al., 2016) Let σ : S → S† be Qc-irrelevant, and tasks M = (S,A, P, r, c, d, γ)
and M† = (S†, A, P †, r†, c†, d, γ) constructed as in Appendix C. Then, ∀s ∈ S,∀a ∈ A,∀π ∈
Π†, Qc

π,M†(σ(s), a) = Qc
π◦σ,M(s, a).

We have not yet imposed any restrictions on the uncertainty set, which means that the various dy-
namics transition functions in this set could potentially be infinitely different from each other. There-
fore, it is reasonable to disallow this by supposing that the uncertainty set is bounded:
Assumption 3. U⊙ is bounded, that is, ∃ε ∈ R,∀P, P ′ ∈ U⊙, ∥P − P ′∥ ≤ ε.

In the following theorem, we prove that an agent that is robust against changes in dynamics in the
source task will retain part of this robustness when transferred to the target task:
Theorem 1. Given Assumptions 1, 2, and 3, if d⋄ ≤ d⊙ then there exists δ ∈ R such that if policy
π is safe in M⋄

P for all P where ∥P − P ⋄∥ ≤ δ, then π ◦ σ is safe in M⊙
P ′ for all P ′ ∈ U⊙.

Proof. Since U⊙ is bounded (Assumption 3) and σ preserves boundedness (Assumption 2), there is

δ = max
P∈U⊙

∥P † − P ⋄∥,

where the abstracted dynamics P † is constructed as in Appendix C. Now, suppose that π is safe for
all P with ∥P−P ⋄∥ ≤ δ, that is, Qc,⋄

π,P (s, a) ≤ d⋄. Then, for all P ∈ U⊙, we have Qc,⋄
π,P †(s, a) ≤ d⋄

by construction of δ. Thus, Qc,⊙
π◦σ,P (s, a) ≤ d⋄ ≤ d⊙ given Lemma 1 and premise d⋄ ≤ d⊙.

This proof is visualized in Figure 2. Theorem 1 justifies increasing δ in the source task with robus-
tification methods before transferring to a target task with uncertain dynamics, which is an essential
component in the method we introduce in Section 5.
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Figure 2: Visualization of the space of dynamics functions from Theorem 1.

4.2 ROBUST TRANSFER METRICS

Key insight. While an agent that is robust in the source task will also be robust in the target task, as
shown in Theorem 1, this is not enough to be able to perform the transfer of knowledge successfully.
To illustrate, notice that in many environments the “do nothing” policy is safe everywhere in U⊙,
even though it is clear that this policy provides no value to train an agent in the target task. Thus,
sometimes an agent that prioritizes exploration while taking more risks may be more useful for
training another agent in the target task, compared to an overly conservative one, resulting in an
overall lower cumulative cost. This serves as motivation for introducing metrics that measure the
usefulness of the guide’s knowledge from the perspective of safety and robustness.

Let’s say that algorithm Φ uses the knowledge from the agent trained in the source task, π⋄, to
train a new agent π⊙ in the target task. To do so, the algorithm needs to sample K trajectories of
length L in M⊙, generating a history of environment interactions {ρi}i=1...,K . Since the algorithm
may be nondeterministic, we have a history of probability distributions over the space of trajecto-
ries, denoted by ρi ∈ Distr((S × A)∗ × S) where the Kleene operator (·)∗ indicates that we may
have finite but arbitrarily long sequences of state and action pairs. This is expressed compactly as
Φ(π⋄,M⊙) = {ρi}i=1...,K , and we denote learning from scratch as Φ(∅,M⊙).

Various transfer metrics exist for evaluating to which extent the target policy π⊙ benefits from
leveraging the knowledge of π⋄ (Taylor & Stone, 2009), some of which have been adapted to account
for safety by Yang et al. (2023). As these metrics have only been defined informally in prior work,
we next provide rigorous definitions.
Definition 2. Given Φ(π⋄,M⊙) = {ρi} and Φ(∅,M⊙) = {ρ′i}, the safety jump-start is defined as

J(π⋄,M⊙) = E
[
c(τ)− c(τ ′)

c(τ ′)

∣∣∣∣ τ ∼ ρ1, τ
′ ∼ ρ′1

]
,

where c((s1, a1, . . . , sL+1)) = max(d⊙,
∑L

i=1 γ
ic(si, ai)).

In other words, the safety jump-start measures the difference in excess cumulative costs during the
initial trajectory or epoch between an agent that uses prior knowledge and one learning from scratch.
Definition 3. The ∆ time to safety assesses the difference in time required to reach safe behavior.
Given Φ(π⋄,M⊙) = {ρi} and Φ(∅,M⊙) = {ρ′i}, the metric is defined as

C(P, π⋄) = E [m({τ ′i})−m({τi}) | τi ∼ ρi, τ
′
i ∼ ρ′i] ,

where m({τi}) = mint=1,...,L t such that ∀t′ ≥ t, c(τt′) ≤ d⊙.

Definition 4. Analogously to the safety jump-start and ∆ time to safety, the return jump-start and ∆
time to optimum concern the reward signal, respectively denoted by B(M⊙, π⋄) and R(M⊙, π⋄).

The transfer-learning problem at hand is to train the guide in a reward-free source task modeled by
a CMDP, M⋄, to later use it to learn a student policy in the target task modeled by a CMDP, M⊙,
with uncertainty set U⊙. It is important to bear in mind that M⊙ is completely inaccessible during
the training of the guide in M⋄, meaning that the guide cannot interact with U⊙ during training.

Formal statement of the problem. Given a reward-free source CMDP M⋄ and a target CMDP
M⊙ with uncertainty set U⊙, minimize the worst-case safety jump-start while keeping ∆ time to
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optimum above a threshold dr:

min
π∈Π

max
P∈U⊙

J(P, π) s.t. R(P, π) ≥ dr.

Even though the problem statement only includes the safety jump-start and ∆ time to optimum of
the guide, we are interested in measuring the ∆ time to safety and return jump-start as well.
Definition 5. Given a policy π ∈ Π, the worst-case transition dynamics is

P+ = argmax
P∈U⊙

J(P, π).

In practice, estimating the worst-case transition dynamics may require evaluating a policy within
various P ∈ U⊙ and picking the environment that yields the highest cost. Consequently, notice
that we are likely to choose outliers through this process, causing the approximate worst-case safety
jump-start to have high variance. In an attempt to mitigate this issue, rather than selecting only one
environment, one can pick a portion p ∈ [0, 1] of the environments where the agent performs the
worst. The following definition formalizes this concept.
Definition 6. For p ∈ [0, 1], the p-tail of the safety jump-start is

J≤p(M⊙, π) =

∫
B

J(M⊙
P , π) dP,

if there exists y ∈ R such that ∥B∥
∥U⊙∥ = p, where B = {P ∈ U⊙ | J(M⊙

P , π) ≥ y}.

Additionally, J≤1(M⊙, π) is the average performance of π within the entirety of U⊙. While the
problem statement does not include the p-tail and average performance, we will keep track of them
in the empirical analysis.

5 ROBUST GUIDED SAFE EXPLORATION

Our method trains a robust guide via action disturbances in the source task and transfers it to the
target task to train the student safely.

5.1 TRAINING THE GUIDE

Since the source task is a reward-free CMDP, M = (S,A, P, ∅, c, d, γ), it is likely that an agent
trained in this environment would learn to “do nothing”, as it would only need to satisfy the safety
constraints. Therefore, we use a distance bonus to encourage the guide to explore the environment,

rb(st, at) = E
[
∥s‡t − s‡t+1∥

∣∣∣ st+1 ∼ P (st, at)
]
,

where ∥ · ∥ : S‡ → R is a norm and (·)‡ is a state abstraction function (Yang et al., 2023).

To transfer the guide to the uncertain target task, we must first robustify it during its training in the
source task. We employ three domain-agnostic robustification techniques.

Entropy maximization. To maximize the entropy of the agent, we include the following term in
the reward signal r⋄t (st, at) = rbt (st, at) + αrHt (st, at), where rHt (st, at) = log 1

π(at|st) .

Random action noise. Instead of sampling the action directly from the agent, some random noise
is added: a ∼ (1− α)π(st) + αN (µ, σ).

Adversarial perturbations. The guide is trained in a noisy action robust MDP (Tessler et al.,
2019): a ∼ (1 − α)π(st) + απ̄(st), where the guide is trying to maximize the objec-
tive r⊙t = rbt while satisfying the cost constraints, and the adversary is trying to maximize
the cumulative cost.

Prior work has established that perturbation size (α) provably makes the policy robust to
some δ (Feng et al., 2020; Eysenbach & Levine, 2022). Therefore, as we increase the value of
α, we are effectively computing a robust policy for a larger uncertainty set in the source task. Con-
sequently, the agent will be safe in a larger set of target tasks. As a theoretical bound between α
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and δ can only be shown in specific scenarios, we adopt an empirical approach in the next section
and evaluate the robustness effect across different values of α.

Note that Theorem 1 does not state that there always is a robustly safe policy. If δ is too large, such a
policy may not exist. In practical terms, if we fail to find a feasible policy for a given δ, our method
still attempts to find a conservative policy in the source target, which ensures a reduction of safety
violations in the target environment. Alternatively, we could search for the largest δ′ < δ such that
a feasible policy exists. Nevertheless, this policy can easily be found in the constrained RL setting.
For instance, in problems exhibiting an action with zero cost, such as in the environments used in the
empirical evaluation, the agent can choose this action, which ensures it will satisfy the constraints.

5.2 TRANSFERRING KNOWLEDGE TO THE STUDENT

To transfer the knowledge of the guide to the student, our approach is similar to (Yang et al., 2023).
We want to ensure safety throughout by sampling from the student whenever the cost signal is zero,
and otherwise we sample from the guide:

πb(st) =

{
(π⋄ ◦ σ)(st) if there is a t′ ≤ t where ct′ > 0,

π⊙(st) else.

It is desirable to let the student’s policy imitate the guide’s whenever the cumulative cost is above the
safety threshold, while this is not necessary once the student behaves safely. We achieve this effect
by adding a new term r∼t to the reward signal measuring the similarity between the two policies,
weighted by the Lagrangian multiplier, λ. When both policies are nondeterministic, r∼t measures
the KL divergence between the two distributions. Otherwise, if either policy is deterministic, we
compare the deterministic action with the mean of the nondeterministic policy’s distribution.

6 EMPIRICAL ANALYSIS

We train one guide for each method of robustification (Section 5.1). Our empirical analysis aims to
answer the following questions:

1. How does each guide perform in the source task?
2. How does each guide perform in the target task’s worst-case dynamics?
3. What is the safety jump-start of each guide in the target task?
4. How is the full training of the student affected by the guide’s robustness?

We evaluate our method 1 on benchmark environments created using a framework for safe rein-
forcement learning called Safety-Gymnasium (Ji et al., 2023). In these environments, the RL agent
controls a robot that must reach the goal while avoiding the hazards. Appendix B provides more
details.

The source tasks. There are three source tasks: (M⋄
1,M⋄

2, and M⋄
3). These environments may

contain static obstacles called hazards and dynamic obstacles called vases, which are always con-
strained. Additionally, all three environments have constrained walls to discourage the agent from
going out of bounds. The environments differ as follows: M⋄

1 has 1 hazard located in the center;
M⋄

2 has 5 hazards that change location every epoch, and M⋄
3 has 8 hazards and 8 vases that change

location every epoch.

The target tasks. The target environments M⊙
1 , M⊙

2 , and M⊙
3 are similar to their respective

source environments M⋄
1, M⋄

2, and M⋄
3, except for two major differences.

1. The task in the target environments is to reach a specific location, called the goal. There-
fore, the observations in the target tasks have the additional measurements that concern the
reward signal: a LIDAR in [0, 1]16 for detecting the goal. We have a mapping σ : S⊙ → S⋄

which simply strips away the information concerning the reward signal. It is easy to show
that σ is a Qc irrelevance abstraction, satisfying Assumption 2.

1The source code is available on https://github.com/ai-fm/safe-and-robust-transfer
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Figure 3: The cost and return in the last epoch of each type of guide.

2. The transition dynamics function in the target tasks is uncertain. In our practical imple-
mentation, this is achieved by modifying the physics parameters concerning the friction
and mass of the agent in the simulated environments. The friction refers to the force that
opposes the motion of the robot, and a higher friction value causes the agent to decelerate
quicker. The mass of the agent affects its moment of inertia, meaning that it impacts how
quickly the agent can change its velocity.
One can define the function u : R2 → (S⊙ × A → Distr(S⊙)) that maps the friction and
mass of the agent to the corresponding transition dynamics function. Thus, notice that u
preserves boundedness, which implies that U⊙ is bounded, satisfying Assumption 3.

6.1 PERFORMANCE OF THE GUIDES IN THE SOURCE TASK

We train various guides with the three robustification techniques: random action noise, adversarial
action perturbations, and entropy maximization. The guides are trained with different weights of the
robustification methods to see which values of these parameters yield the best outcomes. The ranges
of these weights are based on the results of prior work (Tessler et al., 2019; Liu et al., 2023): the
random noise is weighted by α ∈ {0.06, 0.12, 0.17, 0.23, 0.29, 0.35}; the adversarial perturbation
weights are α ∈ {0.06, 0.12, 0.17, 0.23, 0.29, 0.35}; and the entropy bonus is weighted by α ∈
{10−5, 10−3, 10−2, 0.1, 0.2, 0.5, 1.0, 1.5, 10.0}.

Figure 3 shows the cumulative returns and costs at the very last epoch of the three kinds of agents
trained with the different values of the robustification weights. Most guides learn a safe policy
that obtains a cumulative reward slightly below 20, except for the entropy-maximizing agent when
α ≥ 0.1, which does not learn a proper policy, presumably due to the overly high entropy.

6.2 GUIDES’ PERFORMANCE IN THE TARGET TASK’S WORST-CASE DYNAMICS

The uncertainty set (U⊙) consists of uncountably many dynamics transition functions, parameter-
ized by the mass (m) and friction (η) of the agent, making it challenging to compute the worst-case
dynamics. Therefore, we restrict the uncertainty set to a finite subset (Ū⊙) by discretizing the values
of the parameters to m = m1, . . . ,mN , and η = η1, . . . , ηN . In our experiments, we use N = 8
values for each parameter by letting mi = (0.5+ i−1

7 )m⋄ and ηi = (0.5+ i−1
7 )η⋄ for i = 1, . . . , 8,

where m⋄ and η⋄ correspond to the dynamics in the source task.

First, we evaluate all guides within their respective source tasks, but instead of using the source
task’s dynamics (P ⋄), we evaluate them within the discretized uncertainty set of the target task,
Ū⊙. This experiment provides insights into the relationship between the different robustification
algorithms and the robustness they provide. Figure 4 shows the cumulative costs of a robust and
non-robust agent evaluated in the dynamics functions of the discretized uncertainty set.

The robust guide can navigate the source task safely even when the dynamics are unfavorable, while
the non-robust agent struggles to maintain a safe expected cost when the shift in dynamics is large.
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Figure 4: The expected cumulative costs in M⋄
1 of a guide trained with no action noise (left) and a

guide with an action noise of α = 0.29, each dot representing a different dynamics function, with
mass on the x-axis and friction on the y-axis.
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Figure 5: Expected cumulative cost in the source task (left) and the safety jump-start in the target
task as a percentage (right) of the agent trained with α = 0.29 within M1. Low values of the safety
jump-start are desirable, where a jump-start of −100 concerns a fully safe transfer.

Heatmaps like the ones shown in Figure 4 have been computed for all three robustification methods
and different values of α, and they can be seen in Appendix F. Once these heatmaps are calculated, it
is easy to obtain the worst-case expected cost, as well as the p-tail and the average, shown in Tables
2, 3, and 4. It is crucial to note that the values shown in the tables are the expected costs of one batch
of guides, implying that conclusions cannot be drawn from the comparison the values of α during
training with their respective costs, due to a lack of statistical significance. Nevertheless, since the
expected costs are computed quite accurately, it is correct to claim that some guides are more robust
than others, which will be useful in the next sections to measure how the robustness of the guide
impacts the student’s training in the target task.

6.3 SAFETY JUMP-START OF EACH GUIDE IN THE TARGET TASK’S WORST-CASE DYNAMICS

The safety jump-start assesses the difference in cumulative costs during the first epoch between the
student learning from a guide and one learning from scratch. Measuring the safety jump-start is
computationally cheap compared to other metrics, as it requires training the student for only one
epoch as opposed to fully training said student.

We transfer the knowledge of the guides to two kinds of students: a nondeterministic student (SAC)
and a deterministic one (DDPG). One major problem with transferring the knowledge to a determin-
istic student is that it is much likelier to end up in unrecoverable states by selecting the same actions
over and over, rendering the control-switch rescue method completely ineffective. To lessen this
issue, the deterministic student is trained with a relatively high random action noise of α = 0.75.

Appendix G shows tables collecting the worst-case, 0.1-tail, and average safety jump-starts mea-
sured from every guide to the two kinds of students. An interesting observation when comparing
these with Tables 2, 3, and 4, is that policies that appear robust in the source task may not necessarily
have the ability to effectively transfer their knowledge to a student in their target task. An extreme
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Figure 7: Comparison of the cumulative rewards and costs during training between the students
trained with the robust guide (α = 0.29) and the non-robust guide (Yang et al., 2023).

example of such a phenomenon can be seen in Figure 5, where an agent that is robust in the source
task has an exceptionally poor safety jump-start in worst-case environments.

6.4 EFFECT OF THE GUIDE’S ROBUSTNESS ON THE STUDENT’S TRAINING

To determine how the transfer is affected by the robustness of the guide, we train the student with
a robust guide and a non-robust one. For the robust guide, we will use the agent trained with
action noise in M2 where α = 0.29. The non-robust guide is trained within M2 using the method
introduced by Yang et al. (2023). We then transfer the guides to the dynamics that appear most
challenging based on the chart shown in Figure 6: m⊙ = 1.5m⋄ and η⊙ = 0.5η⋄.

The reward and cost during training of the students trained with robust and non-robust guides are
shown in Figure 7. Since the goal of the transfer is to avoid safety violations within the target task,
the transfer done with the robust guide seems ideal. Even though the training takes place in a task
with unfavorable dynamics, the safety jump-start with the robust guide nears -100%, meaning that
the behavior policy is safe from the very start. Moreover, the return jump-start of the student with
the robust guide is much greater than that of the student with a non-robust guide.

7 CONCLUSIONS

We propose a method to transfer agents to environments with different or even worst-case dynamics
while satisfying safety constraints. The empirical evaluation shows that, in general, agents trained
with action disturbances have lower worst-case expected cumulative costs without sacrificing the
expected return. In addition, we observe that guides that are robust in the source task do not always
have a favorable worst-case jump-start, which backs our theoretical insights. Lastly, the agents
with low worst-case safety jump-start demonstrate better capability for transferring knowledge to
the student in unfavorable dynamics, compared to non-robust guides, where some robustified agents
have been shown capable of achieving a fully safe transfer.
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Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design problems:
a dynamic game approach. Springer Science & Business Media, 2008.

Bahram Behzadian, Marek Petrik, and Chin Pang Ho. Fast algorithms for l∞-constrained s-
rectangular robust MDPs. In NeurIPS, pp. 25982–25992, 2021.

Dimitri P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

David M. Bossens. Robust lagrangian and adversarial policy gradient for robust constrained Markov
decision processes. In IEEE CAI, pp. 1227–1239, 2024.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning via shield-
ing under partial observability. In AAAI, pp. 14748–14756, 2023.

Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ahmadreza Marandi, Marnix Suilen, and Ufuk
Topcu. Robust finite-state controllers for uncertain POMDPs. In AAAI, pp. 11792–11800, 2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL
problems. In ICLR, 2022.

Fei Feng, Ruosong Wang, Wotao Yin, Simon S. Du, and Lin F. Yang. Provably efficient exploration
for reinforcement learning using unsupervised learning. In NeurIPS, 2020.

Zeyu Feng, Bowen Zhang, Jianxin Bi, and Harold Soh. Safety-constrained policy transfer with
successor features. In ICRA, pp. 7219–7225. IEEE, 2023.

Javier Garcı́a and Fernando Fernández. A comprehensive survey on safe reinforcement learning. J.
Mach. Learn. Res., 16:1437–1480, 2015.
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A HYPERPARAMETERS

The hyperparameters in our method are summarized in Table 1. All actor and critic networks are
modeled by a multilayer perceptron (MLP).

Parameter M1 M2 M3

Actor network size [256, 256] [256, 256] [256, 256]
Critic network size [256, 256] [256, 256] [256, 256]

Size of replay buffer 106 106 106

Batch size 256 256 256
Steps per epoch 2000 2000 2000

Number of epochs 106 106 106

Actor learning rate 5 · 10−6 5 · 10−6 5 · 10−6

Critic learning rate 10−3 10−3 10−3

Lambda learning rate 5 · 10−7 5 · 10−7 5 · 10−7

Safety constraint 5 8 25

Table 1: The hyperparameters used in the experiments.

B THE ENVIRONMENTS

The actor is a small robot called the point that can move forwards, backwards, and steer left-to-right.
The action space is [−1, 1]2, where the first value is for the throttle and the second one is for steering.
The observation space has the following components:

• Pseudo-LIDAR for hazards in [0, 1]16.
• Pseudo-LIDAR for vases in [0, 1]16.
• Velocimeter in (−∞,∞)3.
• Accelerometer in (−∞,∞)3.
• Gyroscope in (−∞,∞)3.
• Magnetometer in (−∞,∞)3.

The pseudo-LIDAR casts 16 rays in different angles. It is termed “pseudo” because, unlike with
real LIDARs, the rays can go through objects. The other sensors measure in three dimensions: a
velocimeter for velocity (m/s), an accelerometer for acceleration (m/s2), a gyroscope for angular
velocity (rad/s), and a magnetometer for magnetic flux (Wb).

Renders of the tasks are shown in Figures 8, 9, and 10.

Figure 8: Renders of tasks M⋄
1 (left) and M⊙

1 (right).
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Figure 9: Renders of tasks M⋄
2 (left) and M⊙

2 (right).

Figure 10: Renders of tasks M⋄
3 (left) and M⊙

3 (right).
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Figure 11: The trajectories of π( ) = (1.0, 1.0) where the mass and damping are multiplied by 0.5,
1.0, and 1.5. Both multipliers are 1.0 in the nominal dynamics.
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C STATE ABSTRACTION

A Qc-irrelevant abstraction σ : S → S† maps a CMDP to an abstracted CMDP (Li et al., 2006).
Let M = (S,A, P, r, c, d, γ), and ω : S → [0, 1]. The corresponding abstracted task is M† =
(S†, A, P †, r†, c†, d, γ), where

• P †(s′† | s†, a) = ∑
s∈σ−1(s†)

∑
s′∈σ−1(s′†) ω(s)P (s′ | s, a),

• r†(s†, a) =
∑

s∈σ−1(s†) ω(s)r(s, a),

• c†(s†, a) =
∑

s∈σ−1(s†) ω(s)c(s, a),

with σ−1(s†) = {s ∈ S | σ(s) = s†} and
∑

s∈σ−1(s†) ω(s) = 1, for all s† ∈ S†.

D CUMULATIVE COSTS IN THE UNCERTAINTY SETS

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.00 805.1 780.2 316.7 862.6 856.2 268.6 536.9 457.9 89.3
0.06 843.2 816.6 221.5 353.3 221.4 41.2 635.0 574.5 130.6
0.12 873.5 868.2 438.1 842.8 792.9 179.2 89.7 77.2 34.2
0.17 780.8 683.9 150.5 692.8 399.0 110.4 725.0 569.0 95.8
0.23 2.3 1.5 0.2 91.3 77.7 21.5 286.2 268.8 126.5
0.29 3.2 1.1 0.1 95.7 59.7 18.1 859.0 754.0 168.2
0.35 134.5 100.0 11.5 271.6 162.9 58.6 833.6 809.0 190.1

Table 2: The worst-case, 0.1-tail, and average expected costs of all the guides trained with random
action noise within the three source tasks.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 805.1 780.2 316.7 862.6 856.2 268.6 536.9 457.9 89.3
0.06 880.4 871.5 537.2 769.5 717.3 108.6 219.7 210.3 49.0
0.12 840.0 821.7 302.7 626.6 569.8 75.8 338.1 218.5 45.3
0.17 484.0 367.2 87.7 713.9 554.1 109.7 166.4 148.3 65.5
0.23 790.7 774.8 372.5 773.0 678.9 97.5 459.9 335.5 102.8
0.29 38.5 17.5 2.7 233.8 212.4 52.6 699.5 640.5 143.7
0.35 742.5 687.9 294.2 211.4 139.0 57.2 255.3 225.7 84.7

Table 3: The worst-case, 0.1-tail, and average expected costs of all the guides trained with adver-
sarial perturbations within the three source tasks.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 147.4 82.9 9.7 668.7 563.6 108.2 892.7 881.7 262.4
10−3 594.2 139.0 13.2 551.1 423.1 59.3 877.6 871.0 186.4

Table 4: The worst-case, 0.1-tail, and average expected costs of all the guides trained with entropy
maximization within the three source tasks.

E SAFETY JUMP-START TABLES
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M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.
0.06 -60.4 -62.1 -86.6 -56.3 -63.0 -87.4 -48.9 -55.1 -82.9
0.12 -49.6 -54.3 -80.9 -31.4 -39.2 -84.1 -41.5 -53.6 -80.2
0.17 -64.3 -69.8 -87.9 -32.4 -51.2 -83.9 -36.6 -47.6 -80.8
0.23 -71.2 -80.3 -91.9 -34.8 -49.7 -85.2 -23.7 -39.1 -75.0
0.29 -62.8 -65.2 -86.5 -55.8 -59.5 -87.3 -15.6 -25.7 -76.4
0.35 -49.3 -61.8 -87.5 -5.8 -35.7 -79.6 -29.7 -38.6 -78.9

Table 5: Deterministic students with the random action noise guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 179.7 134.9 -17.6 50.6 13.1 -63.0 18.8 2.7 -57.9
0.12 263.5 183.3 15.9 138.2 105.3 -47.3 64.5 40.4 -50.6
0.17 156.9 101.6 -20.3 123.1 53.2 -51.3 70.1 29.1 -53.1
0.23 46.7 18.7 -52.3 117.4 47.8 -56.1 68.5 48.0 -47.0
0.29 195.0 126.4 -18.8 86.2 26.8 -63.7 126.7 105.7 -41.1
0.35 205.1 103.8 -28.7 135.2 92.8 -41.1 116.2 63.2 -51.6

Table 6: Nondeterministic students with the random action noise guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 -50.8 -57.0 -82.7 -44.9 -52.4 -84.1 -41.7 -49.0 -79.8
0.12 -56.6 -63.0 -87.2 -31.3 -39.9 -83.2 -39.7 -51.2 -81.3
0.17 -68.4 -72.1 -88.6 17.3 -28.9 -78.8 -41.8 -52.4 -80.8
0.23 -52.7 -64.4 -85.7 -19.9 -29.9 -80.5 -49.7 -58.6 -83.2
0.29 -62.0 -69.4 -87.8 -31.8 -49.4 -83.5 -52.3 -59.1 -82.9
0.35 -65.0 -67.6 -80.5 -61.0 -68.2 -88.4 -48.8 -52.4 -79.9

Table 7: Deterministic students with the adversarially trained guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.06 177.7 143.1 0.2 151.5 86.9 -50.1 61.7 30.8 -52.5
0.12 106.3 88.9 -30.8 142.1 102.6 -46.3 43.0 25.6 -54.8
0.17 73.6 53.4 -36.2 161.0 122.9 -36.3 21.2 13.4 -54.3
0.23 197.2 125.7 -14.2 135.2 99.9 -44.9 40.9 21.3 -55.6
0.29 188.7 101.0 -23.7 86.6 36.1 -55.4 24.1 1.3 -59.4
0.35 172.2 112.2 10.1 56.3 26.5 -63.5 74.1 39.4 -50.2

Table 8: Nondeterministic students with the adversarially trained guide.

M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

0.0 -69.3 -75.5 -90.8 -34.3 -58.5 -86.2 12.3 -5.0 -71.8
0.001 -44.0 -66.2 -89.4 -30.1 -54.9 -84.8 -0.7 -20.5 -73.6

Table 9: Deterministic students with the entropy maximizing guide.
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M⋄
1 M⋄

2 M⋄
3

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.

α Worst 0.1-tail Avg. Worst 0.1-tail Avg. Worst 0.1-tail Avg.
0.0 44.9 29.1 -46.3 80.3 45.3 -57.2 132.1 91.5 -40.1

0.001 165.2 77.6 -37.4 101.6 73.8 -51.4 137.8 108.3 -36.0

Table 10: Nondeterministic students with the entropy maximizing guide.
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F ROBUSTNESS HEATMAPS FROM THE SOURCE TASK
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Figure 12: Average expected costs of all the guides trained with random action noise within the
three source tasks, where each dot represents a different dynamics function.
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Figure 13: Average expected costs of all the guides trained with adversarial perturbations within
the three source tasks, where each dot represents a different dynamics function.
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Figure 14: Average expected costs of all the guides trained with entropy maximization within the
three source tasks, where each dot represents a different dynamics function.

G SAFETY JUMP-START HEATMAPS

G.1 TRANSFERRING TO THE NONDETERMINISTIC STUDENT
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Figure 15: Safety jump-starts of the nondeterministic students with the guides trained with random
action noise within the three target tasks, where each dot represents a different dynamics function.
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Figure 16: Safety jump-starts of the nondeterministic students with the guides trained with adver-
sarial perturbations within the three target tasks, where each dot represents a different dynamics
function.
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Figure 17: Safety jump-starts of the nondeterministic students with the guides trained with entropy
maximization within the three target tasks, where each dot represents a different dynamics function.

G.2 TRANSFERRING TO THE DETERMINISTIC STUDENT
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Figure 18: Safety jump-starts of the deterministic students with the guides trained with random
action noise within the three target tasks, where each dot represents a different dynamics function.
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Figure 19: Safety jump-starts of the deterministic students with the guides trained with adversarial
perturbations within the three target tasks, where each dot represents a different dynamics function.

Figure 20: Safety jump-starts of the deterministic students with the guides trained with entropy
maximization within the three target tasks, where each dot represents a different dynamics function.
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