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A Auxiliary lemmas

The following lemma provides a useful upper bound on the optimal value of strongly convex function
[28, 7,25].
Lemma 4 Let X be a convex set. Let h : X — R be a-strongly convex function on X and x,p; be
an optimal solution of h, i.e., Topr = argmingey h(z). Then, h(zop) < h(z) — § @ — zopt||® for
anyx e X.

Proof The proof of the lemma is based on the definition of a-strongly convex functions and the
first-order optimality condition. Define the subgradient of h(z) to be Vh(x), According to the
definition of strong convexity, we have

h(z) > hy) + (Vhiy), o — ) + Sz — ol (10
Define o, = argmin  y h(z). Let y = Xop in (10), we have
h(@) = h(opt) + (Vh(op) & = Tops) + 5| = Tope
We then conclude the proof based on the first-order optimality condition that for any x € X,

<Vh(x0pt)7x - xopt> 2 0

The following lemma is the key to bridge the regret and the constraint violation.
Lemma 5 Define
hi(z) == (V filze), @ — 2) + Q)3 (2) + arllw — ae|.

Let x11 be the optimal solution returned by RECOQO, i.e., 41 = arg min, v hi(z). We have for
any x € X that

(Vfe(@e), wein = xe) + QDG (wer1) + aglwers — a?
SV fiolwe), @ — ) + Q)31 (2) + sz — z4* — e — woia . (an
Proof The proof is a direct application of Lemma 4. Note that hy(x) is 2a-strongly convex because

(Vfi(me), 2 — 2y + Qb)) () is convex in x and ||z — x| is 204-strongly convex.

The following lemma is to provide the detailed calculations required for obtaining inequality (8).
Lemma 6 Under Assumptions 1-3, we have

Zg <3, Z|ftﬂvtt1+E )| FD(l 1)

t=1 t=1

Y el e |
t2

2
Proof Under Assumptions 1-3, we calculate these three terms as follows:

T 1
Z % J t%+6dt<37

— 1

T
T FD FD(1+¢
Z ‘ft t 1+€ < Z 1+e 1+adt < ( )’
t t 1t €
T %12 %12 T
Ty — T — | —T 1 1

E H t H , H t+1 H < D2 + E - _ . th _ x*“2 < D2.
t=1 tate i \tEtE (t—1)27F

B Proof of lemmas in Theorem 1

B.1 Proof of Lemma 1

We prove the key self-bounding property in this section. Since (11) holds for any = € A’ in Lemma 5,
let z = x* such that

(Vfe(@e), w1 — 2y + Q)G (we41) + | megr — 2
SV Sfil@e), 2 = 2y + Q)G (2%) + aplla™ — a|* — 2™ — wppa > (12)
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441

We add f;(«+) to both sides of (12) that

fe(ze) + <Vft($t)v Tiy1 — $t> + Q(t)gj(a%ﬂ) + atth-H - xtHQ
<fol@) + AV fole), 2" — 20) + Q)g7 (¢%) + aufla™ — 2 * — cufja™ — wpia |?
<fi(@®) + Q(1)g; (z%) + aa™® — x4 — ewf|2™ — iy |?
<fi(@®) + ol — 2 — ol — @i |? (13)

where the second inequality holds because f:(-) is a convex function; the third inequality holds
because x* is an feasible point g;(z*) < 0 such that g, (z*) = 0 holds.

By moving f;(2*) to the left-hand side and o |24+ 1 —¢|? to the right-hand side of (13), respectively,
we have

fe(@e) = fi(@™) + Q)G (ze41)

SV fiole), w0 = wp1) — gl — 2 * + agllz® = x® — afja® — 24 ]?
2
S Fagrt =z = apfla® — zpa?
40ét

where the last inequality holds by Assumption 2 that

<Vft($t), Ty — $t+1> - atﬂxtﬂ - %HQ
IV fize)| N IV fie)|?

=(Vfi(@e), @ — T41) — w1 — xe]* —

40[t 40[t
Vfilx 2 IV fi(x)|?
H ) s — g + 1T
o7
|Vft wt)HQ
40[,5 \40[t'

B.2 Proof of Lemma 2

Since g;(z) is convex function, we have g;" () to be convex because max over convex functions is
convex. Denoting by Vg, (z) the subgradient of g;" (), we have

9 () = g (y) +{Vg; (v),x — ).
Lety = x4, = 4,1, we have
9 (@) = 9 (we41) < Vg (), 20 — Ta41)
< [V (@) |z — xt+1\|

G2
< Glay — wp] — — — Bllwe — mea|* + ] + Bz — e |
G
45 + Blwe — g

where the second inequality holds because of Cauchy-Schwarz inequality; the third inequality holds
because of Assumption 3. Take summation of the equality above from 1 to 7', we have

2 T
2 gt @+ 1) < 20 4 83w — e
t=1

— 4p

B.3 Proof of Lemma 3

According to Lemma 5, we have
Je(@e) + <V fr(@e), w1 — z) + Q)3 (me41) + aelwesr — 2
<felwe) + Vo), 2 = 2) + Q)3 (¢%) + a|a™ — a4* — aglz™ — o |?
<fi(@®) + Q)3 (z%) + aa™® — x4 — cwl|™ — i1 |?

14



a2 where the last inequality holds because of the convexity of f;(-). By g, (z:41) = 0 and g;" (z*) = 0,
443 we rearrange the inequality above and have

1 1
|zes1 — x| < g(ft(x*) — fi(ze)) + Q—<Vft(xt),xt — 1) + | — 3?2 — |
t t

444 Take summation of the inequality above from ¢t = 1 to 7', we have

Z |41 — 4]

t=1
T 1 T 1 T
<= (fela®) = filwn) + Y —(Vfalwe),me — ) + Y (2% = ] = 2% — zea|?)
o1 ™ -1 M =1
L 2rD
< Z —  |lz* = ?
i1
<4FDVT + D?

445 where the second inequality holds because
fe(@) = fely) < (Vfe(@), 2 —y) < [V fi(@)||z — y| < FD;

a6 the last inequality holds because of a; = 1/t and Assumption 1. The proof is completed.

a7 C  Corollary 1

448 Corollary 1 Under Assumptions 1-3, let the learning rates be oy = t€,my = t¢, v = t°7¢,Vt € [T7],
a4 where c € [1/2,1) and ¢ > 0. RECOO algorithm achieves the following bounds on the regret and
450 cumulative constraint violations:

F2
R(T) < (4(1) + DZ) T¢, for both types of constraints,

FD
V(T) <F? + FD + — + D? for fixed constraints, and

G? 2 1
V(T) < <F2 + - + FD ( + T—e + ) + 2D2> T~ for adversarial constraints.

451

452 The proof of corollary follows almost the same steps as in Theorem 1 where ¢ = 1/2. Based on (5)
453 in Lemma 1, we still have

2

F

fi(z) — filz )<4a + aglz® — z)? — apfa* — g |, (14)
2

Q(t)[]t (xt-i-l) 4 + ‘ft(fﬂt) ft(l'*)‘ +OétH£F* *$t\|2 *Oét”if* *$t+1H2, (15)

454 which is used to establish the bounds of regret and violation.

455 Regret Bound: we take summation of the inequality (14) from¢ = 1,--- , 7T and have
251
o o1 B 2
;ftxt )< gat )2 — o]
251 d
<— Y —+D? — oy
1 ;at + t;(at 1)

456 where the last inequality holds by Assumption 1. Choose a; = t¢, we have

T T
ZO&t Zt_ Tlc Zat_atl ZZ t_l TC
t

— =1 t=1

15



457 It implies that

o L > fed—c)
¥ < D max{c,1—c
; ft l‘t )) <4(1 . C) + ) )

48 which gives the regret bound with O(7™ax{e.1=¢}),

459 Cumulative constraint violation bound: For constraint violation, we still have (15) and

F? | fe(ze) — fe(z™)] at Qg
+ * (|2 *2
g (Te41) < T — 2| = Tep1 — 2|7,
C) S Qe T Qo o T T g e
a0 Sety; =t°and n = 7%, where ¢ € [1/2,1) and € > 0, this implies that
T T
F? | fe(@e) — fe(@®)] |lze = a* | = |wepr — ¥
Z gj(xt'*'l) S Z t30+5 Z t20+€ Z tete
t=1 t=1
461 By Lemma 6, we establish
T
FD
2 (x441) < F2+ FD + — + D?, (16)
€

a6z which proves V(T') := Zthl g™ () < F2+ FD+ £2 4 D? | Let’s continue with (16) to prove the
463 second part of Corollary 1 for the adversarial constraints. Recall Lemma 2 that under Assumptions
464 1-3, RECOO achieves for any 5 > 0

G2
43

465 From Lemma 2, it is required to quantify the stability term |z; — 2,1 that is established in the
466 following lemma.

91 (ze) — gf (Be41) < — + Bllwe — wea ]

467 Lemma 7 Under Assumptions 1-3, let the learning rates be oy = t¢,m; = ¢,y = t°7¢ Vt € [T],
468 where c€ [1/2,1) and € > 0. RECOO achieves

T
2FD,_,
2 e = < T T+ D2,

469 Proof From Lemma 5,we still have:

fe(@e) + <V fol@e)s w1 — 20) + Q)3 (Te41) + aglesn — 2

fe(@we) + <V folwe), o — 2) + Q)35 (2%) + apfla™ — 2]* — aglz™ — w41 |?
fo@®) + Q)3 (@) + aufla™ — a|* — avfla™ =z |?

470 According to g; (w411) = 0 and g, (x*) = 0 and rearrange the inequality, we have

<
<

th+1 —xtHz
1 1
<a*(ft(x*) — fi(ze)) + 07<Vft(xt),xt —Zpp1) + Hx* - $t|\2 - Hx* - fft+1”2~
t t

Take summation of the inequality above, we have

T T T
1
2 Jeea—a? < 2 07 )—fi(z)) +2 *<Vft i), T —xt+1>+2(Hx*—xtHz—Hx*—xtHH2).
t=1 t=1 t=1
471 Since o = t¢, we have:
T
1 _ 2FD ., _
> = = felw) + (Vfie@e), o0 — 2141)) <2FD Z < =T,
=1 M t=1 Tl-c
T
Dila* = @il — ¥ — weia|?) <D?,
t=1

472 which proves Lemma 7.
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474

475

476

477
478

479

481

482
483

484
485

486

487

Recall in Lemma 2 and we have

T T T T
Z 9 (1) = 2 giter (@) + Z g (1) — 2 i1 (@)
=1 =1 =1 =1

FD 2T 2FD

Let 8 = T2, we establish
& G2 2 1
T):= Fa) < (F?+ = +FD(1+—— 4+ =) +2D%|T"<?
V(1) t;gt(a:t) ( + <+1_C+€)+ ) :

which proves the corollary.

D Proof of Theorem 2

In this section, we prove Theorem 2 which considers strongly convex loss functions. According to
the definition of p-strongly convex, we have

S + (V). a* =) < (@) = G — | a”

We start with inequality (12) by using Lemma 5:
fi(@e) + (V fe(we), wein — 20) + Q)G (we1) + a|wryr —
<filwe) + (Y felwn), o — xe) + Q)3 (¢) + aulla™ — e* — e — e |?

<fi(z*) _g

where the last inequality holds according to the strongly convex condition of f;(-) in (17). By
following the same steps that lead to inequality (5), we have

fe(@e) = fo(z™) + Q(1)g; (x*)
Y

|l2* — 2e]® + oz — 2]* — la® — zppa|? (18)

40[,5 2

This is the key “self-bounding” property when f;(-) is strongly convex function, from which we
obtain

o — z]? + ozt — ze]? — ozt — zga P (19)

~x

F2

folwe) = fi@*) <= = Sl =@l + arle® — @l - arle* @ |?, 20)
t
2

N F m
Q()g; (x441) <ia t [fe(@e) = fol@®)] = Sl — zil? + ufla® — x)? — agla — a2
(21)
Recall that oy = ‘;—t, Ny = 4/t, and Ve = t%“, e > 0. We next establish the regret and violation
bounds.

Regret bound: From (20), we immediately have

o I R R u i
X iled) = ") <7 N o 2 (on — w1 = §) =)
J e | )
<4 ;at+D t;(at 41 2)
By the choice of a; = &, we have
T 2



ags  Following the same steps as in the proof of Theorem 1, we establish

T o T
F 1 |fe(ze) — fi(a™)]
+
307 ) < 33 3 U A @
489 which implies that
T
F? 1
2 (2441 \+FD(1+>. (23)
=1 H €

40 D.1 Violation bound: fixed constraints

ag1  For fixed constraints, inequality (23) implies V(T') := Zthl gt (ze) < Ij—j + FD (1+ 1) because
492 the constraint is fixed. We have proved the first part of Theorem 2 for the fixed constraints. Let’s
493 continue with (23) to prove the second part of Theorem 2 for the adversarial constraints.

494 D.2 Violation bound: adversarial constraints

495 By Lemma 2, we have

TG?
+p Z e — @] (24)

T
; (z¢) — g; ($t+1)) 48 P

496 From (18), we again establish the bound on Z;T:l [2r — 24412 as follows

¢ — $t+1\|2

D=

-+
Il
_

Mﬂ
2|~

(ft( *) = fulme) + <V (@), me — zee) + (0 — 2| — ¥ — zi4a )
t=1

t=1
T
2FD
< =+t —m|?
o1 At
4FD
<——(1+1logT) + D?, (25)
I

497 where the second inequality holds because
fi(@) = fily) <V fil@), 2 —y) < [Vi@)||z -y < FD,Va,y € &;

498 the last inequality holds because of oy = %t and Assumption 1. We combine (24) and (25) with

a9 B =4+/T/(1+1logT) as follows

I TG? r
;(9:(9516) — g (2 +1)) < 18 + 3; |zt — 411
TG? (4FD 2)
< +8|(—@Q+1logT)+ D
15 . ( gT)

(ij + 22 VI TogT) + D*ITT(L + log 7).

s00 Combining the inequality above with inequality (23), we establish the second part of Theorem 2 for
so1  adversarial constraints.
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E Proof of Theorem 3

We prove Theorem 3 with a dynamic baseline similar to that in [26], which is the solution to the
following offline OCO with constraints:

T
gleﬂ)l( t:Zl fe(ze) (26)
subject to: g¢(x;) < 0,Vt € [T, 27)
T
Z |lzt+1 — 2| < Pr. (28)
t=1

where (28) imposes a path-length constraint on the baseline solution which limits change of {x}.
Note that the solution to (26)-(28) with Pr = 0 reduces to the best fixed decision in hindsight. Let
{x}} be the optimal solution to (26)-(28). We define the regret and cumulative constraint violation as
follows

. I L
RdynamlC(T) — Z felzy) — ft(x:‘)7 29)
t=1 t=1
T
V() = g (a1) (30)

~
Il
—

Next, we state the key self-bounding property for establishing Theorem 3.

Lemma 8 Ler {x:} be the decision sequence generated by RECOO. Under Assumptions 1-3, the
Jollowing inequality holds for any sequence {y.} with y; € X, Vt,

fe(@e) = folye) + Q(1)3; (x441)
F2
<E + Q)d () + aullye — 2| — cullye — mesa | 31)

Proof According to Lemma 5, we have
(Vfel@e), xon — ) + Q)G (we41) + @i —
SV fel@e),ye — o) + Q)G (ye) + adllye — ze]* — alys — 241
We add fi(x) to both sides of the inequality above

fe(@e) + (V@) w1 — ) + Q)37 (weg1) + velwer — a]?
<fel@e) + (Vfilze),ye — 2y + Q)G (we) + cullye — me]* — ey — 2 |
<fi(ye) + Q)37 (ye) + uellye — e|® — ey — e |?,

which proves the lemma because

Viia)|? _ F?

Vfilwe), x — - g VI

V@), me — Tp41) — @1 — 24| do, 1oy,

Regret bound with dynamic baseline: Let the optimal sequence be {x}}. Substitute {y;} = {z}}
in (31). By g:(zf) < 0, we have

fe(@e) = felxf) + Q)35 (w441)
<i2 + aglxf — 2e))? — a)2F — 241
40% t t

Take the summation of the inequality above from ¢ = 1 to T', we have
T
RdYnamic(T) < Z F

2 T
* 2 * 2
— 4 Ca? — | — 32
24 1, +t=1at (th x| |2 — zeq1] ) (32)
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Recall oy = +/t, we have

3 i EVT
t=1 4o
For the second term, we have

T
ar (|27 — ef® = of — 2 |?)

= Vi (laef — ai)® - |2F — zesa)?)

T
= 2 \/ﬂlift - xtH2 Vit + 1z, — xt+1H2 +VE+ 12, - $t+1H2
—Vit|zf = e P+ Vit =z = Vilaf — 2 ]?
T T
<ot — a2+ Y (VEH T =) D2+ 3 Ve (Jaty — mea = |of = w0 )
t=1 t=1
<D*\T +1+2DPrVT,

where the first inequality holds because of Assumption 1 and the last inequality holds because

T
Dl — el = lof —wera ) = Y Kady — af, wfy ) — 21 + 2f — 2040))

t=1

T

Z lzfy = 2F | (I8 — el + |2 — 241 )
T

D Z [Enmr
t=1

Therefore, we prove the regret in Theorem 3 as follows

F2\T F?
;F +(D? +2DPr)WT +1 < (2 +D? + 2DPT) VT +1.

R(T) <

Cumulative hard constraint violation bound: When o, = 1, = /1,y = t37€ with & > 0, the
proof follows the same steps in the proof of Theorem 1 in Section 3.1 because the definition of
constraint violation is the same.

F Refined results of RECOO with expert-tracking under the dynamic
baseline

Motivated by [33], we combine RECOO with expert tracking techniques in [6] to improve the
performance bounds w.r.t. Pr, similar in [26]. The intuition of the algorithm is to set up N parallel
experts (N RECOO algorithms) and to track the best one. We state RECOO with expert tracking
algorithm as follows.

A Rectified Online Optimization with Expert-Tracking Algorithm

Initialization (N Experts): fo( ) =go(x) =0,V e X, x;0 € X, Q;(0) = 0. The learning rates
Qi 5 Mty Vs K and w;,1 = 1(1+1)Na Vi e [ ]

Fort=1,---,T

)
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Set: 9;1(95) = ’7t719tt1(33)~

Rectified decision: find the optimal solution of x; ; for each expert and output z; :

T;p = arg r/ryﬂn (Vfioa(@ip—1), 0 — 2ig—1y + Qi(t — g1 (@) + a1 |z — @441
xe

N
Tt = Z Wi, tTq,t
i=1

Observe: V fi(-) and g¢(-).

* Rectified penalty update: update @Q;(t) and w; ; as follows:

Qi(t) = max (Qi(t — 1) + g (4),mit) -
L(z) =V fi(xe), x — 2p)

w; te_nlt(wi”t)
B

Wit+1l = SN
Dicy wipe @i

Before presenting the main result of RECOO with expert-tracking algorithm, we impose an additional
assumption on the loss functions as in [33].

Assumption 5 The loss functions are bounded by a constant C such that | fi(x)| < C,Vx € X, Vt.

We are ready to show RECOO with expert-tracking algorithm improves Theorem 3 in the following.

Corollary2 Let N = |ilog,(1+T)| + 1, k = 1//T. Let the learning rates be o, =
V207 iy = 20ty = 242 Vi € [N], where e > 0. Let {x¥} be the optimal solution
to (2) with Pp = ZZ;I |xf, 1 — xf|. Under Assumptions 1-3, RECOO with expert-tracking algo-
rithm achieves the following bounds on the regret and cumulative constraint violations:

2
(2F? + 4D*)4 /1 + % + % +2In (Hlog2 (1 + ]E)J +2>] VT +1,

V(T) <2FD (1 + 1) + F?(1 4+ log(1 4+ T)) + 2D?.
9

Rdynamic (T) <

We first introduce Lemma 1 in [33], which quantifies the difference between the weighted output of
all experts with the best expert.

Lemma 9 (Lemma 1in [33]) Let {z, ;} and {x.} be the sequence generated by RECOO with expert-
tracking algorithm, we have

. 1 1 kC2T
Z ly(zy) — ngl[%l] {Z L(xig) + p In Wi } < 5

Substitute the learning rate of o; ; in (32) in the proof of Theorem 3, we have

T T
. ; D>*JT+1 2DPrVT
D (Felwin) = fele) + 2] Qi3 (@inn) S PFNT + Tm— + =5 (33)
t=1 t=1
Recall N = |4 log, (1 + T)| + 1, there exists io = |4 logy(1+ 2£)| + 1 & [N] such that
. Pr ,
2071 g 14 —= < 2%, 34
+ 5 (34)
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Regret bound with dynamic baseline: Let ¢ = i in (33) and by Lemma 9, we have:

D2T +1 2DPr/T

2io—1 2i0—1

Z fi ‘T107 ft(il?f ) < olo 2, /T 4
t=1

2
< op? T<1+DT> D«/T+210+12DPT\ﬁ

D 20

< (2F? + 4D2)\/(T +1) (1 - ];T)

where the second and the last inequalities hold by using (34). Moreover, we have

S o 2 z KCPT 1,1
t;ft(zt) - ;ft(xio,t) < t;lt(zt) - ;lt(fmo,t) < 3 + - In

Wig,1

P 4 P
< 2F? T(1+T>+(D2\/T+1(1+5>>

where the first inequality holds by the convexity of f;(-) and the second inequality holds by Lemma
9. Recall k = ﬁ and w; 1 = %, we have
1

Wi, 1

In

1 P,
< lIn(ip(ip + 1)) < 2In(ip +1) < 2In ({2 log, (1 + DT)J + 2) .

Combine all these inequalities, we have:

T T T T
:th(xt)_th(xio,t)'f' th(mio, 2
t=1 t=1 t=1 =1

<(2F? +4D2)\/(T+ 1) (1 + ];T) + (C; +2In (Blog2 (1 + %)J +2>> VT

which proves the regret in Corollary 2 and establish O(/PrT') regret bound.

Violation bound: Since g;" () is convex, we have:

T N T N T
2 9 (Te41) = Z 9 (2 Wi, t+1Ti t+1) < Z 2 Wi 197 (Tie41) Z Z 9¢ (Ti41)
t=1 i=1 i=1t=1 i=1t=1
By the inequality (31), we have
F? 2 2
Qi()g (iny1) < fe(xf) — fe(wie) + To +ag il — xigl]* — cigllef — i
t

Let o = /t/207 1 miy = 2070/t = tzte e > 0, we have

|fe(z}) — fe(zit)l N F? L Qi
Nit Ve 4oy smieYe M

1 FD F? 1 1
< 9i—1 ¢1+e + 4t%+€ + 4i—1 t%+6(|‘xf 7xi,t”2 - fo 7Ii7t+1H2)a

9¢ (wig41) <

(l2F = wie® = l2F — ziea]?)

which implies

d 1
2 g (wip41) < 9i—1

FD

i—1

- Hfff - mi,t+1H2)

T Ty
*
t1+5 Z 31 41 1 Z t%+g(|‘$t

1+

MH

t=1

<

e
—
N——
_l’_
Ty
[\V]
_l’_
*’?u
o ™

g

\V]



563

564

Thus we have

4

g¢ (Ti41)

D ., D2
1 +F +421>

9=
1=

-
Il
—
o~
I
—_

T
D 9F (w41) <
t=1

7 21

N
=

o —
e

1
<2F 1+>+F%1+bg1+T»+2D2
9

(

which proves the violation in Corollary 2.
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