Under review as a conference paper at ICLR 2023

(%) i (2 & 1 Wi =)

N
\
\
\
Ry
v
\
Y
onupusq

W, £
X4 '\62, Xy > W, (63 X3 &
a
Dynamics: ——e ——e |nhibitory
B i 6; Error Nodes Excitatory
; . L i; Interneurons 828 O0—O
X, =-6,+ W? 6141 W Synaptic Weights 0—0

Figure 5: Standard and dendritic neural implementation of predictive coding. The dendritic im-
plementation makes use of interneurons i; = Wjx; (according to the notation used in the figure).
Both implementations have the same equations for all the updates, and are thus equivalent; however,
dendrites allow a neural implementation that does not take error nodes into account, improving the
biological plausibility of the model. Figure taken and adapted from (Whittington & Bogacz, [2019).

A A DISCUSSION ON BIOLOGICAL PLAUSIBILITY

In this section, we discuss the biological plausibility of the proposed algorithm, a topic overlooked
in the main body of this paper. In the literature, there is often a disagreement on whether a specific
algorithm is biologically plausible or not. Generally, it is assumed that an algorithm is biologically
plausible when it satisfies a list of properties that are also satisfied in the brain. Different works
consider different properties. In our case, we consider as list of minimal properties that include local
computations and lack of a global control signals to trigger the operations. Normally, predictive
coding networks take error nodes into account, often considered implausible from the biological
perspective (Sacramento et al., 2018). Even so, the biological plausibility of our model is not af-
fected by this: it is in fact possible to map PC on a different neural architecture, in which errors
are encoded in apical dendrites rather than separate neurons (Sacramento et al., 2018} Whittington
& Bogacz, 2019). Graphical representations of the differences between the two implementations
can be found in Fig. EL taken (and adapted) from (Whittington & Bogacz, 2019). Furthermore, our
formulation is more plausible than the original formulation of PC, as it is able to learn without the
need of external control signals that trigger the weight update.

14

Under review as a conference paper at ICLR 2023

B PSEUDOCODES OF Z-IL AND PC

Algorithm 2 Learning a dataset D = {g; } with PC.

: Require: For every ¢, EEO) is fixed to ¥;,
:fort=0to7 do
For every 7 and [, update W to minimize F via Eq.(7)
if t =T then
For every [update each #") to minimize F' via Eq. (8)
end if
end for

RN

aw

Algorithm 3 Learning one training pair (3™, 5°") with Z-IL

1: Require: T& is fixed to 5, 9 is fixed to 5.

2: Require: 2 = g forl e {1,...,L—1},and t = 0.
3: fort =0to T do

4 for each level [do

5: Update ¥ to minimize F via Eq.(7)

6: if t = [then

7 Update 0 ® to minimize F via Eq.(8).

8 end if

9 end for
10: end for

15

Under review as a conference paper at ICLR 2023

Table 3: Theoretical Efficiency of PC, Z-IL, BP, and iPC.

One inference step PC Z-1L BP iPC
Number of MMs per weight update (2L —1) 2L-1)T (2L-1)(L-1) (2L—1) (2L-1)
Number of SMMs per weight update 2 2T 2(L—-1) (2L -1) 2

C ON THE EFFICIENCY OF PC, BP, AND 1PC

In this section, we discuss the time complexity and efficiency of PC, BP, Z-IL, and iPC. We now
start with the first three, and introduce a metric that we use to compute such complexity. This metric
is the number of simultaneous matrix multiplications (SMMs), i.e., the number of non-parallelizable
matrix multiplications needed to perform a single weight update. It is a reasonable approximation
of running time, as multiplications are by far the most complex operation (=~ O(N?)) performed by
the algorithm.

C.1 COMPLEXITY OF PC, BP, AND Z-IL

Serial Complexity: To complete a single update of all weights, PC and Z-IL run for 7" and (L — 1)
inference steps, respectively. To study the complexity of the inference steps we consider the number
of matrix multiplications (MMs) required for each algorithm: One inference step requires (2L — 1)
MMs: L for updating all the errors, and (L — 1) for updating all the value nodes (Eq. equation @)
Thus, to complete one weight update, PC and Z-IL require (2L — 1)7T and (2L — 1)(L — 1) MMs,
respectively. Note also that BP requires (2L — 1) MMs to complete a single weight update: L for
the forward, and (L — 1) for the backward pass. These numbers are summarized in the first row of
Table[3| According to this measure, BP is the most efficient algorithm, Z-IL ranks second, and PC
third, as in practice 7" is much larger than L. However, this measure only considers the total number
of matrix multiplications needed, without considering whether some of them can be performed in
parallel, which could significantly reduce the time complexity. We now address this problem.

Parallel complexity: The MMs performed during inference can be parallelized across layers. In
fact, computations in Eq. equation [6] are layer-wise independent, thus L MMs that update all the
error nodes take the time of only one MM if properly parallelized. Similarly, in Eq. equation [6]
(L — 1) MMs that update all the value nodes take the time of only one MM if properly parallelized.
As a result, one inference step only takes the time of 2 MMs if properly parallelized (since, as stated,
it consists of updating all errors and values via Eq. equation [6). Thus, one inference step takes 2
SMMs; one weight update with PC and Z-IL takes 27" and 2(L — 1) SMMs, respectively. Since
no MM can be parallelized in BP (the forward pass in the network and the backward pass of error
are both layer-dependent), before performing a single weight update, (2L — 1) SMMs are required.
These numbers are summarized in the second row of Table 3] Overall, measured over SMMs, BP
and Z-IL are equally efficient (up to a constant factor), and faster than PC.

C.2 COMPLEXITY OF IPC

To complete one weight update, iPC requires one inference step, thus (2L — 1) MMs or 2 SMMs,
as also demonstrated in the last column of TableE} Compared to BP, iPC takes around L times less
SMMs per weight update, and should hence be significantly faster in deep networks. Intuitively, this
is because matrix multiplications in BP have to be done sequentially along layers, while the ones in
iPC can all be done in parallel across layers (Fig.[6). More formally, we have the following theorem,
which holds when performing full-batch training:

Theorem Let M and M’ be two equivalent networks with L layers trained on the same dataset.
Let M (resp., M') be trained using BP (resp., iPC). Then, the time complexity measured by SMMs
needed to perform one full update of the weights is O(1) and O(L) for iPC and BP, respectively.

Proof. Consider training on an MLP with L layers, and update weights for multiple times on a single
datapoint. Generalizations to multiple datapoints and multiple mini-batches are similar and will be
provided after. We first write the equations needed to be computed for iPC to produce one weight

16

Under review as a conference paper at ICLR 2023

update:
a:ELt) = 5" and x(t) = sout
nl*l
i) =3l forl € {1,...,L})
j=1
5512 = svfli - ‘%z(lt) forl e {1,...,L}
U1
el =al) oy | e el ST eltel | forie{1,..., L} (10)
k=1
el(,lj)’,t+1 Ggl])t - <z+1)f((l>) forle{1,...,L}. (11)
We then write the three equations needed to be computed for BP to produce one weight update:
x?t = 52:”
a!) = Z 0 p(al'FY) fori e {1,..., L} (12)
EE,Lt) — S?ut _ xgﬁ)
n(+
el = 1 (a1) Z o) forl € {L,...,1} (13)
k=
0) =0, —a-eTVrEl) forie{1,..., L}

First, we notice that the matrix multiplication (MM) is the most complex operation. Specifically, for
two adjacent layers with the size of n! and n', the complexity of MM is O(n!n'), but the maximal
complexity of the other operations is O(maxn!,n!). In the above equations, only equations with
MM are numbered, which are the equations that we investigate in our complexity analysis.

Eq. equatlon E] for iPC takes L MMs, but one SMM, since the the for-loop forl € {1,..., L} can
run in parallel for different [. This is further because the variables on the right side of Eq. equatlon 9]
are immediately available. Differently, Eq. equation [I2]for iPC takes L MMs, and also L SMMs,

since the for-loop for ! € {1,..., L} has to be executed one after another, following the specified
order {2,...,L}. This is further because the qualities on the right side of Eq. equation are
immediately available, but require to solve Eq. equation [12|again for another layer. That is, to get
:cl(-,Lt), Eq. equation|12]has to be solved recursively from! = 1to ! = L.

Similar sense applies to the comparison between Eqs. equation[I0]and equation[I3] Eq. equation [I0]
for iPC takes L — 1 MMs but 1 SMMs; Eq. equation [I3]for BP takes L — 1 MMs and also L — 1
SMMs.

Overall, Egs. equation [9]and equation [I0] for iPC take 2L — 1 MMs but 2 SMMs; Egs. equation [I2]
and equation |13| for BP take 2L — 1 MMs and also 2L — 1 SMMs. Then, the time complexity
measured by SMMs needed to perform one full update of the weights is O(1) and O(L) for iPC and
BP, respectively.

C.3 EFFICIENCY ON ONE DATA POINT

To make the difference more visible and provide more insights, we explain this in detail with a
sketch of this process on a small network in Fig. [6| where the horizontal axis of m is the time
step measured by simultaneous matrix multiplications (SMMs), i.e., within a single m, one can
perform one matrix multiplication or multiple ones in parallel; if two matrix multiplications have
to be executed in order (e.g., the second needs results from the first), they will need to be put into

17

Under review as a conference paper at ICLR 2023

m=2 m=4 kward
l:() 000 000 m Backward SMM
O1
l: 1 loXeXo) S8 nput neuron
E O Hidden neuron (error not
=2 O 0O OO0 updated)
1=3 loXeoXo) SO0 O :;::f;:j;wumn (error
I=0000 Q000 000 OO0 000 000 QOO © Outputneuron
— Weights
=1 Q00 Q00 QOO 00O 000 000 [i
O
£1=2 %ooo OO0 OO0 0OOO 0OOO Weights
dated
=3 Q00 OO0 OO0 VOO 0V O (ipdated)

Figure 6: Graphical PClustration of the efficiency over backward SMMs of BP and iPC on a 3-layer
network. iPC never clears the error (red neurons), while BP clears it after every update. This allows
iPC to perform 5 full and 2 partial updates of the weights in the first 6 SMMs. In the same time
frame, BP only performs 3 full updates. Note that the SMMs of forward passes are excluded for
simplicity, w.l.o.g., as the insight from this example generalizes to the SMMs of the forward pass.

two steps of m. Note that we only consider the matrix multiplications for the backward pass, i.e.,
the matrix multiplications that backpropagate the error of a layer from an adjacent layer for BP and
the inference of Eq. equation [6] for iPC, thus the horizontal axis m is strictly speaking “Backward
SMM”. The insight for the forward pass is similar as that of the backward pass. As it has been
said, for BP, backpropagating the error from one layer to an adjacent layer requires one matrix
multiplication; for iPC, one step of inference on one layer via Eq. equation [f] requires one matrix
multiplication. BP and iPC are presented in the first and second rows, respectively. Before both
methods are able to update weights in all layers, they need two matrix multiplications for spreading
the error through the network, i.e., a weights update of all layers occurs for the first time at m = 2 for
both methods. After m = 2, BP cleared all errors on all neurons, so at m = 3, BP backpropagates
the error from ! = 0 to! = 1, and at m = 4, BP backpropagates the error from [= 1to [= 2
after which it can make an update of weights at all layers again for the second time. Note that the
matrix multiplication that backpropagates errors from [= 1to [= 2 at m = 4 cannot be put at
m = 3, as it requires the results of the matrix multiplication at m = 3, i.e., it requires the error to be
backpropagated to [= 1 from [= 0 at m = 3. However, this is different for iPC. After m = 2, iPC
does not reset x! , to u! ,, i.e., the error signals are still held in €} ,. At m = 3, iPC performs two
matrix multiplicétions in parallel, corresponding to two inferences steps at two layers, [= 1 and
| = 2, updating z; ,, and hence the error signals are held in &; ; of these two layers. Note that the
above two matrix multiplications of two inference steps can run in parallel and be put into a single
m, as inference requires only locally and immediately available information. In this way, a weight
update in iPC is able to be performed at every m ever since the very first few steps of m.

D TRAINING DETAILS

We now list some additional details to reproduce our results.

D.1 EXPERIMENTS OF EFFICIENCY

The experiments for the efficiency of generative models were run on fully connected networks with
128, 256 or 512 hidden neurons, and L € {4,5}. Every network was trained on CIFAR10 or Tiny
Imagenet with learning rates & = 0.00005 and v = 0.5, and T' € {8,12,16}. The experiments on
discriminative models are performed using networks with 64 hidden neurons, depth L € {3,4,6},
and learning rates o = 0.0001 and v = 0.5. The networks trained with BP have the same learning
rate ce. All the plots for every combination of hyperparameters can be found in Figures[§|and

18

Under review as a conference paper at ICLR 2023

D.2 EXPERIMENTS OF GENERALIZATION QUALITY

As already stated in the paper body, to make sure that our results are not the consequence of a
specific choice of hyperparameters, we performed a comprehensive grid search on hyperparameters,
and reported the highest accuracy obtained, and the search is further made robust by averaging
over 5 seeds. Particularly, we tested over 8 learning rates (from 0.000001 to 0.01), 4 values of
weight decay (0.0001,0.001,0.01,0.1), and 3 values of the integration step v (0.1,0.5,1.0). We
additionally verified that the optimized value of each hyperparameter lies within the searched range
of that hyperparameter. As for additional details, we used standard Pytorch initialization for the
parameters. For the hardware, we used a single Nvidia GeForce RTX 2080 GPU on an internal
cluster. Despite the large search, most of of the best results were obtained using the following
hyperparameters: v = 0.5 (v = 1 for Alexnet), a = 0.00005.

19

Under review as a conference paper at ICLR 2023

CIFARI10
HD =128 HD =256 HD =512
— iPC
—— PC, T=8
— IHG, iz
== PC)|T=16]
L=4
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations Iterations
— ipC
— PC,T=8
— PC, T=12
— PC, T=16
L=5
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations Iterations
Tiny Imagenet
HD =128 HD =256 HD =512
L=4
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations Iterations
L=5

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Iterations Iterations Iterations

Figure 7: Efficiency of multiple generative networks trained with PC.

20

Under review as a conference paper at ICLR 2023

Train
Loss
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
SMMs SMMs SMMs
0.8
0.6
Test

Accuracy ,

0.2 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
SMMs SMMs SMMs
FashionMNIST
HD =128 HD =256 HD =512

Train
Loss
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
SMMs SMMs SMMs
0.8
Test 0.6
Accuracy

0.2 B
0 1000 2000 3000 “oo 1000 2000 3000 0 1000 2000 3000

SMMs SMMs SMMs

Figure 8: Efficiency of multiple discriminative networks trained with PC and BP.

21

	Introduction
	Preliminaries
	Predictive Coding

	Incremental Predictive Coding
	Efficiency
	CPU Implementation

	Classification Experiments
	Robustness and Calibration

	Related works
	Discussion
	A Discussion on Biological Plausibility
	Pseudocodes of Z-IL and PC
	On the efficiency of PC, BP, and iPC
	Complexity of PC, BP, and Z-IL
	Complexity of iPC
	Efficiency on One Data Point

	Training Details
	Experiments of Efficiency
	Experiments of Generalization Quality

