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ABSTRACT

Weighted low rank approximation is a fundamental problem in numerical linear
algebra, and it has many applications in machine learning. Given a matrix M ∈
Rn×n, a non-negative weight matrix W ∈ Rn×n

≥0 , a parameter k, the goal is to
output two matrices X,Y ∈ Rn×k such that ∥W ◦ (M −XY ⊤)∥F is minimized,
where ◦ denotes the Hadamard product. It naturally generalizes the well-studied
low rank matrix completion problem. Such a problem is known to be NP-hard and
even hard to approximate assuming the Exponential Time Hypothesis (Gillis &
Glineur, 2011; Razenshteyn et al., 2016). Meanwhile, alternating minimization is
a good heuristic solution for weighted low rank approximation. In particular, Li
et al. (2016) shows that, under mild assumptions, alternating minimization does
provide provable guarantees. In this work, we develop an efficient and robust
framework for alternating minimization that allows the alternating updates to be
computed approximately. For weighted low rank approximation, this improves
the runtime of Li et al. (2016) from ∥W∥0k2 to ∥W∥0k where ∥W∥0 denotes the
number of nonzero entries of the weight matrix. At the heart of our framework is a
high-accuracy multiple response regression solver together with a robust analysis
of alternating minimization.

1 INTRODUCTION

Given a matrix M ∈ Rn×n, the low rank approximation problem with rank k asks us to find a pair
of matrices X̃, Ỹ ∈ Rn×k such that ∥M − X̃Ỹ ⊤∥F is minimized over all rank k matrices X and
Y , where ∥ · ∥F is the Frobenius norm of a matrix. Finding a low rank approximation efficiently is
a core algorithmic problem that is well studied in machine learning, numerical linear algebra, and
theoretical computer science. The exact solution follows directly from singular value decomposition
(SVD): let M = UΣV ⊤ and set X̃ = Uk

√
Σk, Ỹ = Vk

√
Σk, i.e., picking the space spanned by the

top-k singular values and corresponding singular vectors. Faster algorithms utilizing linear sketches
can run in input sparsity time (Clarkson & Woodruff, 2013). In addition to the standard model and
Frobenius norm, low rank approximation has also been investigated in distributed setting (Boutsidis
et al., 2016), for entrywise ℓ1 norm (Song et al., 2017) and for tensors (Song et al., 2019c).

In practice, it is often the case that some entries of M are more important than others and some entries
can be completely ignored, so it’s natural to look for a weighted low rank approximation. More
specifically, given a target matrix M ∈ Rn×n and a non-negative weight matrix W ∈ Rn×n

≥0 , the goal
is to find X̃, Ỹ ∈ Rn×k with ∥W ◦ (M − X̃Ỹ ⊤)∥F minimized, where ◦ is the Hadamard product of
two matrices. The formulation of weighted low rank approximation covers many interesting matrix
problems, for example, the classic low rank approximation can be recovered by setting W = 1n1

⊤
n

and the matrix completion problem (Jain et al., 2013) is by observing a subset of entries of M ,
equivalent to picking W as a Boolean matrix. In addition to its theoretical importance, weighted low
rank approximation also has a significant practical impact in many fields, such as natural language
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processing (Pennington et al., 2014; Arora et al., 2016; Hsu et al., 2022), collaborative filtering (Srebro
& Jaakkola, 2003; Koren et al., 2009; Lee et al., 2013; Chen et al., 2015), ecology (Robin et al.,
2019; Kidzinski et al., 2022), chromatin conformation reconstruction Tuzhilina et al. (2022) and
statistics (Wentzell et al., 1997; Markovsky et al., 2006).

Algorithmic study for weighted low rank approximation dates back to Young (1941). On the com-
putational hardness front, Gillis & Glineur (2011) has shown that the general weighted low rank
approximation is NP-hard even if the ground truth matrix is rank 1. The hardness is further en-
hanced by Razenshteyn et al. (2016) by showing that assuming the Random Exponential Time
Hypothesis, the problem is hard to approximate beyond a constant factor. Despite its hardness,
many heuristic approaches have been proposed and witnessed many successes. For example, Shpak
(1990) implements gradient-based algorithms, while Lu et al. (1997); Lu & Antoniou (2003) use
the alternating minimization framework. Srebro & Jaakkola (2003) develops algorithm based on
expectation-maximization (EM). Unfortunately, all these approaches are without provable guaran-
tees. Razenshteyn et al. (2016) is the first to provide algorithms with theoretical guarantees. They
propose algorithms with parameterized complexity on different parameters of W , such as the number
of distinct columns or low rank. In general, these algorithms are not polynomial which is also
indicated by their lower bound results. Ban et al. (2019) subsequently studies the weighted low rank
approximation problem with regularization, and they manage to obtain an improved running time
depending on the statistical dimension of the input, rather than the rank. When one relaxes to a
bi-criteria solution with additive error guarantees, Bhaskara et al. (2021) provides a greedy algorithm.
Whenever all entries of the weight matrix are nonzero, Dai shows that it is possible to convert the
additive error to multiplicative (Dai, 2023).

How to bypass the barrier of Razenshteyn et al. (2016) while still getting provable guarantees? Li
et al. (2016) draws inspirations from matrix completion literature and views the problem as a low rank
matrix recovery problem: suppose the matrix M ∈ Rn×n is a noisy, full-rank observation that can be
decomposed into M = M∗ +N where M∗ is the rank-k ground truth and N is the rank-(n − k)
noise matrix. They then analyze the performance of alternating minimization when 1). the ground
truth is incoherent, 2). weight matrix has a spectral gap to all-1’s matrix, and 3). weight matrix is
non-degenerate. Under these assumptions, they show that the alternating minimization algorithm
provably finds a pair of matrices X̃, Ỹ ∈ Rn×k such that ∥M−X̃Ỹ ⊤∥ ≤ O(k) ·∥W ◦N∥+ϵ, where
∥ · ∥ is the spectral norm of a matrix. This provides a solid theoretical ground on why alternating
minimization works for weighted low rank approximation.

While the Li et al. (2016) analysis provides a polynomial time algorithm for weighted low rank
approximation under certain assumptions, the algorithm itself is still far from efficient. In particular,
the alternating minimization framework requires one to solve O(n) different linear regressions exactly
per iteration. The overall runtime of their algorithm is O((∥W∥0 · k2 + nk3) log(1/ϵ)) where ∥W∥0
denote the number of nonzero entries in W , making it inefficient for practical deployment. Moreover,
their analysis is non-robust, meaning that it cannot account for any error at each step. This is in
drastic contrast with practice, where floating point errors and inexact solvers are used everywhere.
In fact, there are good reasons for them to mandate exact regression solvers, as their algorithm only
requires log(1/ϵ) iterations to converge and any fast but approximate regression solver might break
the nice convergence behavior of the algorithm. Hence, we ask the following question:

Is it possible to obtain a faster and more robust alternating minimization-based algorithm with a
similar convergence rate?

In this paper, we provide a positive answer to this question. Specifically, we show that the alternating
updates can be computed in nearly linear time each iteration and polynomially large errors can be
tolerated. Both of these results rely on a fast, randomized and high-accuracy regression solver that
uses sketching to compute a preconditioner. We summarize our main result in the following theorem:

Theorem 1.1 (Informal version of Theorem 4.6). There is an algorithm (see Algorithm 1) that runs
in Õ((∥W∥0 · k + nk3) log(1/ϵ)) time and outputs a rank-k matrix M̃ such that

∥M̃ −M∗∥ ≤ O(kτ) · ∥W ◦N∥+ ϵ

where τ is the condition number of M∗ and Õ(·) suppresses polylogarithmic factors in n and k.
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Algorithm 1 Main Algorithm. The CLIP procedure zeros out rows whose ℓ2 norm are large, and the
QR procedure computes the QR decomposition of the matrix and outputs the orthonormal factor Q.

1: procedure FASTERWEIGHTLOWRANK(M ∈ Rn×n, W ∈ Rn×n, ϵ,k) ▷ Theorem 1.1
2: T ← O(log(1/ϵ))
3: δsk ← 1/ poly(n, T )
4: ϵsk ← 1/ poly(n, τ) ▷ τ is an estimate of the condition number of M∗.
5: Y0 ← RANDOMINIT(n, k) ▷ Initialize Y0 to random Rademacher variables, scaled by 1√

n
.

6: for t = 1 to T do
7: X⃗t ← FASTMULTIPLEREGRESSION(M,Yt−1,W, ϵsk, δsk) ▷ Solve O(n) regressions

using sparsity of W and Algorithm 2.
8: X̂t ← CLIP(X⃗t) ▷ Clip rows with large ℓ2 norms.
9: Xt ← QR(X̂t)

10: Y⃗t ← FASTMULTIPLEREGRESSION(M⊤, Xt,W
⊤, ϵsk, δsk)

11: Ŷt ← CLIP(Y⃗t)

12: Yt ← QR(Ŷt)
13: end for
14: return M̃ ← X̂TY

⊤
T−1

15: end procedure

Remark 1.2. The general structure of our main algorithm (Algorithm 1) is based on the traditional
alternating minimization method described in Li et al. (2016). We replace the exact update with an
approximate update (lines 7 and 10) based on Algorithm 2, which makes the overall algorithm both
faster and more robust. The remainder of the paper is dedicated to presenting a theoretical guarantee
for its efficiency and robustness.

Roadmap. In Section 2, we introduce several basic notations and definitions which we will use
throughout this paper. In Section 3, we give a brief overview of our techniques. In Section 4, we
present our main result. In Section 5, we give a conclusion for this paper.

2 PRELIMINARY

In Section 2.1, we introduce the basic notation used in this paper. In Section 2.2, we present
the background of the sketching technique, including the SRHT matrix and oblivious subspace
embedding. In Section 2.3, we present the mathematical background and assumptions related to the
weighted low rank approximation problem.

2.1 NOTATION

Let n,m be arbitrary positive integers. We define a set [n] as {1, 2, · · · , n}. We use R, Rm, Rm
≥0,

and Rn×m to denote the sets containing all the real numbers, m-dimensional vectors with real entries,
m-dimensional vectors with non-negative real entries, and n×m matrices with real entries.

Let x ∈ Rm
≥0 and w ∈ Rm

≥0. Let i ∈ [m]. Let xi ∈ R represent the i-th entry of x. We use
√
x ∈ Rm

to represent a vector satisfying (
√
x)i =

√
xi. We define ∥x∥w := (

∑n
i=1 wix

2
i )

1/2.

Let A,W be two arbitrary matrices in Rn×m. Let i ∈ [n] and j ∈ [m]. We use Ai,: ∈ Rm to
represent a column vector that is equal to the i-th row of A and A:,j ∈ Rn represent a column vector
that is equal to the j-th column of A. Ai,j ∈ R represents a entry of A, located at the i-th row
and j-th column. diag(x) ∈ Rn×n represents the matrix satisfying diag(x)i,j = xi if i = j and
diag(x)i,j = 0 if i ̸= j. nnz(A) represents the number of nonzero entries of A.

Suppose that n ≥ m. We denote the spectral norm of A as ∥A∥ = supx∈Rm ∥Ax∥2/∥x∥2, denote
the Frobenius norm of A as ∥A∥F , which is equal to (

∑n
i=1

∑m
j=1 A

2
i,j)

1/2, and denote ∥A∥∞,1 as
max{maxi∈[n] ∥Ai,:∥1,maxj∈[m] ∥A:,j∥1}.
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Further, let UΣV ⊤ be the singular value decomposition (SVD) of A. Then, we have U ∈ Rn×m and
Σ, V ∈ Rm×m, where U, V have orthonormal columns and Σ is a non-negative diagonal matrix. The
Moore-Penrose pseudoinverse of a matrix A is A† = V Σ−1U⊤. If Σ is a sorted diagonal matrix and
σ1, · · · , σm represent the diagonal entries of Σ, then we use σi to represent the i-th singular value of
A, namely σi(A). We define σmin(A) := minx ∥Ax∥2/∥x∥2 and σmax(A) := maxx ∥Ax∥2/∥x∥2.

Now, we suppose that m = n, namely A,W ∈ Rn×n. We define ∥A∥W :=
√∑n

i=1

∑n
j=1 Wi,jA2

i,j .

W ◦A is a matrix whose entries are defined as (W ◦A)i,j := Wi,jAi,j . We define DWi
:= diag(W:,i).

If A is invertible, then the true inverse of A is denoted as A−1 and ∥A∥ = σmin(A
−1). If A is

symmetric, then we define as UΛU⊤ the eigenvalue decomposition of A, where Λ is a diagonal
matrix. Let λ1, · · · , λn represent the entries on diagonal of Λ ∈ Rn×n. λi is called the i-th eigenvalue,
namely λi(B). Furthermore, the eigenvalue and the singular value satisfy σ2

i (A) = λi(A
⊤A). Given

two n× n real symmetric matrices A and B, we use A ⪯ B to denote the matrix B −A is positive
semidefinite, i.e., for any x ∈ Rn, x⊤(B −A)x ≥ 0.

2.2 SKETCHING

An important algorithmic subroutine is the Subsampled Randomized Hadamard Transform SRHT:

Definition 2.1 (SRHT (Lu et al., 2013)). The SRHT matrix of size m× n is the following matrix:
S = 1√

m
PHD, where D ∈ Rn×n is a diagonal matrix with diagonal being Rademacher random

variables, H ∈ Rn×n is the Hadamard matrix and P ∈ Rm×n is a row sampling matrix that samples
m rows with replacement.

The key property we would like to leverage from SRHT is the subspace embedding property:

Definition 2.2 (Oblivious subspace embedding (Sarlos, 2006)). Let n, d be positive integers and
ϵ, δ ∈ (0, 1) be parameters, we say a distribution Π over m × n real matrices satisfy (ϵ, δ, n, d)-
oblivious subspace embedding (OSE) if for any fixed matrix A ∈ Rn×d and S ∼ Π, with probability
at least 1− δ, we have for any x ∈ Rd,

(1− ϵ)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 + ϵ)∥Ax∥2.

Via standard matrix concentration inequalities such as matrix Chernoff bound (see e.g. Rudelson
(1999); Ahlswede & Winter (2002)), one can show SRHT with m = O(ϵ−2d log2(n/δ)) satisfying
(ϵ, δ, n, d)-OSE. Moreover, since H is a Hadamard matrix, applying S to an n-dimensional vector
can be done in O(n log n) using FFT. Thus, computing SA takes O(nd log n) time.

2.3 BACKGROUND ON WEIGHTED LOW RANK APPROXIMATION

The weighted low rank approximation can be treated as a generalization of the noisy matrix completion
problem, where the goal is to recover a target matrix M ∈ Rn×n from a few observations (sublinear
in n2) where the weight is chosen as a Boolean matrix PΩ ∈ Rn×n. It is hence natural to impose and
generalize assumptions from matrix completion if we would like to obtain any provable guarantees.
Following Li et al. (2016), we make three assumptions and we will justify them one by one.

Assumption 2.3. Given a noisy, possibly higher-rank observation M ∈ Rn×n such that M =
M∗ +N , where M∗ is the rank-k ground truth we want to recover and N is the noise matrix. We
assume:

1. M∗ is µ-incoherent: Let M∗ = UΣV ⊤ be its SVD, we assume

max{∥Ui,:∥22, ∥Vi,:∥22}ni=1 ≤
µk

n
.

We use τ to denote the condition number of M∗: τ = σmax(M
∗)/σmin(M

∗).

2. Weight W has a γ-spectral gap to all-1’s matrix:

∥W − 1n1
⊤
n ∥ ≤ γn.
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3. Weight W is (α, β)-bounded: Let M∗ = UΣV ⊤ be its SVD, we assume for any i ∈ [n]
and 0 < α ≤ 1 ≤ β,

αI ⪯ U⊤DWi
U ⪯ βI,

αI ⪯ V ⊤DWiV ⪯ βI.

Assumption 1 states that the largest row norms of the left and right singular factors should not be
too far away from the average. Such matrix incoherence assumption has been very standard in the
context of matrix completion (Candès & Recht, 2012) as it effectively eliminates the degenerate case
where the ground truth M∗ has very weak signals. Consider the extreme case where M∗ = e1e

⊤
1 , in

such a scenario, if the weight W is rather uniform over all entries and N is a dense noise matrix with
its first entry has a small magnitude compared to other entries, then recovering M∗ will be next to
impossible. The incoherence assumption makes sure that the row and column space of M∗ are spread
over coordinates. Incoherence is also commonly observed in practice (Mohri & Talwalkar, 2011).

Assumption 2 is a natural generalization of the random sampling assumption for matrix comple-
tion (Jain et al., 2013; Hardt, 2014). In particular, if W is a Boolean matrix where each row has
Ω(log n) entries chosen uniformly at random, then γ = O( 1√

logn
). Generalize to a non-negative

weight setting, it also bounds the largest possible magnitude of any entry in W to avoid degeneracy.

Assumption 3 is also best understood when W is a Boolean matrix, so that DWi
selects subset of

rows of U and V , and the condition essentially reduces to Assumption A2 of Bhojanapalli & Jain
(2014). It is a strengthening and weighted generalization of the strong incoherence property as it
directly implies the assumption in Candès & Tao (2010), which is necessary for matrix completion.

Having justified the assumptions we impose on the ground truth and the weight, we are in the position
to state the weighted low rank approximation problem.
Problem 2.4. Let M ∈ Rn×n be a noisy, higher-rank matrix with M = M∗ + N where M∗ is
the rank-k ground truth and N is a higher-rank noise matrix. Let W ∈ Rn×n

≥0 be a non-negative
weight matrix. Suppose both M∗ and W satisfy Assumption 2.3. The goal is to find a rank-k matrix
M̃ ∈ Rn×n such that

∥M̃ −M∗∥ ≤ δ · ∥W ◦N∥+ ϵ

by observing the matrix W ◦M .

When W is a Boolean matrix, Problem 2.4 reduces to the noisy matrix completion problem where one
needs to recover the rank-k ground truth by observing a few entries of a higher-rank noisy matrix.

3 TECHNIQUE OVERVIEW

In this section, we provide a preliminary overview of the techniques we use in this paper. Before
diving into our algorithm and analysis, let us first review the algorithm of Li et al. (2016). At each
iteration, the algorithm alternates by solving two weighted multiple response regressions: starting
with an initial matrix Y , it tries to find a matrix X ∈ Rn×k that minimizes ∥W ◦ (M −XY ⊤)∥2F ,
then they zero out the rows of X with large ℓ2 norms and use the QR factor of X to proceed. Then,
they alternate and solve minY ∈Rn×k ∥W ◦ (M −XY ⊤)∥2F given the new X . After properly zeroing
out large rows and QR, the algorithm proceeds to the next iteration. The main runtime bottleneck is
to solve the weighted multiple response regression per iteration.

Following the trend of low rank approximation (Clarkson & Woodruff, 2013) and fixed parameter
tractable algorithm for weighted low rank approximation (Razenshteyn et al., 2016), it is natural to
consider using sketching to speed up the multiple response regression solves. Let us consider

min
Y ∈Rn×k

∥W ◦ (M −XY ⊤)∥2F . (1)

Let D√
Wi

denote the n × n diagonal matrix that puts
√
Wi on the diagonal, where Wi is the i-th

column of W . It is not hard to verify that (1) can be cast into n linear regressions (see details in
Claim C.1), each of which is in the form of

min
y∈Rk

∥D√
Wi

M:,i −D√
Wi

Xy∥22.
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To solve these regressions faster, one can pick a random sketching matrix S ∈ Rs×n where s =
O(ϵ−2

0 k) and instead solve

min
y∈Rk

∥SD√
Wi

M:,i − SD√
Wi

Xy∥22.

By picking a sparse sketching matrix S (Nelson & Nguyên, 2013), the above regression can be solved
in Õ(ϵ−1

0 nnz(X) + ϵ−2
0 k3) time with high probability, and the output solution y has cost at most

(1 + ϵ0) ·OPT where OPT is the optimal regression cost. Aggregate over n regressions, this gives an
Õ(ϵ−1

0 n · nnz(X) + ϵ−2
0 nk3) time per iteration (see Lemma C.6).

This approach, however, has several drawbacks that make it infeasible for our application. The first
is the error guarantee of such approximates regression solves. Essentially, we compute a matrix
Ỹ ∈ Rn×k such that

∥W ◦ (M −XỸ ⊤)∥2F ≤ (1 + ϵ0) · min
Y ∈Rn×k

∥W ◦ (M −XY ⊤)∥2F ,

in other words, the approximate solution Ỹ provides a relative forward error. Unfortunately, the
forward error is much less helpful when we want to analyze how close Ỹ is to the optimal solution Y ,
i.e., the backward error. It is possible to convert forward error to backward error at the expense of
dependence on other terms such as the cost of the regression and the spectral norm of X†, the pseudo-
inverse of X . To cancel out the effect of these extra terms, we will have to set the error parameter ϵ0
to be very small, thus, a polynomial dependence on ϵ−1

0 in the running time is unacceptable.

This motivates us to design a fast and high precision regression solver whose ϵ0 dependence is
log(1/ϵ0) (see Lemma C.10). Given an algorithm that produces an (1 + ϵ0) relative forward error
of regression in log(1/ϵ0) iterations, we can set ϵ0 to inverse proportionally to OPT · ∥(W ◦X)†∥.
As the spectral norm of (W ◦X)† is polynomially bounded, this incurs an extra log n term in the
runtime. It remains to devise a regression solver with such runtime behavior. Our approach is to
use the sketch as a preconditioner: we pick a dense sketching matrix S ∈ Rs×n with s = Õ(k)
rows such that for any k-dimensional vector x, ∥Sx∥2 = (1 ± O(1)) · ∥x∥2. We then apply S to
D√

Wi
X to form a short and fat matrix and compute the QR decomposition of this matrix. It turns

out that the right QR factor of SD√
Wi

X is a good preconditioner to D√
Wi

X . We then use S to find
a constant approximation to the regression problem and utilize it as a starting point. The algorithm
then iteratively performs gradient descent to optimize towards an ϵ0-approximate solution. Overall,
such an algorithm takes log(1/ϵ0) iterations to converge, and each iteration can be implemented in
Õ(nk) time. Plus the extra Õ(nk + k3) time to compute the initial solution, this yields an algorithm
that runs in Õ((nk + k3) log(1/ϵ0)) time to compute an ϵ0 forward error solution. Note here we
sacrifice the input sparsity time in exchange of a sketching matrix that works with high probability.
This also accounts for the fact that both X and Y are quantities changed across iterations and the
sparsity cannot be controlled.

The runtime can be further improved by leveraging the sparsity of the weight matrix W . Again,
consider the regression miny∈Rk ∥D√

Wi
M:,i −D√

Wi
Xy∥22, if Wi only has a few nonzero entries,

then the diagonal matrix D√
Wi

will effectively zero out most rows of X and entries of M:,i. This
means that we are solving a regression of size O(∥Wi∥0k) instead of O(nk). As we iterate through all
n regressions, the total instance size is then O(

∑n
i=1 ∥Wi∥0k) = O(∥W∥0k), and we can effectively

solve these regressions in an overall Õ((∥W∥0k + nk3) log(1/ϵ0)) time. We note that in matrix
completion, ∥W∥0 is oftentimes Õ(n poly(k)), making it much smaller than O(n2) and an algorithm
that exploits its sparsity is therefore much more valuable.

We want to remark that our high precision and dense regression solver not only works for weighted
low rank approximation, but for any alternating minimization frameworks that require one to solve
O(1) multiple response regressions per iteration. Due to the good error dependence, the overall
log(1/ϵ) convergence is well-preserved, even though each iteration is only solved approximately. We
believe this high precision solver will also find its use in problems like (low rank) matrix sensing and
tasks in which backward error for multiple response regression is required.

In addition to our high-accuracy, high probability solver, we also devise a robust analytical framework
for alternating minimization, which is the core to enable us with fast approximate solvers. In particular,
we show that if we only output a matrix Ỹ that is close to the exact regression solution Y in the
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spectral norm, then the alternating minimization still converges to the fixed point ∥W ◦ N∥ with
good speed. Our analysis uses a different strategy from Li et al. (2016) where they heavily rely on
the closed-form of the regression solution. In contrast, we show that by a clever decomposition of
errors, one can accumulate the error caused by approximate solves to the additive ϵ term and thus
polylogarithmically more rounds of the iterative solve suffices to give us good guarantees. When
adapting our analysis to noiseless matrix completion (Gu et al., 2024b), we recover their result in
both runtime and sample complexity, while offering a much simpler proof.

4 OUR RESULTS

In Section 4.1, we analyze the weighted multiple response regression. In Section 4.2, we show that
the alternating minimization framework is robust, namely this alternating minimization framework
can tolerate the error induced by the approximate solver and error conversion. In Section 4.3, we
present the formal version of our main result. Finally, in Section 4.4, we compare our results and
contribution with those of prior works.

4.1 WEIGHTED MULTIPLE RESPONSE REGRESSION

One of our cornerstone results is a novel adaptation of a high-accuracy regression solver based on
sketching. Its root can be perhaps traced back to Rokhlin & Tygert (2008), and our two new insights
are: 1). This type of high-accuracy regression solvers can also be generalized to weighted case, where
the design matrix and target vector are scaled by some non-negative weights. 2). We can convert the
error on the cost of the regression to the error on the solution. This step is crucial, as to bridge the gap
between our fast, approximate solves and the exact solutions used in Li et al. (2016), it is essentially
to quantify the difference between solutions.
Lemma 4.1. Let A ∈ Rn×d, b ∈ Rn and w ∈ Rd

≥0. Let ϵ ∈ (0, 0.1) be an accuracy parameter and
δ ∈ (0, 1) be the failure probability. Suppose T (n, d, ϵ, δ) is the runtime of a black-box regression
solver that produces a vector x′ ∈ Rd such that

∥Ax′ − b∥2 ≤ (1 + ϵ) min
x∈Rd

∥Ax− b∥2

with probability at least 1− δ. Then, there exists an algorithm that runs in time

O(nnz(A)) + T (n, d, ϵ, δ)

and outputs a vector x′ ∈ Rd such that with probability at least 1− δ,

∥Ax′ − b∥w ≤ (1 + ϵ) min
x∈Rd

∥Ax− b∥w.

The proof relies on a simple observation: the weights could be applied by scaling rows of A and
entries of b, which in turn could be implemented in nearly linear time. This simple reduction allows
us to deploy a fast off-the-shelf regression solver for weighted regression. To facilitate the analysis,
we also require a conversion from the regression cost to how close our approximate solution is to the
optimal solution.
Lemma 4.2. Let A ∈ Rn×d with n ≥ d and full rank, b ∈ Rn and let xOPT be the exact solution to
the regression problem minx∈Rd ∥Ax− b∥2. Suppose there exists a vector x′ ∈ Rd with

∥Ax′ − b∥2 ≤ (1 + ϵ)∥AxOPT − b∥2,

then we have

∥x′ − xOPT∥2 ≤ O(
√
ϵ) · 1

σmin(A)
· ∥AxOPT − b∥2.

The conversion from forward to backward error is standard (Price et al., 2017; Gu et al., 2024b), and
it means that we will have to set ϵ to be polynomially small in σmin(A) and the cost of the optimal
solution. We combat this issue by employing a high-accuracy regression solver.

The rough idea behind Algorithm 2 is to compute a quick preconditioner using sketching. Let
S ∈ Rm×n be an SRHT matrix with m = O(ϵ−2

1 d log2(n/δ)) rows, it is an (0.01, δ, n, d)-OSE,
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Algorithm 2 High precision solver.
1: procedure HIGHPRECISIONREG(A ∈ Rn×d, b ∈ Rn, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma C.10
2: ϵ1 ← 0.01
3: m← O(ϵ−2

1 · d log
2(n/δ))

4: Let S ∈ Rm×n be an SRHT matrix
5: Compute QR decomposition of SA = QR−1

6: x0 ← argminx∈Rd ∥SARx− Sb∥2
7: T ← C · log(1/ϵ) for sufficiently large constant C
8: for t = 0→ T do
9: xt+1 ← xt +R⊤A⊤(b−ARxt)

10: end for
11: return RxT

12: end procedure

therefore with high probability, the singular values of SA are close to A. The QR decomposition of
SA provides an orthonormal basis Q and a non-singular upper triangular matrix R−1 which serves
as a good preconditioner for A. We can then proceed with preconditioned gradient descent using
R. This procedure is particularly fast because the most time-consuming step is to compute the QR
decomposition, but it is performed on an m×d matrix. Further, SA can be carried out in nearly linear
time, and all subsequent steps in gradient descent can be performed in a manner that takes nearly
linear time. The property of SRHT also ensures our initial point x0 is a constant approximation of
the optimal point, therefore the algorithm converges in O(log(1/ϵ)) iterations, as desired. For more
details, we refer readers to Appendix C.
Lemma 4.3. Given a matrix A ∈ Rn×d and a vector b ∈ Rn, let ϵ ∈ (0, 0.1) and δ ∈ (0, 0.1), there
exists an algorithm that takes time

O((nd log n+ d3 log2(n/δ)) log(1/ϵ))

and outputs x′ ∈ Rd such that

∥Ax′ − b∥2 ≤ (1 + ϵ) min
x∈Rd

∥Ax− b∥2

holds with probability 1− δ.

4.2 ROBUSTNESS ANALYSIS FOR APPROXIMATE UPDATE

Now that we have the regression solvers that can compute an approximate update in nearly linear
time, we need to show that the alternating minimization framework is robust enough to tolerate the
large error induced by the approximate solver. We introduce a generalized incoherence notion.
Definition 4.4. Let A ∈ Rn×k, we define the generalized incoherence of A as ρ(A) = n

k ·
maxi∈[n]{∥Ai,:∥22}.

As our analysis crucially exploits the interplay between exact and approximate updates, we summarize
the notations in the following table to simplify the discussion.

Table 1: Summarization of notations regarding exact and approximate regression solves. By “clipped”,
we mean zeroing out rows with large ℓ2 norms.

Notation Meaning
X̃ Matrix for exact regression solve
X Clipped matrix of X̃
X QR factor of X = XR

X⃗ Matrix for approximate regression solve
X̂ Clipped matrix of X⃗

Lemma 4.5. Let Y ∈ Rn×k be a matrix with orthonormal columns and ξ and ϵsk be parameters
and ∆u be a parameter depends on ξ, ϵsk. Let X̃,X,X, X⃗ and X̂ be defined as in Table 1 with the
clipping threshold being 4ξ. Moreover, we have ∥X⃗i,: − X̃i,:∥22 ≤ ϵsk/n. Finally, let M∗ = UΣV ⊤.
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Then, we have

• ∥X̂ −M∗Y ∥2F ≤ ∆2
u;

• If ∆u ≤ 0.1σmin(M
∗), then dist(U,X) ≤ 8∆u/σmin(M

∗);

• If ∆u ≤ 0.1σmin(M
∗), then ρ(X) ≤ 8µ/σmin(M

∗);

where dist(U,X) = minQ∈Ok×k
∥UQ−X∥ where Ok×k is the set of all k× k orthogonal matrices.

Let us interpret the above lemma and explain why it’s crucial to our final convergence analysis.
For simplicity, suppose the noise N = 0 and M∗ = X∗Y ⊤, since Y has orthonormal columns,
M∗Y = X∗ and the first part states that if we solve the regression approximately and clip rows with
large norms, then the approximate clipped matrix X̂ is close to X∗. The next two parts state that
as long as X̂ and X∗ are close enough, then two crucial properties are guaranteed: 1). the distance
between the space spanned by left singular vectors and X , the QR factor of the clipped matrix X , is
small and 2). the generalized incoherence of X is small. These guarantees lead to a natural inductive
argument: suppose ∆u is small enough, then by our algorithm, we know that X̂ and M∗Y are close
and consequently dist(X,U) and ρ(X) are small. These two conditions serve as a basis to prove that
for the next iteration, we still have X̂ and M∗Y is small enough and the induction can proceed.

We want to highlight the major challenges in proving these assertions. Note that the induction
argument effectively provides bounds on both subspace distance and generalized incoherence, and
both notions heavily rely on the conditioning of intermediate matrices. The original analysis of Li
et al. (2016) gives quantitative bounds on condition numbers assuming the updates are computed
exactly, but the picture becomes much less clear when the updates are only computed approximately.
Nevertheless, we prove that when the approximate updates are close enough to the optimality, then
these bounds still hold. To compute these updates to high-precision, we utilize the high-accuracy,
weighted multiple response solver being developed. One could view our proof as a mixture of
algorithm and analysis: our analysis mandates the algorithm to provide strong guarantees, and we in
turn design algorithms to achieve these goals. For more details, we refer readers to Appendix D.

4.3 MAIN RESULT

Our main theorem is as follows:
Theorem 4.6 (Formal version of Theorem 1.1). Given a noisy, possibly higher-rank observation M ∈
Rn×n where M∗ is the rank-k ground truth and N is the noise matrix that satisfies Assumption 2.3.
There is an algorithm (Algorithm 1) uses random initialization, runs in O(log(1/ϵ)) iterations and
generates an n× n matrix M̃ such that

∥M̃ −M∗∥ ≤ O(α−1kτ)∥W ◦N∥+ ϵ,

The total running time is

Õ((∥W∥0 · k + nk3) log(1/ϵ)).

Due to space limitation, we delay the proof of Theorem 4.6 to Appendix J. We want to briefly remark
that our algorithm can be easily extended to cases where both W and M are rectangular matrices of
size m× n as none of our analyses rely on the matrix being square. One could replace the factor n in
our runtime by max{m,n} when dealing with rectangular weighted low rank approximation.

4.4 COMPARISONS WITH RECENT WORKS

In this section, we provide a brief overview and comparison with other recent works, which could
be classified into 3 categories: 1). slower, exact alternating minimization for weighted low rank
approximation (Li et al., 2016); 2). faster, approximate alternating minimization for noiseless low rank
matrix completion, a strictly simpler problem (Gu et al., 2024b) and 3). new metrics for measuring
the effectiveness of low rank matrix factorizations (Yalcin et al., 2022; Zhang et al., 2024).

Compared to the result of Li et al. (2016), we significantly improve the running time from
O((∥W∥0k2 + nk3) log(1/ϵ)) to Õ((∥W∥0k + nk3) log(1/ϵ)). For moderately large k (say
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k = O(
√
n)) and dense weight matrix (say ∥W∥0 = O(n2)), the Li et al. (2016) algorithm

would take O(n3 log(1/ϵ)) time, while ours only takes Õ(n2.5 log(1/ϵ)) time. In the noisy ma-
trix completion setting Kelner et al. (2023), W is a Boolean matrix with ∥W∥0 = Õ(nk2+o(1)),
applying our algorithm leads to an overall runtime of Õ(nk3+o(1) log(1/ϵ)), nearly matches the
state-of-the-art (Kelner et al., 2023) In contrast, the Li et al. (2016) algorithm has a runtime of
Õ(nk4+o(1) log(1/ϵ)). Moreover, our analysis accounts for the approximated computation at each
step, thus it opens up the gate for further speedup. This also better depicts the picture of practical
alternating minimization algorithms, where updates are computed approximately both due to floating
point errors and efficiency concerns. We believe this also lays a foundation for theoretically verifying
why alternating minimization with approximate updates has great empirical success.

Compared to the result of Gu et al. (2024b), we note they show for the simpler problem of noiseless
matrix completion, the alternating minimization procedure could be sped up and run in Õ(∥W∥0 ·
k log(1/ϵ)) time. Our result, even in the matrix completion setting, is a strict generalization of theirs,
as they assume access to the entries of the ground truth M∗. In contrast, our model can only access
noisy entries M = M∗+N , thus our recovery result suffers an error in the form of O(kτ) · ∥W ◦N∥,
which is 0 if N = 0n×n. We also provide spectral norm error guarantee rather than Frobenius norm
error, which is the objective Gu et al. (2024b) obtains. The spectral norm is oftentimes considered
more robust than the Frobenius norm. In terms of analysis, the proof approach of Gu et al. (2024b) is
particularly geared towards noiseless matrix completion, while our analysis is much more general,
as it can account for noisy matrix completion and weighted low rank approximation. We believe
the generality and simplicity of our framework could be further extended to analyze alternating
minimization for other problems, such as robust PCA and multi-view learning.

Compared to the results of Yalcin et al. (2022); Zhang et al. (2024), we focus on providing theoretical
guarantees on the algorithm’s performance, whereas Yalcin et al. (2022); Zhang et al. (2024) focus
more on analyzing the optimization landscape and proposing complexity metrics for low rank matrix
problems than developing specific algorithms for weighted low rank approximation. Specifically, the
main contribution of Zhang et al. (2024) is developing a new complexity metric to characterize the
difficulty of the nonconvex landscape arising from the Burer-Monteiro factorization. This metric
aims to quantify when local search methods can successfully solve the factorized problem. The
main contribution of Yalcin et al. (2022) is constructing a class of low-complexity matrix completion
problem instances that can be solved in polynomial time, but for which the popular Burer-Monteiro
factorization approach fails. Yalcin et al. (2022) also shows the existence of problem instances
in this class that have exponentially many spurious local minima when using the Burer-Monteiro
factorization, even though the original problem has a unique global solution. It would be interesting to
study whether alternating minimization could also provide provable guarantees against these metrics
and problems and in turn be accelerated.

5 CONCLUSION

In this paper, we study the weighted low rank approximation problem and efficient algorithm
to solve it under mild recovery assumptions. Alternating minimization has been shown to be a
powerful algorithmic prototype for this problem (Li et al., 2016), and we provide a fast, approximate
implementation together with a robust error analysis for the framework. To this end, we improve the
running time of Li et al. (2016) from O((∥W∥0k2+nk3) log(1/ϵ)) to Õ((∥W∥0k+nk3) log(1/ϵ)).
Our error analysis also serves as a theoretical explanation of why alternating minimization works
well in practice especially when these updates are computed approximately for better efficiency.

We would also like to point out that the runtime of our algorithm is nearly linear in terms of solution
verification. Given the weight matrix W and a pair of low rank factors X and Y , it takes O(k) to
verify a single entry of W ◦ (XY ⊤) and we would need to verify a total of ∥W∥0 entries. However,
it is also worth noting that such runtime can only be achieved when random initialization is used as
if one resorts to SVD initialization, the initialization time becomes O(n3) which would dominate
the overall runtime. It will be an interesting open problem whether we can further speed up the
initialization using procedures such as random SVD and obtain a nearly linear time algorithm for
alternating minimization with SVD initialization.
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APPENDIX

Roadmap. In Section A, we provide several basic definitions and tools. In Section B, we discuss
more related work. In Section C, we describe the fast multiple response regression solver used to
speed up the alternating minimization step. In Section D, we provide our key lemmas for the update
step. In Section E, we prove our induction lemma. In Section F, we state several tools from previous
work. In Section G, we analyze the SVD initialization and present our main result. In Section H, we
present the random initialization algorithm and analyze its properties. In Section I, we show how to
prove the final guarantee of our main Theorem. In Section J, we present the complete proof of our
main theorem.

A BASIC DEFINITIONS AND ALGEBRA TOOLS

In Section A.1, we present the properties of the weight matrix. Moreover, we explain the algebra
tools which are used for later proofs. In Section A.2, we present some basic algebraic inequalities. In
Section A.3, we state a few simple facts about the norm properties.

A.1 PROPERTIES OF WEIGHT MATRIX

Here, we present the properties of weighted matrices.

Definition A.1. For weight matrix W , we define

∥W∥∞,1 := max{max
i∈[n]
∥Wi,:∥1,max

j∈[n]
∥W:,j∥1}

and

∥W∥∞,2 := max{max
i∈[n]
∥Wi,:∥2,max

j∈[n]
∥W:,j∥2}.

Lemma A.2. Let γ > 0, if ∥W − 1n1
⊤
n ∥ ≤ γn, then we have

• Part 1. ∥W − 1n1
⊤
n ∥F ≤ n1.5γ

– Further ∥W∥F ≤ n1.5γ + n

• Part 2. ∥W − 1n1
⊤
n ∥∞,1 ≤ n1.5γ

– Further ∥W∥∞,1 ≤ n1.5γ + n

Proof. Proof of Part 1. We have

∥W − 1n1
⊤
n ∥2F ≤ n∥W − 1n1

⊤
n ∥2

≤ n · (γn)2

≤ n3γ2, (2)

where the first step follows from Part 4 of Fact A.7, the second step follows from the assumption
from the lemma statement, and the last step follows from simple algebra.

Moreover, by the triangle inequality, we have

∥W∥F = ∥W − 1n1
⊤
n + 1n1

⊤
n ∥F

≤ ∥W − 1n1
⊤
n ∥F + ∥1n1

⊤
n ∥F

≤ n1.5γ + ∥1n1
⊤
n ∥F

= n1.5γ + n,

where the first step follows from simple algebra, the second step follows from the triangle inequality,
the third step follows from Eq. (2), and the last step follows from the definition of the Frobenius
norm.
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Proof of Part 2. Note that

∥W − 1n1
⊤
n ∥∞,1 ≤

√
n · ∥W − 1n1

⊤
n ∥∞,2

≤
√
n · ∥W − 1n1

⊤
n ∥

≤ n1.5γ

By the triangle inequality, we have

∥W∥∞,1 ≤ ∥W − 1n1
⊤
n ∥∞,1 + ∥1n1

⊤
n ∥∞,1

≤ n1.5γ + n.

Lemma A.3. Bounds on γ lead to bounds on ∥W∥∞,1. Specifically,

• Part 1. If γ < 1/(10n1/6), then we have

γ · (∥W∥∞,1/n)
1/2 < 1

• Part 2. If γ < 1/(10n1/2), then we have

γ · (∥W∥∞,1)
1/2 < 1

Remark A.4. In previous work (Li et al., 2016), they wrote the final bound as γ <
f/(∥W∥∞,1/n)

1/2 where f are factors not depending on γ. For example, f = poly(α−1, k, τ, µ).
Their bound technically is not complete, because ∥W∥∞,1 is also function of γ. So, in our work, our
Lemma A.3 further calculates the actual condition required by Li et al. (2016) and hence completes
their correctness proof.

Proof. Proof of Part 1. We need that

γ · (∥W∥∞,1/n)
1/2 < 1

It suffices to show that

γ · ((n1.5γ + n)/n)1/2 < 1

The above equation is equivalent to

γ · (n0.5γ + 1)1/2 < 1

It is sufficient to show that

γ1.5n0.25 + γ < 1

Thus, as long as

γ < 1/(10n1/6)

the promised bound is held.

Proof of Part 2. We need that

γ · (∥W∥∞,1)
1/2 < 1

It suffices to show that

γ · (n1.5γ + n)1/2 < 1

It is sufficient to show that

γ1.5n0.75 + γn0.5 < 1

Thus, as long as

γ < 1/(10n1/2)

we have the desired result.
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A.2 BASIC ALGEBRAIC INEQUALITIES

In this section, we introduce some basic inequalities.
Fact A.5. For any x, y and ϵ ∈ (0, 1), we have

(x+ y)2 ≥ (1− ϵ)x2 − ϵ−1y2

Proof. It suffices to show
x2 + 2xy + y2 ≥ (1− ϵ)x2 − ϵ−1y2.

Re-organizing the above terms, we have
ϵx2 + 2xy + (1 + ϵ−1)y2 ≥ 0

Thus it suffices to show that
ϵx2 + 2xy + ϵ−1y2 ≥ 0.

It is obvious that
ϵx2 + ϵ−1y2 ≥ 2|xy|.

Thus, we can complete the proof.

Fact A.6. Let n be an arbitrary positive integer. Let ai ≥ 0 and bi ≥ 0 for all i ∈ [n]. Then, the
following two inequalities hold

min
i∈[n]
{ai}

∑
i∈[n]

bi ≤
∑
i∈[n]

aibi ≤ max
i∈[n]
{ai}

∑
i∈[n]

bi

min
i∈[n]
{bi}

∑
i∈[n]

ai ≤
∑
i∈[n]

aibi ≤ max
i∈[n]
{bi}

∑
i∈[n]

ai.

A.3 PROPERTIES OF NORMS

We state some standard facts about norms without providing proofs.
Fact A.7. We have the following facts about norms:

• Part 1. For any matrix A ∈ Rn×n, let Aj denote the j-th column of A. Then we have∑n
j=1 ∥Aj∥22 = ∥A∥2F .

• Part 2. For any psd matrix A, for any vector x, x⊤Ax ≥ σmin(A).

• Part 3. Let U ∈ Rn×k denote an orthonormal basis. Then for any k × k matrix B, we have
∥UB∥ = ∥B∥.

• Part 4. For any matrix A ∈ Rn×k, we have ∥A∥ ≤ ∥A∥F ≤
√
k∥A∥.

• Part 5. For any matrix A and B, σmin(A) ≥ σmin(B)− ∥A−B∥

• Part 6. For any matrix A ∈ Rn×k and any orthonormal basis Q ∈ Rk×k. σmin(A) =
σmin(AQ).

• Part 7. For any vector x ∈ Rk and for any orthornomal basis Q ∈ Rk×k, we have
∥x∥2 = ∥Qx∥2.

A.4 GENERALIZED MATRIX INCOHERENCE

In this section, we provide a generalized notion of matrix incoherence, denoted by ρ.
Definition A.8. Let A ∈ Rn×k. The generalized incoherence of A is denoted as ρ(A), i.e.,

ρ(A) :=
n

k
·max
i∈[n]
{∥Ai,:∥22}. (3)

Claim A.9. When A ∈ Rn×k has orthonormal columns, 1 ≤ ρ(A) ≤ n
k .

Proof. Since A is an orthogonal matrix, ∥Ai,:∥22 ≤ 1 for all i ∈ [n], and thus ρ(A) ≤ n
k . In addition,∑n

i=1 ∥Ai,:∥22 = k, we have maxi∈[n]{∥Ai,:∥22} ≥ k
n and then ρ(A) ≥ 1.
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A.5 ANGLES AND DISTANCES BETWEEN SUBSPACES

An important metric we use in this paper to quantify the progress of our algorithm is the distance
between subspaces. We illustrate these definitions below.

Definition A.10. Let X,Y be n × k matrices with orthonormal columns, i.e., X⊤X = Ik and
Y ⊤Y = Ik.

We define tan θ(Y,X) to be equal to

∥Y ⊤
⊥ X(Y ⊤X)−1∥.

We define cos θ(Y,X) to be equal to

σmin(Y
⊤X);

we define sin θ(Y,X) to be equal to

∥(I − Y Y ⊤)X∥;

Let Ok be a set containing all k × k orthogonal matrices. We define dist(Y,X) to be equal to

min
Q∈Ok

∥Y Q−X∥.

Note that by their definitions, we can get

• cos θ(Y,X) = 1/∥(Y ⊤X)−1∥,

• cos θ(Y,X) ≤ 1,

• sin θ(Y,X) = ∥Y⊥Y
⊤
⊥ X∥ = ∥Y ⊤

⊥ X∥, and

• sin θ(Y,X) ≤ 1.

Lemma A.11 (Structural lemma for orthonormal columns, Lemma A.5 of Gu et al. (2024b)). We let
X and Y to be arbitrary matrices in Rn×k and both are orthogonal. Then, we can get

(Y ⊤X)⊥ = Y ⊤
⊥ X.

Lemma A.12 (Lemma A.7 of Gu et al. (2024b)). We let X and Y be two matrices in Rn×k and both
have orthonormal columns. Then, we have

tan θ(Y,X) =
sin θ(Y,X)

cos θ(Y,X)
.

Lemma A.13 (Lemma A.8 of Gu et al. (2024b)). Let X,Y ∈ Rn×k be orthogonal matrices. Then,
we can get

sin2 θ(Y,X) + cos2 θ(Y,X) = 1.

Lemma A.14 (Lemma A.9 of Gu et al. (2024b)). Let X and V be two matrices in Rn×k with
orthonormal columns, then, we can get

• tan θ(Y,X) ≥ sin θ(Y,X)

• tan θ(Y,X) ≥ 1−cos θ(Y,X)
cos θ(Y,X)

• dist(Y,X) ≥ sin θ(Y,X)

• sin θ(Y,X) + 1−cos θ(Y,X)
cos θ(Y,X) ≥ dist(Y,X)

• 2 tan θ(Y,X) ≥ dist(Y,X)
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B MORE RELATED WORK

Sketching To achieve the crucial speedup, we utilize sketching-based preconditioners and we
therefore provide an overview of the sketching literature. Roughly speaking, given a tall dense matrix
A, the goal of sketching is to design a family of random matrices Π such that, if we randomly sample
S ∼ Π, we have

• S has much smaller number of rows than A (thus the matrix SA is close to a square matrix
rather than rectangular);

• SA preserves singular values of A with high probability;
• S can be quickly applied to A.

Given such a family Π, it is natural to apply an S to A then solve the smaller problem directly.
This is the so-called sketch-and-solve paradigm. Sketch-and-solve has led to the development
of fast algorithms for many problems, such as linear regression (Clarkson & Woodruff, 2013;
Nelson & Nguyên, 2013; Song et al., 2023f;d), linear and kernel SVMs (Gu et al., 2025), low rank
approximation with Frobenious norm (Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013), matrix
CUR decomposition (Boutsidis & Woodruff, 2014; Song et al., 2017; 2019c), weighted low rank
approximation (Razenshteyn et al., 2016), entrywise ℓ1 norm low rank approximation (Song et al.,
2017; 2019b), tensor regression (Song et al., 2021a; Reddy et al., 2022; Diao et al., 2018; 2019),
tensor low rank approximation (Song et al., 2019c), tensor power method (Deng et al., 2023b), and
general norm column subset selection (Song et al., 2019a).

As modern machine learning centers around algorithms that are iterative in nature. Sketching can
also be adapted to an iterative process to reduce the cost of iteration. This is the so-called Iterate-
and-sketch approach and it has led to fast algorithms for many fundamental problems, such as linear
programming (Cohen et al., 2021; Song & Yu, 2021; Jiang et al., 2021), empirical risk minimization
(Lee et al., 2019; Qin et al., 2023), semi-definite programming (Gu & Song, 2022; Song et al., 2023e),
John Ellipsoid computation (Song et al., 2022c), Frank-Wolfe algorithm (Xu et al., 2021; Song et al.,
2022a), hamming estimation (Hu et al., 2024), reinforcement learning (Shrivastava et al., 2023), k
means clustering (Liang et al., 2022), online weighted matching problem (Song et al., 2025), barrier
functions (Gu et al., 2024a), softmax-inspired regression (Deng et al., 2023a; Gao et al., 2025; Li
et al., 2023b; Sinha et al., 2023; Li et al., 2023a; Song et al., 2023a; 2024), leverage score inspired
regression (Li et al., 2024), federated learning (Song et al., 2023b; Bian et al., 2023), discrepancy
problem (Deng et al., 2022; Song et al., 2022b), non-convex optimization (Song et al., 2021b;c;
Alman et al., 2023; Zhang, 2022), and attention approximation (Gao et al., 2023a;b).

(Weighted) low rank approximation Low rank approximation has emerged as a crucial technique
in machine learning and numerical linear algebra, enabling the extraction of essential structures
from high-dimensional data while reducing computational costs. The goal is to find X,Y ∈ Rn×k

which minimizes ∥M −XY ⊤∥F . It has been applied to numerous fields, including training deep
neural networks (Song et al., 2021c), approximating attention mechanisms (Alman & Song, 2023;
2024; Chen et al., 2024), maintaining dynamic Kronecker products (Song et al., 2023c), and tensor
product regression (Reddy et al., 2022). In many practical scenarios, certain entries of M hold greater
significance than others, giving rise to weighted low-rank approximation, where the objective is to
minimize ∥W ◦ (M −XY ⊤)∥F for some weight matrix W ∈ Rn×n

≥0 (Li et al., 2016; Razenshteyn
et al., 2016; Gu et al., 2024b; Liang et al., 2024).

C WEIGHTED MULTIPLE RESPONSE REGRESSION SOLVERS

In this section, we show how to solve weighted multiple response regression by solving standard
linear regressions. We present randomized and fast regression solvers based on sketching and
preconditioning.

C.1 GENERIC REDUCTION AND ERROR CONVERSION

In this section, we present a generic framework to reduce the weighted multiple response regression
problem to solving O(n) ordinary least-square regressions. This simple and efficient reduction enables
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us to deploy fast regression solvers to handle the approximate updates in alternating minimization. We
also present a tool that converts the relative error on the regression cost to the quality of approximate
solution.

The first lemma states that the cost of a weighted multiple response regression can be decomposed
into a summation of n weighted linear regressions.

Claim C.1. Given matrices M,W ∈ Rn×n and X,Y ∈ Rn×k, we have

min
X∈Rn×k

∥M −XY ⊤∥2W =

n∑
i=1

min
Xi,:∈Rk

∥D√
Wi

Y Xi,: −D√
Wi

Mi,:∥22,

and

min
Y ∈Rn×k

∥M −XY ⊤∥2W =

n∑
i=1

min
Yi,:∈Rk

∥D√
Wi

XYi,: −D√
Wi

M:,i∥22.

Proof. Since the two equations can be proved in a similar way, we only prove the first one.

min
X∈Rn×k

∥M −XY ⊤∥2W = min
X∈Rn×k

∑
i,j

Wi,j(XY ⊤ −M)2i,j

= min
X∈Rn×k

n∑
i=1

∥D√
Wi

(Y Xi,: −Mi,:)∥22

= min
X∈Rn×k

n∑
i=1

∥D√
Wi

Y Xi,: −D√
Wi

Mi,:∥22

=

n∑
i=1

min
Xi,:∈Rk

∥D√
Wi

Y Xi,: −D√
Wi

Mi,:∥22,

where the 1st step is due to ∥A∥2W ’s definition, the 2nd step is by rewriting each row as an independent
regression problem, the 3rd step follows from simple algebra, and the last step follows from the
fact that there is no X in minX∈Rn×k

∑n
i=1 ∥D√

Wi
Y Xi,: −D√

Wi
Mi,:∥22 but only Xi,:. Thus, we

complete the proof.

The next lemma provides a simple conversion of weighted linear regression to ordinary least-squares,
via a scaling trick.

Lemma C.2 (Lemma B.6 of Gu et al. (2024b)). Let A be a real n× d matrix with n ≥ d, b be an
n-dimensional real vector and w be a non-negative n-dimensional vector (weight). Let ϵ0 ∈ (0, 0.1)
be accuracy parameter and δ0 ∈ (0, 0.1) controls failure probability. Suppose that T (n, d, ϵ0, δ0) is
the running time of a regression solver, and x′ ∈ Rd is the output of the regression solver satisfying

∥Ax′ − b∥2 ≤ (1 + ϵ0) min
x∈Rd

∥Ax− b∥2

with probability at least 1− δ0.

Then, there exists an algorithm whose running time is

O(nnz(A)) + T (n, d, ϵ0, δ0)

and outputs a vector x′ ∈ Rd, which satisfy

∥Ax′ − b∥w ≤ (1 + ϵ0) min
x∈Rd

∥Ax− b∥w

with probability at least 1− δ0.

One of the main reasons Li et al. (2016) resorts to exact weighted multiple response regression is that
most approximate solvers provide backward error guarantees on the cost of regression. On the other
hand, we would like the approximate solution of the regression to be close to the exact solution. The
following lemma converts the backward error on the cost, to the forward error on the solution.
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Lemma C.3 (Backward error, Lemma B.5 in Gu et al. (2024b)). Let A be a real n× d matrix with
n ≥ d, b be an n-dimensional real vector. Let xOPT be the exact solution to the regression problem

min
x
∥Ax− b∥2.

Suppose that there exists a vector x′ ∈ Rd, satisfying

∥Ax′ − b∥2 ≤ (1 + ϵ) min
x∈Rd

∥Ax− b∥2.

Then, we have

∥x′ − xOPT∥2 ≤ O(
√
ϵ) · 1

σmin(A)
· ∥AxOPT − b∥2.

Before wrapping up this section, we present a meta algorithm for solving weighted multiple response
regression.

Algorithm 3 Fast, high precision solver for weighted multiple response regression
1: procedure MULTIPLEREGRESSION(A ∈ Rn×n, B ∈ Rn×k,W ∈ Rn×n)
2: ▷ Ai is the i-th column of A
3: ▷ Wi is the i-th column of W
4: ▷ DWi

is a diagonal matrix where we put Wi on diagonal, other locations are zero
5: Xi ← minx∈Rk ∥DWi

Bx−DWi
Ai∥2

6: return X ▷ X ∈ Rk×n

7: end procedure
8:
9: procedure FASTMULTIPLEREGRESSION(A ∈ Rn×n, B ∈ Rn×k,W ∈ Rn×n)

10: ▷ Ai is the i-th column of A
11: ▷ Wi is the i-th column of W
12: ▷ DWi is a diagonal matrix where we put Wi on diagonal, other locations are zero
13: Xi ← HIGHPRECISIONREG(DWiB,DWiAi, ϵ, δ) ▷ Algorithm 2
14: return X ▷ X ∈ Rk×n

15: end procedure

C.2 LOW ACCURACY SOLVER

We provide an algorithm that uses a sparse sketching matrix to obtain a low accuracy solution (inverse
polynomial dependence on accuracy parameter ϵ).
Definition C.4 (OSNAP matrix, (Nelson & Nguyên, 2013)). For every sparsity parameter s, target
dimension m, and positive integer d, the OSNAP matrix with sparsity s is defined as

Sr,j =
1√
s
· δr,j · σr,j ,

for all r ∈ [m], j ∈ [d], where σr,j are independent Rademacher random variables and δr,j are
Bernoulli random variables with

• For every i ∈ [d],
∑

r∈[m] δr,i = s, which means each column of S contains exactly s

nonzero entries.

• For all r ∈ [m] and i ∈ [d], E[δr,i] = s/m.

• ∀T ∈ [m] × [d], E[
∏

(r,i)∈T δr,i] ≤
∏

(r,i)∈T E[δr,i] = (s/m)|T |, i.e., δr,i are negatively
correlated.

Crucially, the OSNAP matrix produces a subspace embedding with nearly linear in d row count.
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Lemma C.5 ((Cohen, 2016)). Let S ∈ Rm×n be an OSNAP matrix as in Def. C.4.

Let ϵ, δ ∈ (0, 1) be parameters.

For any integer d ≤ n, if

• m = O(ϵ−2d log(d/δ));

• s = O(ϵ−1 log(d/δ)),

then an s-sparse OSNAP matrix S is an (ϵ, δ) oblivious subspace embedding, i.e., for any fixed
orthonormal basis U ∈ Rn×d with probability at least 1− δ, and the singular values of SU lie in
[1− ϵ, 1 + ϵ].

To distinguish with ϵ, δ for our final algorithm, here we use ϵ0, δ0 for the subroutine (approximate
linear regression).

Lemma C.6 (Input sparsity and low accuracy regression). Given a matrix A ∈ Rn×d and a vector
b ∈ Rn, let ϵ0 ∈ (0, 0.1) and δ0 ∈ (0, 0.1), there exists an algorithm that takes time

O((ϵ−1
0 nnz(A) + ϵ−2

0 d3) · log(d/δ0))

and outputs x′ ∈ Rd such that

∥Ax′ − b∥2 ≤ (1 + ϵ0) min
x∈Rd

∥Ax− b∥2

holds with probability 1− δ0.

Proof. To obtain desired accuracy and probability guarantee, we pick S to be an OSNAP (Defini-
tion C.4) with

m = O(ϵ−2
0 d log(d/δ0))

and

s = O(ϵ−1
0 log(d/δ0)).

We simply apply S to A then solve the sketched regression minx∈Rd ∥SAx− Sb∥2.

• As S is a matrix where each column only has s nonzero entries, the time to compute SA is

O(snnz(A)) = O(ϵ−1
0 nnz(A) log(d/δ0)).

• The regression can then be solved via normal equation, i.e.,

(A⊤S⊤SA)†A⊤S⊤b.

The time to form the Gram matrix is

O(md2),

computing the d×d inversion takes O(d3) time, and forming the final solution takes another

O(md2)

time. Overall, this gives a runtime of

O(ϵ−2
0 d3 log(d/δ0)).

Thus, the overall runtime is

O((ϵ−1
0 nnz(A) + ϵ−2

0 d3) · log(d/δ0)).
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C.3 HIGH ACCURACY SOLVER

Our key algorithmic ingredient is a high accuracy, iterative and sketching-based solver for regression.
The sketching matrix we will be using is the dense subsampled randomized Hadamard transform
SRHT due to loss of structure in the iterative process.
Definition C.7 (Subsampled randomized Hadamard transform (SRHT), (Lu et al., 2013)). Let P
be a random sampling matrix in {0, 1}m×n and for each row of P , there exists a 1 at a uniformly
random position.

Let H ∈ {−1, 1}n×n be the Hadamard matrix.

Let D ∈ Rn×n be a diagonal matrix, whose diagonal entries are all in {−1,+1} with the same
probability.

We define the SRHT matrix S ∈ Rm×n as

S :=
1√
m
PHD.

Remark C.8. For a real n× d matrix A it takes O(nd log n) time to apply S to A.
Lemma C.9. Let S ∈ Rm×n be an SRHT matrix (see Definition C.7), ϵ, δ ∈ (0, 1) be parameters.
Let d be an arbitrary integer, which is less than or equal to n. Suppose m = O(ϵ−2d log2(n/δ)). Let
U ∈ Rn×d be a fixed orthonormal basis.

We say that S is an (ϵ, δ)-oblivious subspace embedding if the singular values of the matrix SU are
in the interval [1− ϵ, 1 + ϵ], with probability at least 1− δ.
Lemma C.10 (Dense and high accuracy regression, Lemma B.1 in Gu et al. (2024b)). Let A be
a real n × d matrix, b be a real n-dimensional vector, ϵ ∈ (0, 0.1) be an accuracy parameter and
δ ∈ (0, 0.1) be the failure probability. Then, there exists an algorithm that takes time

O((nd log n+ d3 log2(n/δ)) log(1/ϵ))

and outputs a vector x′ ∈ Rd satisfying

∥Ax′ − b∥2 ≤ (1 + ϵ) min
x∈Rd

∥Ax− b∥2

with probability at least 1− δ.

D KEY PROPERTY FOR ROBUST UPDATE

In this section, we prove crucial properties of the algorithm that enable the approximate updates. In
Section D.1, we formally define several necessary notations needed to analyze our robust updated
step. In Section D.2, we analyze the key properties of our robust update step.

D.1 DEFINITIONS FOR UPDATE STEP

We present a closed-form solution for linear regression via normal equation.
Fact D.1. Define x := argminx ∥Ax− b∥2, then we have

x = (A⊤A)−1A⊤b.

Similarly, for weighted regression, we define

x := argmin
x
∥DWiAx−DWib∥2.

Then, we have

x = (A⊤DWi
A)−1A⊤DWi

b

Definition D.2. We define ξ as

ξ := µk/n.

ξ captures the maximum incoherence of the ground truth.

25



Published as a conference paper at ICLR 2025

Definition D.3. We define η ≥ 1 to be parameter that distinguish random and SVD initialization.

• For random initialization, we set η := µk.

• For SVD initialization, we set η := 1.

We next define the value choice of γ, which controls how far away the weight matrix W can be from
the all-1’s matrix.

Definition D.4. Let

γ ≤ 1

100
· α

poly(k, τ, µ) · nc0

where c0 is a fixed constant between (0, 1/2].

For the convenience of analysis, we define the following threshold parameters:

Definition D.5. Let C ≥ 105 denote a sufficiently large constant. We define

∆d := Cα−1.5µ1.5k2γ(∥W∥∞,1/n)
1/2 + Cα−1ηµk2τ0.5γ

∆f := Cα−1ηk.

The choice of ∆d is decided in Eq. (9) and Eq. (15). The choice of ∆f is decided in Eq. (16).

The next two definitions capture the error gap of our algorithm.

Definition D.6. Let ∆d and ∆f be defined as Definition D.5. We define

∆u := ∆d · dist(Y, V ) + ∆f · ∥W ◦N∥.

and

∆g := 0.01∆d · dist(Y, V ) + 0.01∆f · ∥W ◦N∥+ 2
√
ϵsk

By properly controlling the error ϵsk, we can show that ∆g is a constant factor smaller than ∆u.

Claim D.7. If the following condition holds

ϵsk ≤ 10−4∆2
f · ∥W ◦N∥2,

then we have

∆g ≤ 0.1∆u.

Proof. We have

∆g = 0.01∆d · dist(Y, V ) + 0.01∆f · ∥W ◦N∥+ 2
√
ϵsk

≤ 0.01∆d · dist(Y, V ) + 0.01∆f · ∥W ◦N∥+ 0.02∆f · ∥W ◦N∥
≤ 0.1∆u

where the second step follows from condition on ϵsk, and the last step follows from the definition of
∆u.

By setting the error and failure probability appropriately, we can show the extra blowups in our
algorithm are of the order poly log n.

Claim D.8. By the choice of ϵsk, we have

log(n/ϵsk) = O(log(n))

By choice of failure probability (δ0) of sketch,

log(n/δ0) = log(n log(1/ϵ))
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Proof. By assumption on W , we can see that

∥W∥∞ ≤ poly(n).

Since W ◦N is a noisy part, it is also natural to consider

∥W ◦N∥∞ ≤ poly(n),

otherwise, it is not interesting.

Since the noise cannot be 0, thus it is natural to assume that

∥N∥∞ ≥ 1/ poly(n).

Thus, we know

1/ poly(n) ≤ ∥W ◦N∥F ≤ poly(n). (4)

We also know that k ≤ n.

Now, we can compute

log(n/ϵsk) ≤ O(log(n/(∆2
f∥W ◦N∥2F )))

≤ O(log(n/∥W ◦N∥2F ))
≤ O(log(n)),

where the first step follows from we choose ϵsk = Θ(∆2
f∥W ◦N∥2F ), the second step follows from

∆f ≥ 1, the third step follows from ∥W ◦N∥2F ≥ 1/ poly(n) (see Eq. (4)).

Sum over all the T = O(log(1/ϵ)) iterations, so

log(n/δ0) = O(log(n log(1/ϵ))).

D.2 KEY LEMMA FOR ROBUST UPDATE STEP

Table 2: For convenience, we provide a table to summarize the notations in Lemma D.9.
Notation Meaning
X̃ Optimal matrix for exact regression
X Clipped matrix of X̃
X⃗ Optimal matrix for sketched regression
X̂ Clipped matrix of X⃗

Algorithm 4 Clipping rows whose norms are larger than a constant factor of ξ.

1: procedure CLIP(X̃ ∈ Rn×k)
2: ξ ← µk

n
3: for i = 1 to n do
4: if ∥X̃i,:∥22 ≤ 4ξ then
5: Xi,: ← X̃i,:

6: else
7: Xi,: ← 0
8: end if
9: end for

10: return X
11: end procedure

Here, we analyze the key properties of the robust update step.
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Lemma D.9 (Key lemma for update step). Let Y ∈ Rn×k be a (column) orthogonal matrix. Let ξ be
defined as Definition D.2. Let ∆u be defined as Definition D.6.

We define matrix X̃ ∈ Rn×k as follows:

X̃ := arg min
X∈Rn×k

∥M −XY ⊤∥W ,

We define matrix X ∈ Rn×k as follows

Xi,: :=

{
X̃i,: if ∥X̃i,:∥2 ≤ 4ξ

0 otherwise

We define X ∈ Rn×k, R ∈ Rk×k to the QR decomposition of X , i.e. X = XR.

We define X⃗ ∈ Rn×k to be the sketch solution such that for all i ∈ [n]

∥X⃗i,: − X̃i,:∥2 ≤ ϵsk/n.

We define X̂ ∈ Rn×k to denote the clip of the sketched solution. Recall that M∗ = UΣV ⊤. Then,

• Part 1.

∥X̂ − UΣV ⊤Y ∥2F ≤ ∆2
u;

• Part 2. If ∆u < 0.1σmin(M
∗), then

dist(U,X) ≤ 8∆u/σmin(M
∗)

• Part 3. If ∆u < 0.1σmin(M
∗), then

ρ(X) ≤ 8µ/σmin(M
∗)2

Proof. Proof of Part 1. Recall the weighted multiple response regression

min
X∈Rn×k

∥M −XY ⊤∥2W ,

The above problem can be written as n different regression problems. The i-th linear regression has
the formulation

min
Xi,:∈Rk

∥D√
Wi

Y Xi,: −D√
Wi

Mi,:∥2.

We have

X̃⊤
i,: =M⊤

i,: ·DWiY (Y ⊤DWiY )−1

= ((M∗)⊤i,: +N⊤
i,:) ·DWi

Y (Y ⊤DWi
Y )−1

= (M∗)⊤i,: ·DWiY (Y ⊤DWiY )−1 +N⊤
i,: ·DWiY (Y ⊤DWiY )−1, (5)

where the first step follows from the Fact D.1, and the second step follows from M⊤
i,: = (M∗)⊤i,:+N⊤

i,:
(because M = M∗ +N ), and the third step follows from simple algebra.

Given M∗ = UΣV ⊤, the first term in Eq. (5) can be rewritten as follows:

(M∗)⊤i,: ·DWi
Y (Y ⊤DWi

Y )−1

= U⊤
i,: · ΣV ⊤DWiY (Y ⊤DWiY )−1

= U⊤
i,: · ΣV ⊤(Y Y ⊤ + Y⊥Y

⊤
⊥ )DWi

Y (Y ⊤DWi
Y )−1

= U⊤
i,: · ΣV ⊤Y Y ⊤DWi

Y (Y ⊤DWi
Y )−1 + U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y (Y ⊤DWi
Y )−1

= U⊤
i,: · ΣV ⊤Y + U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y (Y ⊤DWi
Y )−1, (6)
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where the first step follows from the fact that (M∗)⊤i,: = U⊤
i,:ΣV

⊤, the second step follows from
I = Y Y ⊤ + Y⊥Y

⊤
⊥ , the third step follows from simple algebra, and the last step follows from

AA−1 = I .

Combining Eq. (5) and Eq. (6) we have

X̃⊤
i,: − U⊤

i,:ΣV
⊤Y = U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y (Y ⊤DWi
Y )−1 +N⊤

i,:DWi
Y (Y ⊤DWi

Y )−1 (7)

We define set T ⊂ [n] as follows

T := {i ∈ [n] | σmin(Y
⊤DWiY ) ≤ 0.25α/η}. (8)

We upper bound |T | in different ways for SVD initialization and random initialization.

SVD case. We have η = 1. Using Lemma F.1 and choose ϵ = Θ(1), we have

|T | ≤ 105 · α−3µ2k3γ2 · ∥W∥∞,1 · ∥V − Y ∥2

= 105 · α−3µ2k3γ2 · µk · (∥W∥∞,1/n) · ∥V − Y ∥2/ξ
≤ 0.1∆2

d · dist(V, Y )2/ξ

≤∆2
g/ξ

where the second step follows from ξ = µk/n, the third step follows from Definition of ∆d

(Definition D.5).

(In particular, the third step requires

∆d ≥ Ω(α−1.5µ1.5k2γ · (∥W∥∞,1/n)
1/2) (9)

)

Random case. We have η = µk. Using Lemma H.1, with high probability we know that |T | = 0 ≤
∆2

g/ξ.

In the next analysis, we unify the SVD and random proofs into same way.

For each i ∈ [n]\T , we have

∥X̃⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 = ∥(U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y +N⊤
i,:DiY )(Y ⊤DWi

Y )−1∥22
≤ ∥(U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y +N⊤
i,:DWi

Y )∥22 · ∥(Y ⊤DWi
Y )−1∥2

≤ 20α−2η2 · ∥(U⊤
i,:ΣV

⊤Y⊥Y
⊤
⊥ DWiY +N⊤

i,:DWiY )∥22
≤ 20α−2η2 · 2(∥U⊤

i,:ΣV
⊤Y⊥Y

⊤
⊥ DWi

Y ∥22 + ∥N⊤
i,:DWi

Y ∥22)
≤ 40α−2η2 · (∥U⊤

i,:∥22∥Σ∥2∥V ⊤Y⊥Y
⊤
⊥ DWiY ∥2 + ∥N⊤

i,:DWiY ∥22)

≤ 40α−2η2 · (µk
n
∥Σ∥2∥V ⊤Y⊥Y

⊤
⊥ DWiY ∥2 + ∥N⊤

i,:DWi
Y ∥22) (10)

where the first step follows from Eq. (7), the second step follows from ∥Ax∥2 ≤ ∥A∥ · ∥x∥2, the
third step follows from σmin(Y

⊤DWiY ) ≥ 0.25α/η (for all i ∈ [n]\T , see Eq. (8)), the fourth step
follows from (a+ b)2 ≤ 2a2 + 2b2, the fifth step follows from ∥Ax∥2 ≤ ∥A∥ · ∥x∥2, the sixth step
follows from ∥U⊤

i,:∥2 ≤ µk/n.

Taking the summation over i ∈ [n]\T coordinates (for Eq. (10)), we have∑
i∈[n]\T

∥X̃⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≤

∑
i∈[n]\T

40α−2η2 · (µk
n
∥Σ∥2∥V ⊤Y⊥Y

⊤
⊥ DWi

Y ∥2 + ∥N⊤
i,:DWi

Y ∥22)

(11)

For the first term in Eq. (11) (ignore coefficients 40α−2η2 and µk
n ∥Σ∥

2), we have∑
i∈[n]\T

∥V ⊤Y⊥Y
⊤
⊥ DWi

Y ∥2 ≤ nγ2ρ(Y )k3 dist(Y, V )2
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≤ nγ2µσ−1
min(Σ)k

3 dist(Y, V )2 (12)

where the first step follows from Lemma F.2, the last step follows from ρ(Y ) ≤ µ/σmin(Σ).

For the second term in Eq. (11) (ignore coefficients 40α−2η2), we have

∑
i∈[n]\T

∥N⊤
i,:DWiY ∥22 ≤

∑
i∈[n]

∥N⊤
i,:DWiY ∥22

= ∥(W ◦N)Y ∥2F
≤ k∥(W ◦N)Y ∥2. (13)

where the last step follows from Fact A.7.

Loading Eq. (12) and Eq. (13) into Eq. (11), we have∑
i∈[n]\T

∥X̃⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≤ 40α−2η2 · (µk

n
∥Σ∥2 · nγ2µσ−1

min(Σ)k
3 dist(Y, V )2 + k∥W ◦N∥2)

≤ 40α−2η2 · (µ2k4τγ2) · dist(Y, V )2 + 40α−2η2k∥W ◦N∥2 (14)

where the last step follows from ∥Σ∥ = 1 and τ = σmax(Σ)/σmin(Σ).

Thus, we have∑
i∈[n]\T

∥X̃⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≤ 40α−2η2 · (µ2k4τγ2) · dist(Y, V )2 + 40α−2η2k∥W ◦N∥2

≤ 0.01∆2
d · dist(Y, V )2 + 0.01∆2

f · ∥W ◦N∥2

≤ 0.1∆2
g

where the first step follows from Eq. (14), the second step follows from Definition D.5, and the last
step follows from Definition D.6.

(In particular, the second step above requires

∆d ≥ Ω(α−1ηµk2τ0.5γ) (15)

and

∆f ≥ Ω(α−1ηk) (16)

)

By Definition D.6 and choosing ϵsk to be sufficiently small as Claim D.7, we know that

∆2
g ≤ 0.01∆2

u

Then, we can show∑
i∈[n]\T

∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≤ 2

∑
i∈[n]\T

∥X̃⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 + 2

∑
i∈[n]\T

∥X⃗⊤
i,: − X̃⊤

i,:∥22

≤∆2
g,

Note that

∥U⊤
i,:ΣV

⊤Y ∥22 ≤ µk/n = ξ.

If ∥X⃗⊤
i,:∥22 ≥ 4ξ, then

∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥2 ≥ 2

√
ξ −

√
ξ ≥

√
ξ

which implies that

∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≥ ξ. (17)
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We define set S ⊂ [n] as follows

S := {i ∈ [n]\T | ∥X⃗⊤
i,:∥22 ≥ 4ξ}.

Then we have

|S| = |{i ∈ [n]\T | ∥X⃗⊤
i,:∥22 ≥ 4ξ}|

≤ |{i ∈ [n]\T | ∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 ≥ ξ}|

≤ ∆2
g/ξ.

where the first step follows from the definition of S, the second step follows from Eq. (17), the third
step follows from

∑
i∈[n]\T ∥X⃗⊤

i,: − U⊤
i,:ΣV

⊤Y ∥2 ≤ ∆2
g .

We can show

∥X̂ − UΣV ⊤Y ∥2F =

n∑
i=1

∥X̂⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22

=
∑

i∈T∪S

∥X̂⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 +

∑
i/∈T∪S

∥X̂⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22

=
∑

i∈T∪S

∥X̂⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22 +

∑
i/∈S

∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22

≤
∑

i∈T∪S

2(∥X̂⊤
i,:∥22 + ∥U⊤

i,:ΣV
⊤Y ∥22) +

∑
i/∈T∪S

∥X⃗⊤
i,: − U⊤

i,:ΣV
⊤Y ∥22

≤ |T ∪ S| · 2 · (4ξ + ξ) + ∆2
g

= |T ∪ S| · 10ξ +∆2
g

≤ 50∆g2

≤∆2
u

where the first step follows from the definition of ∥X̂ − UΣV ⊤Y ∥2F , the second step follows from
S ⊆ [n], the third step follows from X̂⊤

i,: = X⃗⊤
i,: when i /∈ S, the fourth step follows from the

triangle inequality, the fifth step follows from ∥X̂⊤
i,:∥2 ≤ 4ξ and ∥U⊤

i,:ΣV
⊤Y ∥2 ≤ ξ, and the sixth

step follows from |T ∪ S| ≤ 2∆2
g/ξ, the last step follows from Claim D.7.

Proof of Part 2. We let B = ΣV ⊤Y and have

sin θ(U,X) = ∥U⊤
⊥X∥

= ∥U⊤
⊥ (X − UB)R−1∥

≤ ∥(X − UB)∥ · ∥R−1∥

=
∥(X − UB)∥
σmin(X)

≤ ∆u

σmin(X)
, (18)

where the first step follows from the definition of

sin θ(U,X)

(see Definition A.10), the second step follows from

X = (X − UB)R−1,

the 3rd step is due to the Cauchy-Schwarz inequality, and the 4th step is because of

∥R−1∥ = 1

σmin(X)
,
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and the 5th step follows from

∥(X − UΣV ⊤Y )∥2 ≤ ∆2
u,

which was proved in part 1, and it infers ∥(X − UB)∥ ≤ ∆u for B = ΣV ⊤Y .

Using ∥(X − UB)∥ ≤ ∆u, we have

σmin(X) ≥ σmin(UB)−∆u

= σmin(UΣV ⊤Y )−∆u

= σmin(ΣV
⊤Y )−∆u

≥ σmin(M
∗) cos θ(Y, V )−∆u

≥ σmin(M
∗)/2−∆u

≥ σmin(M
∗)/4, (19)

where the second step follows from how we defined B, the third step follows from U has orthonormal
columns, the third step follows from

σmin(ΣV
⊤Y ) ≥ σmin(M

∗) cos θ(Y, V ),

where the forth step follows from cos ≥ 1/2, and ∆u ≤ σmin(M
∗)/10.

Then, by combining Eq. (18) and Eq. (19), we have

sin θ(U,X) ≤ 1

σmin(X)
∆u

≤ 4∆u/σmin(M
∗). (20)

Therefore,

dist(U,X) ≤ 2 sin θ(U,X)

≤ 8∆u/σmin(M
∗).

where the first step follows from Part 5 of Lemma A.14, and the last step follows from Eq. (20).

Proof Part 3. Given X = XR, we have X
⊤
i,: = X⊤

i,:R and

∥Xi,:∥22 ≤ ∥Xi,:∥22∥R−1∥2

≤ ξ

σmin(X)2

≤ ξ

(σmin(M∗)− 2∆u)2

≤ 8ξ/σmin(M
∗)2, (21)

where the first step follows from X
⊤
i,: = X⊤

i,:R and Cauchy-Schwarz inequality, the second
step follows from ∥Xi,:∥2 ≤ ξ and ∥R−1∥ = 1

σmin(X)
, the third step follows from 1

σmin(X)2
≤

1
(σmin(M∗)−2∆u)2

, and the last step follows from ∆u ≤ 0.1σmin(M
∗).

To see this, we have

∥R−1∥2 = λmax(R
−1(R−1)⊤)

= λmax((X
⊤
X)−1)

=
1

λmin(X
⊤
X)

=
1

σ2
min(X)

,
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where the first step follows from ∥A∥2 = λmax(AA⊤), the second step follows from X
⊤
X = R⊤R,

the third step follows from λmax(A
−1) = λmin(A)−1, and the last step follows from λ(A⊤A) =

σ2(A).

Then,

ρ(X) = max
i∈[n]

n

k
∥Xi,:∥22

=
n

k
max
i∈[n]
∥Xi,:∥22

≤ n

k

8ξ

σmin(M∗)2

=
8µ

σmin(M∗)2
,

where the first step follows from the definition of ρ(X), the second step follows from simple algebra,
the third step follows from Eq. (21), and the last step follows from ξn

k = µ.

E THE ANALYSIS OF THE INDUCTION LEMMA

The goal of this section is to prove induction.

Lemma E.1. Suppose

∆u ≤ ∆d · dist(Yt, V ) + ∆f · ∥W ◦N∥.

and

∆d ≤
1

100
σmin(M

∗)

For any t ≥ 1,

dist(Xt, U) ≤ 1

2t
+ 100σmin(M

∗)−1 ·∆f · ∥W ◦N∥,

dist(Yt, V ) ≤ 1

2t
+ 100σmin(M

∗)−1 ·∆f · ∥W ◦N∥, (22)

Proof. By using induction, we show that Eq. (22) holds.

Base case: By Lemma F.3, Y1 satisfies

dist(Y1, V ) ≤ 1

2
+ 8σmin(M

∗)−1 ·∆f · ∥W ◦N∥

Inductive case: Suppose that it holds for the first t cases. By definition of ∆u, we have

∆u ≤ ∆d · dist(Yt, V ) + ∆f · ∥W ◦N∥ (23)

We have

dist(Xt+1, U)

≤ 8

σmin(M∗)
·∆u

=
8

σmin(M∗)
· (∆d · dist(Yt, V ) + ∆f · ∥W ◦N∥)

≤ 1

2
dist(Yt, V ) + 8σmin(M

∗)−1 ·∆f · ∥W ◦N∥

where the first step follows from Part 2 of Lemma D.9, the second step follows from Eq. (23) the last
step follows from ∆d/σmin(M

∗) ≤ 1/100.
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F TOOLS FROM PREVIOUS WORK

In this section, we state several tools from previous work. In Section F.1, we introduce a varied
version of a Lemma from Li et al. (2016) to bound the eigenvalues. In Section F.2, we bound
∥V ⊤Y⊥(Y⊥)

⊤DWi
Y ∥2. In Section F.3, we summarize the base case lemma.

F.1 BOUNDING EIGENVALUES

Now, in this section, we start to bound the eigenvalues.

Lemma F.1 (A variation of Lemma 10 in Li et al. (2016)). Let Y be a (column) orthogonal matrix in
Rn×k. Let ϵ ∈ (0, 1). We have

|{i ∈ [n] | σmin(Y
⊤DWi

Y ) ≤ (1− ϵ)α}| ≤ 104 · µ
2k3γ2

ϵ4α3
· ∥W∥∞,1 · ∥V − Y ∥2.

Proof. Let j be an arbitrary integer in [n]. Let g be greater than 0. j is called “good” if

∥Yj − Vj∥22 ≤ g2.

We define Sg ⊂ [n] as follows

Sg := {j ∈ [n] | ∥Yj − Vj∥22 ≤ g2}.

For convenience, we define Sg ⊂ [n] as follows

Sg := [n]\Sg.

We choose g to satisfy the following condition

g2 =
ϵ2α

20∥W∥∞,1
. (24)

Let a be an arbitrary unit vector in Rk. Thus, we have

a⊤Y ⊤DWiY a =
∑
j∈[n]

(DWi)j⟨a, Yj⟩2

≥
∑
j∈Sg

(DWi)j⟨a, Yj⟩2

=
∑
j∈Sg

(DWi
)j(⟨a, Vj⟩+ ⟨a, Yj − Vj⟩)2

≥ (1− ϵ/4)
∑
j∈Sg

(DWi)j⟨a, Vj⟩2 − 4ϵ−1
∑
j∈Sg

(DWi)j⟨a, Yj − Vj⟩2

≥ (1− ϵ/4)
∑
j∈Sg

(DWi
)j⟨a, Vj⟩2 − 4ϵ−1g2

∑
j∈Sg

(DWi
)j

≥ (1− ϵ/4)
∑
j∈Sg

(DWi
)j⟨a, Vj⟩2 − 4ϵ−1g2

∑
j∈[n]

(DWi
)j

≥ (1− ϵ/4)
∑
j∈[n]

(DWi
)j⟨a, Vj⟩2 −

∑
j∈Sg

(DWi
)j⟨a, Vj⟩2 − 4ϵ−1g2

∑
j∈[n]

(DWi
)j

≥ (1− ϵ/4)
∑
j∈[n]

(DWi)j⟨a, Vj⟩2 −
µk

n

∑
j∈Sg

(DWi)j − 4ϵ−1g2
∑
j∈[n]

(DWi)j , (25)

where the first step follows from simple algebra, the second step follows from Sg ⊂ [n], the
third step follows from the property of the inner product, the fourth step follows from Fact A.5,
the fifth step follows from the definition of Sg, the sixth step follows from (DWi)j ≥ 0, the
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seventh step follows from 1 − ϵ/4 ≤ 1, and the last step follows from the property of V (e.g.
⟨a, Vj⟩2 ≤ ∥a∥22 · ∥Vj∥22 ≤ ∥Vj∥22 ≤ ξ ≤ µk/n).

We can show that ∑
j∈[n]

(DWi)j⟨a, Vj⟩2 = a⊤V ⊤(DWi)jV a

≥ σmin(V
⊤(DWi

)jV )

≥ α, (26)

where the second step follows from Fact A.7 and the third step follows from definition of α (see
Definition 3) and σmin(A) ≤ σmin(B) if A ⪯ B.

Moreover, recall

∥W∥∞,1 = max
i∈[n]

∑
j∈[n]

|(DWi
)j |, (27)

We can show that

4ϵ−1g2
∑
j∈[n]

(DWi)j ≤ 4ϵ−1g2∥W∥∞,1

= 4ϵ−1 ϵ2α

20∥W∥∞,1
∥W∥∞,1

≤ ϵα

4
, (28)

where the first step follows from the definition of ∥W∥∞,1 (see Eq. (27)), the second step follows
from the definition of g2 (see Eq. (24)), and the last step follows from simple algebra.

We define

T := {i ∈ [n] | σmin(Y
⊤DWi

Y ) ≤ (1− ϵ)α}.

Let us consider ∑
j∈Sg

(DWi)j .

We define

S := {i ∈ [n] | µk
n

∑
j∈Sg

(DWi
)j ≥

ϵα

4
}. (29)

If i /∈ S, then we have

a⊤Y ⊤DWiY a ≥ (1− ϵ/4)
∑
j∈[n]

(DWi)j⟨a, Vj⟩2 −
µk

n

∑
j∈Sg

(DWi)j − 4ϵ−1g2
∑
j∈[n]

(DWi)j

≥ (1− ϵ/4)α− µk

n

∑
j∈Sg

(DWi
)j − 4ϵ−1g2

∑
j∈[n]

(DWi
)j

≥ (1− ϵ/4)α− ϵα/4− 4ϵ−1g2
∑
j∈[n]

(DWi
)j

≥ (1− ϵ/4)α− ϵα/4− ϵα/4

≥ (1− ϵ)α,

where the first step follows from Eq. (25), the second step follows Eq. (26), the third step follows
from the Definition of S (see Eq. (29)), the fourth step follows from Eq. (28), and the last step follows
from simple algebra.
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In summary, we know that if i /∈ S, then i /∈ T . By taking its contraposition, we have that if i ∈ T ,
then i ∈ S.

Thus, we can show that

|T | ≤ |S|

In the next a few paragraphs, we will explain how to upper bound |S|.
Using Fact A.7 ∑

j∈[n]

∥Vj − Yj∥22 = ∥V − Y ∥2F ,

By simple counting argument (you have n positive values, their summation is ∥V − Y ∥2F , you can’t
have more than ∥V − Y ∥2F /g2 of them that are bigger than g2), we have

|Sg| ≤ ∥V − Y ∥2F /g2. (30)

Let uS ∈ Rn be the indicator vector of S, i.e.,

∀i ∈ [n], (uS)i =

{
1 if i ∈ S;

0 otherwise i /∈ S.

Let ug ∈ Rn be the indicator vector of Sg , i.e.,

∀i ∈ [n], (ug)i =

{
1 if i ∈ Sg;

0 otherwise i /∈ Sg.

Then, we know that

u⊤
SWug =

∑
i∈S

∑
j∈Sg

(DWi)j

≥ |S| ·min
i∈S

∑
j∈Sg

(DWi)j

≥ |S| · ϵαn
4µk

, (31)

where the first step follows from simple algebra, and the second step follows from simple algebra, the
third step follows from Definition (29).

On the other hand,

u⊤
SWug = u⊤

S 1n1
⊤
n ug + u⊤

S (W − 1n1
⊤
n )ug

= ∥uS∥1 · ∥ug∥1 + u⊤
S (W − 1n1

⊤
n )ug

≤ ∥uS∥1 · ∥ug∥1 + ∥uS∥2 · ∥W − 1n1
⊤
n ∥ · ∥ug∥2

≤ ∥uS∥1 · ∥ug∥1 + γn · ∥uS∥2 · ∥ug∥2

≤ |S||Sg|+ γn

√
|S||Sg|, (32)

where the first step follows from simple algebra, the second step follows from simple algebra, the
third step follows from x⊤Ay ≤ ∥x∥2∥A∥∥y∥2, the fourth step follows from Definition 2, and the
last step follows from uS and ug are indicator vectors.

By combining Eq. (31) and Eq. (32), we have

|Sg|+ γn ·
√
|Sg|/|S| ≥

ϵαn

4µk
. (33)

Note that if A+B ≥ C. Then if A ≤ C/2, then B ≥ C/2.
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For the terms in Eq. (33), we define A,B and C as follows

A := |Sg|

B := γn ·
√
|Sg|/|S|

C :=
ϵαn

4µk

If

|Sg| ≤
ϵαn

8µk
,

then, we have

γn ·
√
|Sg|/|S| ≥

ϵαn

8µk
.

The above equation implies

|S| ≤ 500 · µ
2k2γ2

ϵ2α2
· |Sg|

≤ 500 · µ
2k2γ2

ϵ2α2
· (∥V − Y ∥2F /g2),

≤ 500 · µ
2k2γ2

ϵ2α2
· ∥V − Y ∥2F ·

20∥W∥∞,1

ϵ2α
(34)

where the second step follows from Eq. (30) and last step follows from Eq. (24).

We have

|{i ∈ [n] | σmin(Y
⊤DWi

Y ) ≤ (1− ϵ)α}| ≤ |S|

≤ 104 · µ
2k2γ2

ϵ4α3
· ∥W∥∞,1 · ∥V − Y ∥2F

≤ 104 · µ
2k2γ2

ϵ4α3
· ∥W∥∞,1 · k · ∥V − Y ∥2

where the first step follows from the definition of S and the second step follows from combining
Eq. (34) and Eq. (24), and the last step follows from Fact A.7. This completes the proof.

F.2 BOUNDING ∥V ⊤Y⊥(Y⊥)
⊤DWiY ∥2

In this section, we bound ∥V ⊤Y⊥(Y⊥)
⊤DWi

Y ∥2 by a multiplicative factor times ∥Y − V ∥2.

Lemma F.2 (A variation of Lemma 11 in Li et al. (2016)). Let Y be a (column) orthogonal matrix in
Rn×k. Let i ∈ [n]. Then we have∑

i∈[n]

∥V ⊤Y⊥(Y⊥)
⊤DWi

Y ∥2 ≤ γ2ρ(Y )nk3∥Y − V ∥2

For the completeness, we still provide the proof.

Proof. Let j′, j be two positive integers in [k]. Yj represents the matrix Y ’s j-th column. Ṽj

represents the matrix Y⊥Y
⊤
⊥ V ’s j-th column. We define xj,j′ ∈ Rn as

xj,j′

i = (Ṽj)i(Yj′)i.

We need to show that the spectral norm of

V ⊤Y⊥Y
⊤
⊥ DWi

Y,
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is bounded. Note that ⟨Ṽj , Yj′⟩ = 0, which implies that∑
i∈[n]

xj,j′

i = 0.

For V ⊤
j Y⊥Y

⊤
⊥ DWiYj′ ,

V ⊤
j Y⊥Y

⊤
⊥ DWi

Yj′ =
∑
s∈[n]

(DWi
)s(Ṽj)s(Yj′)s

=
∑
s∈[n]

(DWi
)sx

j,j′

s , (35)

where the first step follows from the definition of

V ⊤
j Y⊥Y

⊤
⊥ DWi

Yj′

and the second step follows from (Ṽj)s(Yj′)s = xj,j′

s .

It implies that ∑
i∈[n]

(
∑
s∈[n]

(DWi)sx
j,j′

s )2 = ∥Wxj,j′∥22

= ∥(W − 1n1
⊤
n )x

j,j′∥22
≤ ∥W − 1n1

⊤
n ∥2∥xj,j′∥22

≤ γ2n2∥xj,j′∥22,

where the first step follows from the definition of ∥Wxj,j′∥22, the second step follows from
1n1

⊤
n x

j,j′ = 0, the third step follows from ∥Ax∥2 ≤ ∥A∥∥x∥2, and the last step follows from
∥W − 1n1

⊤
n ∥ ≤ γn (see Definition 2).

Observe that

∥xj,j′∥22 =
∑
i∈[n]

(xj,j′)2

=
∑
i∈[n]

(Ṽj)
2
i (Yj′)

2
i

≤ ρ(Y )k

n

∑
i∈[n]

(Ṽj)
2
i

=
ρ(Y )k

n
∥Ṽj∥22

≤ ρ(Y )k

n
∥Y⊥Y

⊤
⊥ V ∥2

=
ρ(Y )k

n
∥Y⊥Y

⊤
⊥ (Y − V )∥2

=
ρ(Y )k

n
∥Y⊥Y

⊤
⊥ ∥ · ∥Y − V ∥2

≤ ρ(Y )k

n
∥Y − V ∥2

where the first step follows from the definition of ∥xj,j′∥22, the second step follows from (xj,j′)2 =

(Ṽj)
2
i (Yj′)

2
i , the third step follows from definition of ρ, the fourth step follows from the definition of

∥ · ∥22, the fifth step follows from the fact that Ṽj is defined to be the j-th column of Y⊥Y
⊤
⊥ V , the

sixth step follows from Y ⊤
⊥ Y = 0, the seventh step follows from ∥AB∥ ≤ ∥A∥ · ∥B∥, and the last

step follows from ∥Y⊥Y⊥∥ ≤ 1.
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It implies that ∑
i∈[n]

(
∑
s∈[n]

(DWi)sx
j,j′

s )2 ≤ γ2ρ(Y )nk∥Y − V ∥2. (36)

Now we are ready to bound V ⊤Y⊥Y
⊤
⊥ DWi

Y . Note that

∥V ⊤Y⊥Y
⊤
⊥ DWiY ∥2 ≤ ∥V ⊤Y⊥Y

⊤
⊥ DWiY ∥2F

≤
∑

j,j′∈[k]

(V ⊤
j Y⊥Y

⊤
⊥ DWi

Yj′)
2

=
∑

j,j′∈[k]

(
∑
s∈[n]

(DWi
)sx

j,j′

s )2, (37)

where the first step follows from ∥A∥ ≤ ∥A∥F for all matrix A, the second step follows from
definition of ∥ · ∥F , and the third step follows from Eq. (35).

This implies that ∑
i∈[n]

∥V ⊤Y⊥Y
⊤
⊥ DWi

Y ∥2 ≤
∑
i∈[n]

∑
j,j′∈[k]

(
∑
s∈[n]

(DWi
)sx

j,j′

s )2

≤
∑

j,j′∈[k]

γ2ρ(Y )nk∥Y − V ∥2

=
∑
j∈[k]

∑
j′∈[k]

γ2ρ(Y )nk∥Y − V ∥2

= kkγ2ρ(Y )nk∥Y − V ∥2

= γ2ρ(Y )nk3∥Y − V ∥2,

where the first step follows from Eq. (37), the second step follows from Eq. (36), the third step
follows from simple algebra, the fourth step follows from the property of

∑
(e.g.

∑n
i=1 a = an),

and the last step follows from simple algebra. This completes the proof.

F.3 SUMMARY OF BASE CASE LEMMA

We state a general base case lemma that covers both random initialization and SVD initialization.

Lemma F.3 (General base case lemma). Let ∆f := 20α−1ηk. For the base case, we have

dist(Y1, V ) ≤ 1

2
+ 8σmin(M

∗)−1 ·∆f · ∥W ◦N∥F .

The proofs are delayed into Section H and Section G in which we analyze the random and SVD
initializations with different parameters.

G SVD INITIALIZATION AND MAIN RESULT

In Section G.1, we introduce our assumption on δ. In Section G.2, we bound ∥(W − 1n1
⊤
n ) ◦H∥. In

Section G.3, we analyze the property of the rank-k SVD. In Section G.4, we analyze the properties
of dist and ρ. In Section G.5, we present our main result.

G.1 ASSUMPTION

Here, we set the parameter δ.

Definition G.1. We assume that

δ := 0.001 · ∥W ◦N∥ ≤ ασmin(M
∗)/k.
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G.2 BOUNDING ∥(W − 1n1
⊤
n ) ◦H∥

In this section, we bound ∥(W − 1n1
⊤
n ) ◦H∥ in terms γ, the rank k and the top singular value σ1.

Lemma G.2 (Spectral lemma, Lemma 5 in Li et al. (2016)). Let K and J be (column) orthogonal
matrices, whose sizes are n× n. Let H be an arbitrary matrix in Rn×n satisfying

H = AΣB⊤, (38)

where A ∈ Rn×k, B ∈ Rn×k, and Σ ∈ Rk×k. Note that A and B might not be orthogonal, but Σ
is diagonal. The matrix W ∈ Rn×n is an entry wise non-negative matrix, which has an artificial
spectral gap, satisfying

W = 1n1
⊤
n + γnJΣWK⊤,

where

∥ΣW ∥ = 1.

Let σ1 := maxr∈[k] σr(Σ). Then, we have

∥(W − 1n1
⊤
n ) ◦H∥ ≤ γkσ1

√
ρ(A)ρ(B).

Proof. For each i ∈ [n], let Ai,: denote the i-th row of matrix A ∈ Rn×k. For each r ∈ [k], let Ar

denote the r-th column of matrix A ∈ Rn×k. Then we have
k∑

r=1

∥Ar ◦ x∥22 =

k∑
r=1

n∑
i=1

A2
i,rx

2
i

=

n∑
i=1

x2
i

k∑
r=1

A2
i,r

=

n∑
i=1

x2
i ∥Ai,:∥22

≤
n∑

i=1

x2
i

k

n
ρ(A)

≤ k

n
ρ(A) (39)

where the first step follows from the definition of ∥ · ∥22, the second step follows from simple algebra,
the third step follows from the definition of ∥ · ∥22, the fourth step follows from the definition of ρ
(Definition A.8), and the last step follows from

∑n
i=1 x

2
i ≤ 1.

Let x, y ∈ Rn be two arbitrary unit vectors. Then, we have

x⊤((W − 1n1
⊤
n ) ◦H)y = x⊤((W − 1n1

⊤
n ) ◦ (AΣB⊤))y

=

k∑
r=1

σrx
⊤((W − 1n1

⊤
n ) ◦ArB

⊤
r )y

= γn

k∑
r=1

σr(Ar ◦ x)⊤JΣWK⊤(Br ◦ y)

≤ γn

k∑
r=1

σr∥Ar ◦ x∥2 · ∥JΣWK⊤∥ · ∥Br ◦ y∥2

≤ γn

k∑
r=1

σr∥Ar ◦ x∥2 · ∥Br ◦ y∥2

≤ γnσ1

k∑
r=1

∥Ar ◦ x∥2 · ∥Br ◦ y∥2
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≤ γnσ1(

k∑
r=1

∥Ar ◦ x∥22)1/2(
k∑

r=1

∥Br ◦ y∥22)1/2

≤ γnσ1

√
k

n
ρ(A)

√
k

n
ρ(B)

≤ γσ1 · k · (ρ(A)ρ(B))1/2,

where the first step follows from the definition of H (see Eq. (38)), the second step follows from Σ
is a diagonal matrix, the third step follows from the definition of W , the fourth step follows from
∥Ax∥2 ≤ ∥A∥ · ∥x∥2, the fifth step follows from ∥JΣWK⊤∥ ≤ ∥J∥ · ∥ΣW ∥ · ∥W∥ ≤ 1, the sixth
step follows from σ1 = maxr∈[k] σr, the seventh step follows from Cauchy-Schwarz inequality, the
eighth step follows from Eq. (39), and the last step follows from simple algebra.

The lemma follows from the definition of the operator norm.

Lemma G.3 (Wedin’s Theorem, Lemma 6 in Li et al. (2016)). M∗ is a matrix, and σ1, . . . , σn are
the singular values of M∗. M̃ is a matrix, and σ̃1, . . . , σ̃n are the singular values of M̃ . Suppose
that X,Y and U, V are the first k singular vectors (left and right) of M̃,M∗ respectively. If there
exists a which is greater than 0 and satisfies

max
r∈{k+1,··· ,n}

σ̃r ≤ min
i∈{1,··· ,k}

σi − a,

then

∥M∗ − M̃∥
a

≥ max{sin θ(V, Y ), sin θ(U,X)}.

G.3 PROPERTY OF RANK-k SVD

Now, we first define the parameter ∆1, and then analyze the properties of rank-k SVD.
Definition G.4. We define ∆1 as follows

∆1 :=
10(γµk + δ)

σmin(M∗)
.

Lemma G.5 (Lemma 7 in Li et al. (2016)). Assume that W and M∗ satisfy every assumption. We
define (X,Σ, Y ) := rank-k SVD(W ◦M). Let ∆1 be defined as Definition G.4 and assume that
∆1 ≤ 0.01. Then, we have

max{tan θ(X,U), tan θ(Y, V )} ≤ 0.5∆1.

Proof. We know that

∥W ◦M −M∗∥ = ∥W ◦ (M∗ +N)−M∗∥
≤ ∥W ◦M∗ −M∗∥+ ∥W ◦N∥
= ∥W ◦M∗ −M∗∥+ δ

≤ γµkσmax(M
∗) + δ

≤ γµk + δ (40)

where the first step follows from the definition of M , the second step follows from triangle inequality
and the third step follows from Definition G.1, the fourth step follows from Lemma G.2, the last step
follows from σmax(M

∗) = 1.

Therefore,

max
r∈[k+1,n]

σr(W ◦M) ≤ max
r∈[k+1,n]

σr(W ◦M −M∗) + max
r∈[k+1,n]

σr(M
∗)

≤ max
r∈[k+1,n]

σr(W ◦M −M∗) + 0

≤ ∥W ◦M −M∗∥
≤ γµk + δ
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≤ 1

4
σmin(M

∗) + δ

≤ 1

2
σmin(M

∗),

where the first step follows from triangle inequality, the second step follows from the fact that M∗

has rank-k, the third step follows from Eq. (40), the fourth step follows from γµk < 0.1σmin(M
∗),

and the last step follows from δ ≤ 0.1σmin(M
∗).

Now, by Wedin’s theorem (see Lemma G.3) with

a =
1

2
σmin(M

∗),

for

(X,Σ, Y ) = rank-k SVD(W ◦M),

we have

max{sin θ(U,X), sin θ(V, Y )} ≤ 2(γµk + δ)

σmin(M∗)
.

By our choice of parameters

sin θ ≤ 1/2.

Using Lemma A.14, we have

tan θ ≤ 2 sin θ.

Then the lemma follows.

G.4 INITIAL PROPERTIES OF DISTANCE AND ρ

We analyze the properties of distance and ρ during initialization. We show that as long as ∆1 is
chosen properly, the distance and ρ can be bounded.

Lemma G.6 ((SVD initialization, a variation of Lemma 8 in Li et al. (2016)). Assume that W and
M∗ satisfy every assumption. Let ∆1 be defined as Defintion G.4. Assume that ∆1 ≤ 0.01/k. Then,
we have

• Part 1. dist(V, Y1) ≤ 1/2.

• Part 2. Let ρ(·) be defined as Definition A.8. We have ρ(Y1) ≤ 4µ.

Proof. Proof of Part 1. First, we consider Ỹ1 ∈ Rn×k. By Lemma G.5, we get that

dist(Ỹ1, V ) ≤ ∆1,

which means that there exists Q ∈ Ok×k, such that

∥Ỹ1Q− V ∥ ≤ ∆1. (41)

Hence,

∥Ỹ1Q− V ∥F ≤
√
k · ∥Ỹ1Q− V ∥

≤
√
k ·∆1

≤ 1

10
, (42)

where the first step follows from Fact A.7, the second step follows from Eq. (41), and the last step
follows from ∆1 ≤ 0.01/k .

Next, we consider Y1 ∈ Rn×k. In the clipping step, there are two cases for all i ∈ [n].
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Case 1. ∥Ỹ1,i∥2 ≥ ξ. We know

∥Ỹ1,iQ∥2 = ∥Ỹ1,i∥2
≥ ξ

=
2µk

n
, (43)

where the first step follows from Fact A.7, the second step follows from our Case 1 assumption, and
the last step follows from the definition of ξ (see Definition D.2).

We have

∥Ỹ1,iQ− Vi∥2 ≥ ∥Ỹ1,iQ∥2 − ∥Vi∥2

≥ 2µk

n
− ∥Vi∥2

=
2µk

n
− µk

n

=
µk

n
, (44)

where the first step follows from the triangle inequality, the second step follows from Eq. (43), the
third step follows from the property of Vi, and the last step follows from simple algebra.

By the definition of clipping, in this time, Y 1,i = 0.

∥Y 1,iQ− Vi∥2 = ∥0− Vi∥2
= ∥Vi∥2

=
µk

n

≤ ∥Q⊤Ỹ1,i − Vi∥2

where the first step follows from Y 1,i = 0 and the second step follows from simple algebra, the third
step follows from the property of Vi, and the last step follows from Eq. (44).

Case 2. ∥Ỹ1,i∥2 < ξ. In this case, we know

Y 1,i = Ỹ1,i.

Thus,

∥Y 1,iQ− Vi∥2 = ∥Ỹ1,iQ− Vi∥2.

Combining Case 1 and Case 2, we know that for all i ∈ [n],

∥Y 1,i − Vi∥2 ≤ ∥Ỹ1,i − Vi∥2.

Taking the summation of squares, we have

∥Y 1Q− V ∥2F ≤ ∥Ỹ1Q− V ∥2F

≤ 1

100
(45)

the last step follows from Eq. (42).

Eventually, we would like to show V is close to Y1. Suppose

Y1 = Y1R
−1,

where R is an upper-triangular matrix.

Then,

sin θ(V, Y1) = ∥V ⊤
⊥ Y1∥

= ∥Y1∥

43



Published as a conference paper at ICLR 2025

= ∥(Y 1 − V Q−1)R−1∥
≤ ∥Y 1Q− V ∥ · ∥R−1∥

≤ ∥Y 1Q− V ∥ · 1

σmin(Y 1)

≤ ∥Y 1Q− V ∥F ·
1

σmin(Y 1)
,

where the first step follows from definition of sin, the second step follows from Fact A.7, the third
step follows from definition of Y1, and the fourth step follows from ∥AB∥ ≤ ∥A∥ · ∥B∥, the fifth
step follows from singular values of R and those of Y 1 are identical, and the last step follows from
∥ · ∥ ≤ ∥ · ∥F .

Note that

σmin(Y 1) = σmin(Y 1Q)

≥ σmin(V )− ∥Y 1Q− V ∥
≥ σmin(V )− ∥Y 1Q− V ∥F
≥ σmin(V )− 1/10

≥ 1

2
, (46)

where the first step follows from Fact A.7, the second step follows from Fact A.7, the third step
follows from ∥ · ∥ ≤ ∥ · ∥F , the fourth step follows from Eq. (45), and the last step follows from
σmin(V ) = 1.

Thus,

sin θ(V, Y1) ≤ 2 · ∥Y 1Q− V ∥F

≤ 2 · 1
10

≤ 1

2
, (47)

where the first step follows from Eq. (46), and the second step follows from Eq. (45), the last step
follows from simple algebra.

Therefore,

dist(V, Y1) ≤ 2 tan θ(V, Y1)

≤ 4 sin θ(V, Y1)

≤ 1/2,

where the first step follows from Lemma A.14, the second step follows from Lemma A.14, the third
step follows from Eq. (47).

Proof of Part 2. For ρ(Y1), we observe that

Y1,i = Y iR
−1,

We have

∥Y1,i∥2 ≤ ∥Y 1,i∥2 · ∥R−1∥
≤ ξ · ∥R−1∥
≤ ξ · σmin(Y 1)

−1

≤ ξ · 2 (48)

where the first step follows from ∥Ax∥2 ≤ ∥A∥ · ∥x∥2, the second step follows from ∥Y 1,i∥2 ≤ ξ,
and the third step follows from ∥R−1∥ = σmin(Y )−1, and last step follows from σmin(Y 1)

−1 ≤ 2
(see Eq. (46)).
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Note that

ρ(Y1,i) =
n

k
·max
i∈[n]
∥Y1,i∥2

≤ n

k
· 2ξ

≤ 4µ

where the first step follows from Definition A.8, the second step follows from Eq. (48), last step
follows from ξ = µk/n. This leads to the bound, which completes the proof.

G.5 MAIN RESULT

Finally, in this section, we present our main results.

Table 3: Summary of our results.

References Init Time
(Li et al., 2016) Random Õ((∥W∥0k2 + nk3) log(1/ϵ))

Theorem H.2 Random Õ((∥W∥0k + nk3) log(1/ϵ))

(Li et al., 2016) SVD O(n3) + Õ((∥W∥0k2 + nk3) log(1/ϵ))

Theorem G.7 SVD O(n3) + Õ((∥W∥0k + nk3) log(1/ϵ))

Theorem G.7 (Main result, SVD initialization). Let η = 1. There is an algorithm starts from SVD
initialization runs in log(1/ϵ) iterations and generates M̃ , which is a matrix in Rn×n and

∥M̃ −M∗∥ ≤ O(α−1ηkτ)∥W ◦N∥F + ϵ

O(n3) + Õ((∥W∥0k + nk3) log(1/ϵ))

is the total running time.

Proof. It follows directly from Lemma J.1 and Lemma J.2.

H RANDOM INITIALIZATION

In Section H.1, we present our random initialization algorithm (see Algorithm 5) and analyze its
properties. In Section H.2, we summarize our main result.

H.1 INITIALIZATION

Now, we start to present Algorithm 5.

Algorithm 5 Random Initialization
1: procedure RANDOMINIT(n, k)
2: Let Y ∈ Rn×k generated with Yi,j ← 1√

n
bi,j , where bi,j is drawn uniformly from {−1,+1}

3: return Y
4: end procedure

The following lemma shows that the minimum singular value of the matrix Y ⊤DWi
Y can be lower

bounded with high probability over all i ∈ [n].
Lemma H.1 (Random initialization, Lemma 9 in Li et al. (2016)). Let Y ∈ Rn×k be a random
matrix with Yi,j = 1√

n
bi,j , where bi,j are independent and uniform variables from {−1, 1}. Let

µ ≥ 1. Let k ≥ 1. Let α > 0. We assume that ∥W∥∞ ≤ α
k2µ log2 n

· n. Then, we have

Pr
[
σmin(Y

⊤DWi
Y ) ≥ α

4µk
, ∀i ∈ [n]

]
≥ 1− 1/n2.
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Proof. Notice that

Y ⊤DWi
Y =

∑
j∈[n]

(Yj)
⊤(DWi

)jYj .

For every j ∈ [n],

(Yj)
⊤(DWi

)jYj

is independent, and

E[(Yj)
⊤(DWi

)j(Yj)] =
1

n
(DWi

)j .

Using linearity of expectation, we have

E[
∑
j∈[n]

(Yj)
⊤(DWi)j(Yj)] =

1

n

∑
j∈[n]

(DWi)j .

Then, we can get that the following equation holds. We use this first and will prove it from Eq. (50)∑
j∈[n]

(DWi
)j ≥

αn

kµ
. (49)

Indeed, by the assumption weight is not degenerate, we can get that for all vectors a in Rn,

a⊤V ⊤DWi
V a =

∑
j∈[n]

(DWi
)j⟨Vj , a⟩2

≥ min
j∈[n]
{⟨Vj , a⟩2}

∑
j∈[n]

(DWi
)j

=
µk

n

∑
j∈[n]

(DWi)j

≥ µk

n

αn

kµ

= α,

where the second step follows from Fact A.6, the third step follows from the incoherence of V , the
fourth step follows from our claim (see Eq. (49)), and the last step follows from simple algebra.

Then, by the incoherence of V , we have∑
j∈[n]

(DWi)j⟨Vj , a⟩2 ≤
∑
j∈[n]

(DWi)j
µk

n
. (50)

Hence, ∑
j∈[n]

(DWi
)j ≥

αn

kµ
.

Combining everything together, we get

E[
∑
j∈[n]

(Yj)
⊤(DWi

)jYj ] ≥
α

kµ
.

Define

B := ∥(Yj)
⊤(DWi

)jYj∥ ≤
k

n
(DWi

)j
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≤ α

kµ log2 n
,

where the first step follows from our sampling procedure and the second step follows from the
assumption that ∥W∥∞ ≤ αn

k2µ log2 n
.

Since all the random variables

(Yj)
⊤(DWi)jYj

are independent, applying Matrix Chernoff we get that

Pr[
∑
j∈[n]

(Yj)
⊤(DWi)jYj ≤ (1− δ)

α

kµ
] ≤ n(

e−δ

(1− δ)(1−δ)
)

α
kµB

≤ n(
e−δ

(1− δ)(1−δ)
)log

2 n.

Picking δ = 3
4 , and union bounding over all i, with probability at least 1− 1

n2 , for all i,

σmin(Y
⊤DWi

Y ) ≥ α

4kµ

as needed.

H.2 MAIN RESULT

In this section, we summarize our main result.

Theorem H.2 (Main result, random initialization). Let η be defined as Definition D.3. There is an
algorithm starts from random initialization runs in log(1/ϵ) iterations and generates M̃ , which is a
matrix in Rn×n and

∥M̃ −M∗∥ ≤ O(α−1ηkτ)∥W ◦N∥+ ϵ.

Õ((∥W∥0k + nk3) log(1/ϵ)).

is the total running time.

Proof. We use Algorithm 5 to initialize Y . Then, we can use the proof of Lemma D.9, and T is
changed to

T = {i ∈ [n] | σmin(Y
⊤DiY ) ≤ 0.25α/η}.

where η = µk.

However, because of this change, T = ∅, with high probability. Then, the same calculation follows
as in Lemma D.9. Note that in this case, Lemma F.1 is not needed because S1 = ∅. Then, we can use
Lemma J.1 and Lemma J.2, directly.

I BOUNDING THE FINAL ERROR

In Section I.1, we express M̃ −M∗ as a simpler form that is easier for further analysis. In Section I.2,
we prove that ∥M̃ −M∗∥ is bounded. Both of these are used to support the proof of our main
theorem.
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I.1 REWRITE M̃ −M∗

In this section, we start to simplify/rewrite M̃ −M∗.

Claim I.1. Let M∗ ∈ Rn×n is (µ, τ)-incoherent (see Definition 1). Let M̃ be defined as Theorem 4.6.

Then, we have

M̃ −M∗ = UΣQ∆⊤
y + UΣV ⊤∆yY

⊤ +RY ⊤

Proof. We start expanding the difference by definition:

M̃ −M∗

= XY ⊤ −M∗

= (UΣV ⊤(V Q+∆y) +R)(V Q+∆y)
⊤ − UΣV ⊤

= UΣV ⊤(V Q+∆y)(V Q+∆y)
⊤ +R(V Q+∆y)

⊤

− UΣV ⊤

= UΣV ⊤V Q(V Q+∆y)
⊤ + UΣV ⊤∆y(V Q+∆y)

⊤ +R(V Q+∆y)
⊤ − UΣV ⊤

= UΣV ⊤V QQ⊤V ⊤ − UΣV ⊤ + UΣV ⊤V Q∆⊤
y + UΣV ⊤∆y(V Q+∆y)

⊤ +R(V Q+∆y)
⊤

= UΣV ⊤V Q∆⊤
y + UΣV ⊤∆y(V Q+∆y)

⊤ +R(V Q+∆y)
⊤

= UΣQ∆⊤
y + UΣV ⊤∆yY

⊤ +RY ⊤,

where the first step follows from M̃ = XY ⊤, the second step follows from X = UΣV ⊤Y + R,
Y = V Q+∆y , and M∗ = UΣV , the third step follows from simple algebra, the fourth step follows
from the simple algebra, the fifth step follows from that for all matrices A,B, (A+B)⊤ = A⊤+B⊤,
the sixth step follows from V ∈ Rn×k is an orthogonal matrix and Q ∈ Rk×k is a rotation matrix,
and the last step follows from Y = V Q+∆y .

I.2 BOUNDING ∥M̃ −M∗∥

In this section, we bound ∥M̃ −M∗∥.

Claim I.2. Let M∗ ∈ Rn×n is (µ, τ)-incoherent (see Definition 1). Let M̃ be defined as Theorem 4.6.

Then, we have

∥M̃ −M∗∥ ≤ (2∆F )∥W ◦N∥+ ϵ

Proof.

∥M̃ −M∗∥ = ∥UΣQ∆⊤
y + UΣV ⊤∆yY

⊤ +RY ⊤∥
≤ ∥UΣ∥∥Q∥∥∆y∥+ ∥UΣV ⊤∥∥∆y∥∥Y ∥+ ∥R∥∥Y ∥
≤ Θ(1) · ∥∆y∥+ ∥R∥
≤ O(dist(Y, V )) + ∆f · ∥W ◦N∥

≤ 1

2t
+∆F · ∥W ◦N∥+∆f · ∥W ◦N∥

= (∆F +∆f )∥W ◦N∥+
1

2t

≤ (2∆F )∥W ◦N∥+
1

2t

≤ (2∆F )∥W ◦N∥+ ϵ

where the second step is due to the inequalities ∥A+B∥ ≤ ∥A∥+ ∥B∥ and ∥AB∥ ≤ ∥A∥∥B∥, the
third step is supported by ∥UΣ∥ = ∥Σ∥, ∥Q∥ = 1, ∥UΣV ⊤∥ = ∥Σ∥ = 1 (See Definition 1), ∥Y ∥ =
1, the second last step follows from ∆f ≥ ∆F , and the last step follows from t = O(log(1/ϵ)).
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J PROOF OF MAIN RESULT

We dedicate this section to the proof of Theorem 4.6. There are two parts of Theorem 4.6: the
correctness part and the running time part. In Section J.1, we present the proof of the correctness part
of Theorem 4.6. In Section J.2, we display the proof of the running time part of Theorem 4.6.

J.1 CORRECTNESS PART OF THEOREM 4.6

Now, we start proving the correctness part of Theorem 4.6.
Lemma J.1 (Correctness part of Theorem 4.6). Suppose M∗ ∈ Rn×n is µ-incoherent (see As-
sumption 1). Assume that W has γ-spectral gap (see Assumption 2) and (α, β)-bounded (see
Assumption 3). Let γ satisfy condition in Definition D.4.

There is an algorithm (Algorithm 1) takes M∗ +N ∈ Rn×n as input, uses either SVD initialization
or random initialization and runs in O(log(1/ϵ)) iterations and generates M̃ , which is a matrix in
Rn×n and

∥M̃ −M∗∥ ≤ O(α−1kτ) · ∥W ◦N∥+ ϵ.

Proof. By Lemma E.1, we can prove, for any t > 1

dist(Xt, U) ≤ 1

2t
+ 100α−1σmin(M

∗)−1k · ∥W ◦N∥,

dist(Yt, V ) ≤ 1

2t
+ 100α−1σmin(M

∗)−1k · ∥W ◦N∥. (51)

Note that σmin(M
∗)−1 ≤ τ (see Definition 1), then the above statement becomes

dist(Xt, U) ≤ 1

2t
+∆F · ∥W ◦N∥,

dist(Yt, V ) ≤ 1

2t
+∆F · ∥W ◦N∥.

where ∆F := 5∆f . By Lemma D.9 and Claim D.7,

∥X − UΣV ⊤Y ∥F
≤ ∆d · dist(Y, V ) + ∆f · ∥W ◦N∥, (52)

where ∆d and ∆f are defied as Definition D.5.

To promise the first term in ∆2
d is less than 0.1 and using Lemma A.3, we need to choose (note that

c0 is defined as Definition D.4)

γ ≤ 1

20
· α

poly(µ, k) · nc0

To promise the second term in ∆2
d is less than 0.1, we have to choose

γ ≤ 1

20
· α

poly(µ, k, τ)

For dist(Y, V ), let

P := arg min
Q∈Ok×k

∥Y Q− V ∥.

We define

V := Y P +∆

and Y = V P⊤ −∆P⊤.

Let Q := P⊤ ∈ Ok×k and ∆y := −∆P⊤, then

Y = V Q+∆y
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with ∥∆y∥ = dist(Y, V ).

We define

R := X − UΣV ⊤Y.

Then Eq. (52) implies that

∥R∥F ≤ dist(Y, V ) + ∆f∥W ◦N∥

Let X := XT+1 and Y := YT , then

M̃ = XY ⊤.

Using Claim I.1, we have

M̃ −M∗ = UΣQ∆⊤
y + UΣV ⊤∆yY

⊤ +RY ⊤. (53)

Using Claim I.2, we have

∥M̃ −M∗∥ ≤ (2∆F )∥W ◦N∥+ ϵ. (54)

J.2 RUNNING TIME PART OF THEOREM 4.6

Now, we start proving the running time part of Theorem 4.6.

Lemma J.2 (Running Time Part of Theorem 4.6). The running time of Algorithm 1 is Õ((∥W∥0k +
nk3) log(1/ϵ)) with random initialization.

Proof. Now we analyze the running time. We first compute the initialization time. The entry Yi,j

of the matrix Y is equal to 1√
n
bi,j , where bi,j’s are independent uniform from {−1, 1}. Hence, the

time complexity of random initialization is O(nk). There are T iterations. For each iteration, there
are three major steps, solving regression, Clip and QR. The dominating step is to solve regression.
We choose ϵsk as Claim D.7. Using Lemma C.2 and Lemma C.3, we know that we should choose
ϵ0 = ϵsk/poly(n) and δ0 = 1/poly(n, log(1/ϵ)), this step takes Õ(∥W∥0k+ nk3) time. The CLIP
and QR algorithms take time O(nk) and O(nk2) respectively. Hence, the T iterations take time
Õ((∥W∥0k + nk3) log(1/ϵ)).

K EXPERIMENTAL RESULTS

We conducted two experiments showing the performance of our main algorithm (Algorithm 1) and
one experiment, particularly for our novel high-precision regression algorithm (Algorithm 2). We
first present the first two experiments for our main algorithm. In both experiments, we set

M = M∗ +N ∈ Rn×n

where M∗ is the rank-k ground truth and N is a higher-rank noise matrix. We set n = 800 and
k = 100. We generate the noise matrix N as an n× n random matrix with i.i.d. Gaussian entries of
zero mean and variance 1

k . We apply the sketching matrix S ∈ Rm×n with m = 150 (we choose the
CountSketch matrix (Charikar et al., 2002) when solving for the regression problems (see Lines 7
and 10 from our Algorithm 1). We iterate the alternating minimization steps (see Line 6) for T = 20
times. To show the performance of our algorithm, we compare the running time and error between
our Algorithm 1 and the exact solver from Li et al. (2016).

Experiment 1 The first experiment is the matrix completion problem. For each row of the weight
matrix W ∈ Rn×n

≥0 , we randomly select 400 entries to be equal to 1 and the remaining 400 entries
to be 0. The second experiment is the general weighted low rank approximation where the weight
matrix W is constructed via 1n1

⊤
n +G for G being a random matrix with standard Gaussian entries.

Below, we present our experimental results of the matrix completion problem. We generate the
ground truth M∗ = XY ⊤ by a pair X,Y ∈ Rn×k with random i.i.d. entries scaled by 1√

k
, and the

distributions are Laplace, Gaussian, and uniform, respectively. Our time is measured in seconds.
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Table 4: Experimental results of Algorithm 1 for the matrix completion problem.
Distribution Time of the ex-

act solver
Time of the
approximate
solver

% speedup Exact solver
error

Approximate
solver error

Laplace 234 205 12.39% 1.54× 10−4 3.56× 10−3

Gaussian 247 216 12.55% 3.85× 10−4 1.33× 10−3

Uniform 248 207 16.53% 1.34× 10−5 4.99× 10−4

Table 5: Experimental results of Algorithm 1 for the weighted low-rank approximation.
Distribution Time of the ex-

act solver
Time of the
approximate
solver

% speedup Exact solver
error

Approximate
solver error

Laplace 249 222 10.84% 2.11× 10−4 4.71× 10−4

Gaussian 223 204 8.52% 6.29× 10−5 2.15× 10−4

Uniform 221 215 2.71% 3.00× 10−5 7.13× 10−5

Experiment 2 We present our second experimental results as follows (recall the weight matrix is
an all-1’s matrix plus a noise matrix with i.i.d. standard Gaussian entries):

We note that in these two settings, our algorithm achieves a speedup compared to the algorithm of
Li et al. (2016). For the matrix completion setting, our speedup is in the range of 12%-16%, while
for the dense weights regime, our speedup is roughly 10%. In 20 iterations, our approximate solver
obtains errors similar to those of the exact solver.

Experiment 3 We expect the speedup will be more significant once the discrepancy between n
and k is larger, as sketching is known to work well in the regime where n≫ k, as evidenced by the
following experiment on using sketching to solve the regression:

min
x∈Rk

∥Ax− b∥22 for A ∈ Rn×k and b ∈ Rn.

We test the performance of regression solvers for n = 106, k = 500 with a sketch size m = 5500,
and run our solver for 5 iterations. The results are as follows:

Table 6: Experimental results of Algorithm 2.
Distribution Time for exact solve Time for approx solve Percentage speedup Error

Gaussian 5.149 3.695 28.24% 8.24× 10−3

Laplace 5.480 3.866 29.45% 8.41× 10−3

Power Law 5.505 4.444 19.27% 8.77× 10−3

Our data matrices A and response vectors b are generated according to standard Gaussian, Laplace,
and power law distribution with p = 5, and we measure the ℓ∞ error of the solution, i.e., let x̂ denote
the vector outputted by the solver, we measure

∥x̂− x∗∥∞
where

x∗ = arg min
x∈Rk

∥Ax− b∥22.

The speedup obtained here ranges from 20% to 30%, so we have strong grounds to believe that the
acceleration will be even more evident when n is large. However, performing weighted low-rank
approximation on 106 × 106 size matrices is currently out of the scope of our computational power,
so we leave this as a future direction.
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