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a b s t r a c t 

Detection and localization of abnormal behaviors in surveillance videos of crowded scenes is challenging, 

where high-density people and various objects performing highly unpredictable motions lead to severe 

occlusions, making object segmentation and tracking extremely difficult. We associate the optical flows 

between multiple frames to capture short-term trajectories and introduce the histogram-based shape de- 

scriptor to describe such short-term trajectories, which reflects faithfully the motion trend and details in 

local patches. Furthermore, we propose a method to detect anomalies over time and space by judging 

whether the similarities between the testing sample and the retrieved K -NN samples follow the pattern 

distribution of homogeneous intra-class similarities, which is unsupervised one-class learning requiring 

no clustering nor prior assumption. Such a scheme can adapt to the whole scene, since the probabil- 

ity is used to judge and the calculation of probability is not affected by motion distortions arising from 

perspective distortion, which gains advantage over the existing solutions. We conduct experiments on 

real-world surveillance videos, and the results demonstrate that the proposed method can reliably detect 

and locate the abnormal events in video sequences, outperforming the state-of-the-art approaches. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to the arising demand for public security issues and the 

widely equipped surveillance machines in public places, it is ur- 

gent to develop an automated system that can monitor and percept 

human activities to alarm abnormal events. In surveillance videos, 

the dominant activities occurring frequently are referred to as nor- 

mal behaviors, which are in general not of concern. Apart from 

the normal activities, the most important and challenging task of 

an intelligent video surveillance system is to detect and localize 

anomalous events, which are defined as those to occur with a low 

probability [1] . In general, an abnormal event appears rarely and 

disappears in a short time. The goal of anomaly detection and lo- 

calization is to identify the small time span and the spatial region 

covering the anomalous activities in an automatic manner [2,3] . 

In surveillance videos of public spaces, high-density people 

and various objects performing highly random motions [2] make 

anomaly detection especially challenging in crowded scenes. The 
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traditional object-based approaches deem crowd as a collection of 

individuals. As this kind of methods conduct anomaly detection 

based on objects’ appearances and trajectories, its performance is 

directly dependent on the accuracy of object extraction [4] and 

object tracking [5] . Unfortunately, capturing the single individuals 

is nearly impossible in crowded scenes, because of the high den- 

sity of people and the various objects performing irregular mo- 

tions to incur frequent and severe occlusions [2] . Aside from the 

aforementioned difficulties, tracking multiple objects is quite time- 

consuming [6] . 

To avoid the difficulty of segmenting individuals in crowded 

scenes, the latest trend in terms of anomaly detection is shifted to 

partition the surveillance videos into a couple of spatio-temporal 

volumes of a fixed size to focus on local scenes of a short time 

duration [7] . Then, the volume-based detection model in tempo- 

ral and spatial contexts is established to discriminate whether the 

local scenes correspond to abnormal events or not, where the 

anomalies refer to such patterns that have never appeared at a 

specified site in contrast to the historical records or deviate re- 

markably from those of their neighborhoods at the same time [3] . 

In the literature, the unsupervised framework that makes use of 

normal volumes only for training has drawn considerable atten- 
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Fig. 1. An example of short-term trajectories and the histogram-based shape description for trajectories. (a) The patches with red, blue, and green borders correspond to 

anomalies, namely, skaters and one biker, while the purple region is a normal case with pedestrian only. (b) The histogram to figure out the short-term trajectories the 

purple patch in (a). (c) The enlarged view of the patches in (a) with the same colors and the corresponding trajectories. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

tion, since anomalies are always rare and differ from one to an- 

other with unpredictable variations, making it almost impossible 

to model all the abnormal types [8] . 

We review two major categories of unsupervised approaches 

applied in anomaly detection in the following: 

(1) A straightforward way to detect anomalous event is apply- 

ing clustering methods to find outliers as anomalies [3] . In fact, 

such a scheme has been widely used in the existing works [2,7] . 

However, how to determine the number of clusters remains un- 

solved yet, which prevents its usage from being extended to a 

broad spectrum of practical applications. Classical clustering al- 

gorithms such as k -means and Gaussian mixture model (GMM) 

[3,7] require the number of prototypical patterns to be known a 

priori [2] . In crowded scenes, however, motion patterns are chang- 

ing continuously and randomly such that some of them cannot be 

foreseen, which leads to uncertainty in regard to the number of 

prototypical patterns. Thus, it is impracticable to define the num- 

ber of prototypical patterns in advance. 

An alternative solution is to perform clustering based on a dis- 

tance threshold so as to determine whether a sample belongs to 

an existing prototypical pattern or corresponds to a new proto- 

type that should be created [9,10] as well as whether two clusters 

should be merged or not [8] . This kind of methods does not re- 

quire the number of prototypical patterns to be known in advance 

but a specific distance threshold applicable to the whole scene to 

perform clustering does not exist due to the size variation of the 

object of interest, which is subject to the distance to the camera, 

namely, perspective distortion, which causes motion distortions. 

This gives rise to the same problem in defining the number of pro- 

totypes. For example, as shown in Fig. 1 (a), the size of the skater 

in red color is much smaller than that of the one in blue color, in 

association with which the enlarged view of such objects is illus- 

trated in Fig. 1 (c) to enable an intuitive insight into the perspective 

distortion. In the case as shown in Fig. 1 , it is impossible to define 

a uniform threshold to group the motion trajectories represented 

by any descriptor into reasonable clusters on account of the vary- 

ing sizes of the objects caused by perspective distortion. 

Due to the aforementioned object and motion distortion prob- 

lem in surveillance scenarios, that is, the target size and motion 

step becomes larger when approaching more closely to the camera, 

some endeavors aiming to tackle such challenging issue have been 

made. Chen and Lai [11] use thermal diffusion processing and per- 

spective transformation to construct a coherent motion flow field, 

and then establish a physical characteristic descriptor of crowd 

motion to model the crowd motion state of the flow field. How- 

ever, the correction coefficient calculated for perspective transform 

requires manual selection of two parallel lines from each scene, 

which makes it difficult to deploy in practice. Leyva et al. [12] di- 

vide the scene into size-varying cells to adapt to the change of 

target size caused by scene’ s perspective, and then extract fore- 

ground occupancy and optical flow features from these cells to de- 

tect abnormal events. However, the distortion extents are different 

for various scenes, so the setting of the changing rate of cells’ sizes 

in a scene is difficult. 

(2) The other category of methods is reconstruction-based ap- 

proaches, for example, the method referred to as sparse represen- 

tation cost [13] . Yang et al. [13] reconstruct testing samples from 

the normal samples of previous or surrounding volumes that act 

as the dictionary, and identify the samples with large reconstruc- 

tion errors that exceed a predefined threshold as anomalies. How- 

ever, once a very small number of abnormal samples are mixed 

into the dictionary, it will fail to detect the same kinds of abnor- 

mal behaviors due to the corruption on the dictionary. Besides, it is 

impossible to find a threshold applicable to the whole scene on ac- 

count of the perspective distortion imposed inhomogeneity of the 

reconstruction errors for local regions of different positions. 

In view of the weakness of the aforementioned approaches, 

we propose a motion-field shape descriptor along with a K -NN 



X. Zhang, S. Yang and J. Zhang et al. / Pattern Recognition 105 (2020) 107394 3 

( K -nearest neighbors) similarity-based statistical model to detect 

anomalies over time and space, where clustering or prior assump- 

tion are not needed. First, we associate the optical flows across 

multiple frames to capture the short-term trajectories in a video 

clip. The short-term trajectories characterize the motions in con- 

secutive multi-frames and thus enhance motion pattern descrip- 

tion. Hereafter, we introduce the histogram-based shape descrip- 

tor referred to as shape contexts [14] to figure out the short-term 

trajectories within each patch in a statistical sense, which reflects 

faithfully the motion trend and details in every local patch. To the 

best of our knowledge, this is the first attempt to apply shape de- 

scription to quantize trajectories as motion features for anomaly 

detection in crowded scenes. Then, we propose to compute the K - 

NN similarity-based statistical model for anomaly detection as fol- 

lows: First, we retrieve the K -NN samples from the training set in 

regard to the testing sample, and then use the similarities between 

every pair of the K -NN samples in the training set to construct a 

Gaussian model. Finally, the probabilities of the similarities from 

the testing sample to the K -NN samples under the Gaussian model 

are calculated in the form of a joint probability to check whether 

they are compatible with the Gaussian model. Abnormal events 

can be detected by judging whether the joint probability is below 

predefined thresholds in temporal and spatial contexts, separately. 

The major advantage is: The anomaly detection through probabil- 

ity can adapt to the whole scene, since the probability computed 

as such is not affected by the so-called perspective distortion. We 

carried out extensive experiments on three benchmarks with real- 

world scenes, UMN dataset [15] , Subway dataset [16] , and UCS- 

Dped1 dataset [3] , for anomaly detection and localization, and the 

results validate the effectiveness and robustness of the proposed 

method. 

The remainder of the paper is organized as follows: 

Section 2 reviews related work on anomaly detection. In Section 3 , 

we introduce the histogram-based shape description method to 

characterize the short-term trajectories. Then, we propose the 

K -NN similarity-based model to detect anomalies in Section 4 . In 

Section 5 , we introduce the spatio-temporal anomaly detection 

scheme. We evaluate the performance of the proposed method 

in detecting and locating abnormal behaviors in Section 6 . In 

Section 7 , we draw conclusions. 

2. Related work 

Many methods detect anomalies by judging individual behav- 

iors. For example, Hinami et al. [17] train a generic convolutional 

neural network (CNN) model on large datasets to learn individ- 

ual objects’ attributes and action features and then detect and 

recount abnormal events based on these features. For this kind 

of methods, the major challenge for abnormal event detection in 

crowded scenes is that the high density of the presence of objects 

makes detecting and tracking individual objects extremely difficult 

and thus inevitably unreliable. To tackle this problem, an emerg- 

ing trend is to establish the detection model from local primi- 

tives such as pixels, image blocks/patches, and 3D cuboids/bricks 

[7] so as to avoid the error-prone object segmentation and track- 

ing in crowded scenes. In the state-of-the-art works, the local fea- 

tures adopted for anomaly detection can be sorted into 3 classes, 

namely, the representations based on the properties of, interac- 

tions among, and trajectories of local primitives. (1) As for local- 

property based feature, Adam et al. [16] use histograms of op- 

tical flows (HOF) at specific regions to derive decision rules for 

anomaly detection. Giorno et al. [18] extract a set of features from 

a video, such as histogram of oriented gradient (HOG), HOF, and 

motion boundary histogram (MBH) descriptors, and then shuffle 

and split these features to find the most anomalous events in the 

contexts of the same video [19] . Uijlings et al. [20] design speed- 

ups for HOG and HOF descriptors. The HOG reflects the gradient 

magnitude responses, and HOF describes optical flow displacement 

vectors. However, in many scenarios, appearance features, such as 

HOG and scale-invariant feature transform (SIFT), are not suited 

for crowded scenes to distinguish normality and abnormality since 

the appearances are changing over time and the widespread ar- 

tificial textures like clothing and car painting in arbitrary forms. 

Besides, as HOF captures motion clues between two successive 

frames only, it can only reflect the instantaneous motion, which 

is not enough to figure out the motion patterns of objects or ob- 

ject parts in terms of trajectory shapes across multiple frames. Ma- 

hadevan et al. [3] employ a mixture of dynamic textures (MDTs) to 

describe jointly the appearances and the dynamics of local portions 

of videos in crowded scenes. In order to further address the scale 

problem caused by different sizes of objects, they [21] train MDTs 

at multiple spatial scales, that is, a hierarchy of MDT model, and 

integrate anomaly scores across time, space, and scale with a con- 

ditional random field (CRF) for global consistency towards anomaly 

judgments. These approaches capture both temporal and spatial 

anomalies at the cost of highly intensive computations. Leyva et al. 

[22] present two binary-based video features, binary Wavelet dif- 

ferences (BWD), and binary dense trajectories (BDT), to describe 

motion information. The BWD and BDT descriptors are rotation and 

direction invariant. This means that the two features cannot distin- 

guish different directions of movements, so they are not suitable 

for anomaly detection. (2) The well-known interaction based fea- 

ture is the social force model (SFM) introduced by Mehran et al. 

[15] , where crowd actions are modeled as interaction forces esti- 

mated from the corresponding optical flow field. However, SFM is 

not reliable and robust enough in the present of disturbance. (3) 

Wu et al. [10] make use of chaotic invariants as a trajectory feature, 

which is known as maximum Lyapunov exponent and correlation 

dimension, to measure how much neighboring particles deviate 

from their original closeness to each other after a certain steps 

of evolution. However, for the scenes that people’ s movements 

are spatially constrained such as in corridors and underpasses, the 

evolution of trajectories might not follow the assumption of chaos, 

which assumes that neighboring trajectories will increasingly fall 

apart accompanying elapse of time. In such a case, Lyapunov ex- 

ponent may not reflect exactly the chaotic degree of the collective 

human mobility corresponding to anomaly due to the constrained 

evolution of the trajectories. Furthermore, this feature is only ap- 

plicable to the specific type of anomaly known as crowd chaos, 

which is the same as the entropy-based [23] and energy-based fea- 

tures [24] . 

Except for feature extraction, another important issue for 

anomaly detection is machine learning. The problem for super- 

vised learning is that the annotations of normal and abnormal 

samples are difficult to be obtained since anomalies happen rarely 

and the diversity between each other with unpredictable varia- 

tions makes modeling all the abnormal classes in advance impos- 

sible [8] . Consequently, recent works favor unsupervised machine 

learning. According to different unsupervised models applied, we 

broadly classify the anomaly detection approaches into three 

categories: Clustering-based approaches, reconstruction-based ap- 

proaches, and relationship-based modeling. The details are pre- 

sented below. 

(1) For clustering-based approaches, Roshtkhari and Levine 

[9] construct a codebook by predefining a uniform Euclidean dis- 

tance threshold to judge whether a observed volume should be 

used to update the existing codewords or treated as a new one. 

Then, they calculate the probability of the spatio-temporal collec- 

tion of the volumes according to the codebook to detect anoma- 

lies, where predefining the max number of Gaussians used in the 

GMM is required. Ionescu et al. [25] introduce an unsupervised 

feature learning framework based on object-centric convolutional 
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auto-encoders to encode both motion and appearance information. 

Then, they cluster the training samples into normality clusters for 

training a one-against-rest classifier. During the inference, an ob- 

ject is labeled as abnormal if the highest classification score as- 

signed by the classifier is negative. This approach needs to clus- 

ter the training samples before training the classifier. Therefore, its 

performance also depends on clustering. Cheng et al. [7] cluster 

the local features extracted around interesting points into a low- 

level visual vocabulary using the k -means algorithm in the sense 

of the Euclidean metric, and then measure the distances of a test- 

ing cuboid against the visual vocabulary to detect local anoma- 

lies. They cluster the collection of the features from nearby inter- 

esting points to build a high-level codebook of templates using a 

greedy clustering algorithm, and then construct a model for each 

template by fitting into a multivariate Gaussian distribution to de- 

tect global anomalies. However, using high-dimensional features to 

train a multivariate Gaussian distribution is subject to overfitting. 

Besides, a series of problems prevent this kind of approaches from 

being applied to broad-spectrum applications. For example, due to 

the uncertainty of the motions in crowded scenes, it is impractica- 

ble to define the number of prototypical patterns in advance [2] for 

classical clustering algorithms, such as k -means and GMM [3,7] . 

An alternative solution is to perform clustering based on a dis- 

tance threshold, for instance, the greedy clustering algorithm [7] . 

For this kind of solutions, a specific distance threshold applicable 

to the whole scene does not exist due to perspective distortion. 

(2) For reconstruction-based approaches, Yang et al. [13] iden- 

tify the observed samples with large sparse reconstruction er- 

rors that exceed a predefined threshold as anomalies. Abati et al. 

[26] apply a deep autoencoder with a parametric density estima- 

tor to learn the probability distribution through an autoregressive 

procedure. The novelty of a sample is assessed in terms of the 

summation of the reconstruction errors and the log-likelihood. Luo 

et al. [27] optimize the reconstruction coefficients through map- 

ping a temporally-coherent sparse coding to a stacked recurrent 

neural network, and perform detection based on reconstruction er- 

rors. For such anomaly detection approaches, once a very small 

number of abnormal samples are mixed into the dictionary, this 

kind of approaches will fail to detect the same kind of abnormal 

behaviors. Besides, a fixed threshold specified in advance also suf- 

fers from perspective distortion. Lu et al. [28] find a set of combi- 

nations of base vectors via sparse combination learning, and then, 

select the most suitable combination for each testing sample by 

evaluating the least square error in terms of fitting, and finally 

judge whether the testing sample is anomaly or not according to 

the fitting error. This approach learns sparse combinations in train- 

ing phase, which increases the speed of the computation in test- 

ing. However, the extremely slow training speed limits its actual 

deployment as this approach needs to do specialized training for 

different scenes. 

(3) Another category of approaches is based on modeling rela- 

tionships among normal volumes. Kim and Grauman [29] utilize a 

space-time Markov random field (MRF) to detect abnormal activi- 

ties in a video sequence, where each node in the MRF graph corre- 

sponds to a local region in the video frames and neighboring nodes 

in both space and time are associated with links. A MRF model is 

built for regular behaviors and the cases not compatible with the 

learned model are considered as anomalies. In crowded scenes, the 

volumes used for modeling may be taken from different parts of 

the same object or different objects. Moreover, due to dynamic oc- 

clusions, such volumes are dynamic changing. These result in very 

complex and uncertain relationships among volumes that go very 

easily beyond trained prototypes. Hu et al. [30] scan the video us- 

ing a large number of windows, and then measure the abnormality 

of each scanning window for abnormal activity detection by com- 

puting a semiparametric density ratio between the observations in- 

side and outside the window. However, the scan statistic method 

constructs a uniform codebook of optical flow-based features with- 

out taking into account the influence caused by perspective dis- 

tortion, which leads to unsatisfactory results in terms of locating 

anomalies. 

In this study, we focus on motion or behavior attributes for 

anomaly detection. We detect the correspondences among the op- 

tical flows across multiple frames to capture short-term trajecto- 

ries and employ the histogram-based shape descriptor referred to 

as shape contexts [14] to characterize such short-term movements 

across a couple of consecutive frames. Then, we model the mo- 

tion features using the proposed K -NN similarity-based statistical 

model to detect anomalies over time and space, which is an unsu- 

pervised one-class learning algorithm requiring no clustering nor 

prior assumption. 

3. Short-term trajectory feature 

Most of the existing motion-based approaches employ optical 

flow features [16,20] , e.g., HOF, which capture motions between 

two successive frames only but fail to associate motions over mul- 

tiple frames. In view of such limit, we associate the optical flows 

between multiple frames to capture short-term trajectories and 

employ a histogram-based shape descriptor, namely, shape con- 

texts [14] , to characterize such short-term trajectories. 

3.1. Short-term trajectory 

A given video of a crowd scene is divided into a series of non- 

overlapping clips, and each clip consists of a couple of frames 

streaming over a short time. Here, each clip is represented by a 

matrix of W × H × T size, where W × H denotes the image res- 

olution of every frame (width by height) and T is the number 

of sequential frames. We apply the general optical flow algorithm 

[31] to obtain the motion vectors denoted as follows: {(
u t w , v t h 

) | w ∈ [ 1 , W ] , h ∈ [ 1 , H ] , t ∈ [ 1 , T − 1 ] 
}

(1) 

where u represents the horizontal velocity and v the vertical ve- 

locity [10] . We assume that the particles overlaying on pixels move 

with the optical flows to form particle trajectories in a video clip 

[32] . The position of a moving particle is formulated as follows: {
x t+1 w = x t w + 

[
u t w 

]
y t+1 
h 

= y t 
h 

+ 

[
v t 
h 

] (2) 

where [ · ] denote rounding operation and vector (x t w , y t h ) the posi- 
tion of particle ( w, h ) at time t. Following [10] , a particle trajectory 

is denoted as 
{
(x t w , y 

t 
h 
) | t ∈ [1 , T ] 

}
, and all the particle trajectories in 

a clip are denoted as {(
x t w , y 

t 
h 

) | w ∈ [ 1 , W ] , h ∈ [ 1 , H ] , t ∈ [ 1 , T ] 
}

(3) 

As an example illustrated in Fig. 1 (a), the yellow dot lines de- 

note the short-term particle trajectories in a clip. Note that the po- 

sitions of the particles are re-initialized for each clip, enabling the 

short-term trajectories to record only motions within each clip. Ob- 

viously, the nature of short-term particle trajectory is also optical 

flow, but it associates consecutive multi-frames and thus enhances 

motion pattern description. Also, it has been successfully applied 

to segment coherent crowd flows for video segmentation [32] . 

3.2. Shape histogram for short-term trajectory 

We divide the starting frame of a clip into non-overlapping 

small patches { s ( m )| m ∈ [1, M ]}, where M denotes the total num- 

ber of the patches and the frame partition should meet the con- 

dition that each patch does not involve too many objects to avoid 
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interference with each other. Then, the short-term trajectories star- 

ing in the same patch 
{
(x t w , y 

t 
h 
) | (w, h ) ∈ s (m ) , t ∈ [1 , T ] 

}
will undergo 

the histogram-based shape description as follows to characterize 

the corresponding motion patterns. 

Firstly, perform translating on the particle trajectories 

in each patch to make the starting point of every trajec- 

tory locate at the origin of the polar coordinate, that is, {
(x t w − x 1 w , y 

t 
h 

− y 1 
h 
) | (w, h ) ∈ s (m ) , t ∈ [1 , T ] 

}
. Then, arrange the parti- 

cle trajectories into b M 

× b A bins that are uniformly partitioned 

in terms of both magnitude and angle in the polar space, where 

b M 

represents the number of the magnitude intervals and b A that 

of the angle intervals. Finally, count the non-overlapping particles 

falling into each bin to obtain a histogram { h ( n )| n ∈ [1, N ]}, where 

h ( n ) denotes the number of the particles falling in the n th bin and 

N = b M 

× b A the total number of the bins. As shown in Fig. 1 , the 

starting point of every trajectory in the patch labeled with purple 

color is translated to the origin of the histogram in the Fig. 1 (b) 

in order to figure out the distribution of the particles falling into 

each bin of the histogram. 

3.3. Advantages over other motion features 

HOG is originally developed for feature extraction on a sin- 

gle image, focused on gradient field. When HOG is applied to 

optical flow, its variant, HOF is developed, as follows [20] : First, 

a histogram with a couple of bins spreading over 0 to 360 de- 

grees should be constructed for each image patch. Then, each 

pixel with optical flow ( u o , v o ) in the patch of interest votes 

to the corresponding histogram bin according to its angle θ = 

arctan 
( v o 
u o 

)
( 1 ≤ o ≤ O ) with the voting weight 

√ 

u 2 o + v 2 o , where O 

is the number of the pixels in the patch. Finally, the weights voted 

to each bin are accumulated to obtain the weight of each bin and 

the HOF of a patch is the vector of normalized weights of all his- 

togram bins. In this sense, HOF describes only the instantaneous 

motions of optical flows between two successive frames and the 

continuous evolutions of the optical flows across multiple frames 

are missing. 

Because short-term trajectory associates motions over multiple 

frames by tracking the particles following the motion vectors of 

optical flows from one position to the subsequent one, this leads 

to an essential difference from HOF. We illustrate the differences 

between HOF and short-term trajectory feature by the example of 

a skater and a pedestrian interlacing shown in Fig. 2 , where the 

faster skater appearing on the walkway is abnormal. In this ex- 

ample, the calculated optical flows caused by the skater motion 

between two adjacent frames is not significantly longer than the 

normal ones, and in fact, there are often errors in the calculation 

of optical flow, such as in the first two frames of Fig. 2 (b), the 

optical flow amplitudes caused by the crus movement of the left 

pedestrian are greater than those caused by the skater, and the 

directions of some optical flows are wrong. This directly leads to 

the degradation of HOF performance. The adjacent patches in time 

and space can be concatenated to construct 3D volumes of HOF. 

In terms of time, the blocks at the same position are abnormal 

only crossing 3 to 5 frames; in terms of space, the adjacent patches 

to an abnormal patch is likely to involve normal motions or back- 

ground as shown in Fig. 2 (b). Therefore, this 3D volumes of HOF, 

built by aggregating more patches, has limited description ability 

for abnormal movements. 

The particles forming short-term trajectories move with the tar- 

get, such as shown in Fig. 2 (a), the yellow points on the skater 

move with the skater out of the observed patches. For complex 

interlacing, as illustrated in the patches from the second row to 

the fourth row of the two left columns of Fig. 2 (c), at the begin- 

ning, the particles move with the pedestrian, and when the pedes- 

trian is blocked by a skater, the particles move with the skater in 

reverse motion. This shows that there are setbacks on the corre- 

sponding short-term particle trajectories. It demonstrates that the 

short-term trajectories are able to record the motion trend and de- 

tails of local motions. From Fig. 2 (c), we can see that the short- 

term trajectories obtained by tracking particles are not sensitive to 

the calculation errors of optical flows, and the appearance of ab- 

normal target can cause obvious change of trajectories, such as the 

skater appears in the patches in the two right columns earlier than 

in the patches in the two left columns, which result in the particle 

trajectories in the patches in the two right columns are obviously 

longer than those in the patches in the two left columns, because 

the particles in the patches in the two right columns move with 

the abnormal target for a longer time. In conclusion, the short- 

term trajectory feature has a good discrimination for anomaly de- 

scription. 

In contrast to the trajectory feature of the chaotic invariants 

[10] , we apply the shape histogram, namely shape contexts [14] , 

to describe short-term trajectories, which preserves the details and 

the trends of local motions. Even in the case that the movements 

are constrained in a narrow space, such as in corridors and un- 

derpasses, abnormal human mobility in terms of speed can also 

be reflected by the length of the trajectories in the shape his- 

togram. Moreover, the histogram of short-term trajectories can also 

be spited into two histograms by accumulating the number of 

particles along the magnitude and angle dimension, respectively, 

which enable anomaly detection on speed and direction to be in- 

dependent. 

4. Statistical modeling of K -NN similarities 

First, we use χ2 test to measure the similarity between a test- 

ing sample and the normal training data, and retrieve the K -NN 

samples from the given training set in regard to the testing sam- 

ple. Then, we establish a Gaussian model for the K retrieved sam- 

ples to characterize the similarities between them in a statistical 

sense. 

Note that there are two seemingly natural but in practice error- 

prone solutions in decision making: (1) Training the detection 

model such as the probabilistic model of multivariate Gaussian 

distribution [7,10] using directly high-dimensional feature, which 

is subject to overfitting and curse of dimensionality. (2) To avoid 

overfitting, reduce the dimension of the original feature by means 

of principal component analysis (PCA) [33] . Note that there is no 

anomalous samples in the training set and the whole training set 

is composed of one-class samples only, say, the normal samples. 

PCA may destroy the consistency of the training samples since its 

objective is to maximize the diversity of samples after projecting 

the data onto a low-dimensional space. Besides, it is not known a 

priori which dimensions of the feature contribute the majority of 

discriminant power in identifying abnormal and normal cases. 

In view of the limits of the aforementioned decision-making 

methods, we establish a Gaussian model for the K retrieved sam- 

ples based on the similarities computed from every pair of the K - 

NN samples, which can be regarded as statistical modeling of the 

intra-class similarities in the local manifold of the normal samples 

retrieved by the input testing sample. Here, the K retrieved sam- 

ples are modeled through a one-dimensional Gaussian model over 

similarity in order to overcome the overfitting problem. Note that 

even if the samples to be compared in terms of similarity are high- 

dimensional data, the similarity itself is one-dimensional metric. 

4.1. Gaussian distribution over K -NN similarities 

Let H p and H q denote the shape contexts based motion features 

of two patches, respectively. Then, we use the χ2 test to measure 
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Fig. 2. An example of optical flows and short-term trajectories. (a) The orange arrows correspond to the optical flows aroused by a skater and a pedestrian within the 

observed patches, and the different color points correspond to the particles in each frame. (b) The enlarged view of the patches in (a), where the patches with red borders 

correspond to a skater. (c) The connecting lines of the enlarged view of different color points in (a) correspond to the particle trajectories. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 



X. Zhang, S. Yang and J. Zhang et al. / Pattern Recognition 105 (2020) 107394 7 

the similarity between the two histograms: 

χ2 ( H p , H q ) = 

1 

2 
·

N ∑ 

n =1 

[ h p ( n ) − h q ( n ) ] 
2 

h p ( n ) + h q ( n ) 
(4) 

From the training set, we retrieve the K patches whose mo- 

tion patterns are similar at most to that of the testing sample 

H T in the sense of Eq. (4) , which are denoted as { H NN ( K ) | k ∈ [1, 

K ]}. Other forms of distance functions can also be used here, such 

as L 2 norm. Then, we calculate the similarities between every 

pair of them to obtain { χ2 ( H NN ( i ), H NN ( j )) | i, j ∈ [1, K ] ∧ i � = j }. We 

model these intra-class similarities as a one-dimensional proba- 

bilistic model, that is, K -NN similarities-rendered Gaussian model 

N 

(
μ, σ 2 

)
, where μ and σ 2 denote the mean and variance of the 

similarities { χ2 ( H NN ( i ), H NN ( j )) | i, j ∈ [1, K ] ∧ i � = j } with the defini- 

tions as follows: { 

μ = 

2 
K ·( K −1 ) 

∑ K 
i =1 

∑ K 
j= i +1 χ

2 
(
H NN 

( i ) , H NN 

( j ) 
)

σ 2 = 

2 
K ·( K −1 ) 

∑ K 
i =1 

∑ K 
j= i +1 

[
χ2 

(
H NN 

( i ) , H NN 

( j ) 
)

− μ
]2 (5) 

4.2. Similarity-rendered joint posterior probability 

Once the similarities between the testing patch H T and its K -NN 

patches { H NN ( K ) | k ∈ [1, K ]} are obtained as { χ2 ( H T , H NN ( k )) | k ∈ [1, 

K ]}, the fitness of H T into the K -NN similarities-rendered Gaussian 

distribution N 

(
μ, σ 2 

)
is calculate as the joint posterior probability 

L T defined below: 

L T = 

K ∑ 

k =1 
log 

{
Pr 

[
χ2 

(
H T , H NN 

( k ) 
)

∈ N 

(
μ, σ 2 

)]}
(6) 

where Pr denote probability and the definition of the K -NN 

similarities-rendered Gaussian model N 

(
μ, σ 2 

)
refer to Eq. (5) . 

The joint posterior probability tends to be 0 as the number of K - 

NN patches increases, so we compute the sum of the logarithms 

of the probabilities instead to avoid this problem. Subsequently, 

we judge whether the testing sample is normal or abnormal by 

comparing its joint probability with a user-defined threshold T P . If 

L T < T P , as a low-probability event, the corresponding testing sam- 

ple is classified as anomaly. 

The K -NN similarity-based statistical model for anomaly detec- 

tion is reasonable in that: (1) For a normal testing patch, this patch 

and its K -NN patches are from the same normal class, so the sim- 

ilarities between this testing patch and its K -NN patches should 

follow the same distribution N 

(
μ, σ 2 

)
spanned by the similari- 

ties between its K -NN patches. (2) For an abnormal testing patch, 

the similarities between it and the retrieved K -NN samples in the 

training data can be regarded as inter-class similarities. In such 

a case, their similarities deviate from the intra-class similarities- 

rendered Gaussian distribution N 

(
μ, σ 2 

)
such that the possibility 

to follow the same distribution N 

(
μ, σ 2 

)
is low. Note that the pro- 

posed K -NN similarity-based statistical model does not rely on any 

specific feature, so that it is a generic machine learning method 

applicable to a variety of features for anomaly detection. 

5. Spatio-temporal anomaly detection 

As stated previously, we are interested in detecting abnormal 

temporal and spatial activities. For temporal anomaly detection at 

a given location, the training data are composed of the patches 

from the same location of a long history. For spatial anomaly de- 

tection, the training samples are from the surrounding patches. The 

training data sets for temporal and spatial anomaly detection are 

used in the K -NN similarity-based statistical model to infer the oc- 

currence probabilities of the testing patches over time and space, 

respectively. Two independent thresholds are used to detect the 

patches occurring with small probabilities in contrast to the tem- 

poral and spatial contexts, respectively, that is, those never seen 

before at a specified site or different from their neighborhoods at 

the same time span. 

For the scenes containing active regions and non-active regions 

that are less visited, a lower probability threshold is usually set for 

non-active regions than that for active regions, since the anomalies 

appear with obviously lower probabilities in the rarely visited non- 

active regions. 

In crowded scenes, motion clues such as optical flows are not 

stable in that one object often falls into different patches and the 

detected patches are in general only a part of the entire abnormal 

objects, so we will extend the detected abnormal patches to the 

surrounding regions to cover the most part of abnormal objects. 

Here, we apply multi-scale analysis with two thresholds, a lower 

one to location the anomalies with high certainty and a higher one 

to spread the detected areas to enclose the major portions of the 

objects corresponding to anomalies. 

6. Experiments 

The proposed method is tested on public real-world datasets: 

The UMN dataset [15] , Subway dataset [16] and UCSDped1 dataset 

[3] with varying densities of people. The challenge is that the 

scenes in the datasets are not only crowded but also with some 

extent of perspective distortion. 

6.1. Evaluation criteria 

We evaluate different methods following the criteria widely 

used in previous works [3,8,29] , which is as follows: 

Frame-level evaluation : If any region in a frame is identified as 

anomaly to be consistent with the ground truth, such detection is 

granted to be correct regardless of the location and the size of the 

region. 

Pixel-level evaluation : If over 40% portion of the ground truth 

are detected as anomalies in a frame, such detection is regarded as 

a right detection. So pixel-level evaluation is stricter than frame- 

level evaluation. 

Event–level evaluation : If any position with true anomaly is 

detected and localized as abnormal, the detection is regarded as a 

correct hit. On the other hand, if any normal frame is detected as 

anomaly, it is counted as a false alarm in terms of event detection 

[29,34] . 

As for quantitative evaluation, receiver operating characteristic 

( ROC ) reflects the relationship of true positive rate (TPR) against 

false positive rate (FPR), which are defined below: 

True positive rate : The rate of correctly detected frames to all 

abnormal frames in ground truth. 

TPR = 

# True Detection 

# Abnormal Frames 
(7) 

False positive rate : The rate of incorrectly detected frames to 

all normal frames in ground truth. 

FPR = 

# False Detection 

# Normal Frames 
(8) 

ROC curve is plotted according to the detection results under 

different parameters. We quantify the performance in terms of the 

equal error rate ( EER ) and the area under ROC curve ( AUC ). The 

EER is the point on the ROC curve that FPR is equal to (1-TPR). A 

smaller EER corresponds to better performance. As for the AUC, a 

bigger value corresponds to better performance. 

6.2. Crowd abnormal activity detection on UMN dataset 

A crowd abnormal activity detection experiment is carried out 

to examine the performances of different methods. In the experi- 
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Fig. 3. Results of abnormal activity detection on the UMN dataset. Each row represents one scene. The three bars underlying each row are the detection results by using χ 2 

test and L 2 norm distances against the ground truth, where the green color corresponds to the normal frames and the red color represents the abnormal frames. Above the 

bar, the left column is an example of the normal frames, and the middle column and the right column are examples of the detected results of our method by using χ 2 test 

and L 2 norm distances, respectively. In these examples, the abnormal regions are marked with red grids. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

ment, we use the surveillance videos from the University of Min- 

nesota (UMN) [15] . The UMN dataset consists of 11 videos of 3 dif- 

ferent indoor and outdoor scenes, and the three scenes comprise 

1453 frames, 4143 frames, and 2143 frames, respectively. The res- 

olution of each video frame is 240 ×320 pixels. Each video begins 
with people walking around, followed by a portion of abnormal 

panic movements such as running and escaping. In the crowded 

scenes, lighting changes in a few of the videos bring some chal- 

lenges to abnormal activity detection. 

Results: We split the video into clips of 10 consecutive frames, 

and divide the starting frame of each clip into a couple of patches 

of 5 ×5 pixels without overlap. The optical flows in each video clip 
are linked into short-term trajectories. On the basis of such setting, 

our method is established to determine whether each patch is ab- 

normal. If a certain range of patches are abnormal, it is thought 

that global anomaly has occurred. The detection results of crowd 

abnormal activity on the UMN dataset achieved by using the pro- 

posed method on χ2 test and L 2 norm distances are shown in 

Fig. 3 against the ground truth. In Fig. 3 , the 3 rows correspond to 

the 3 scenes composed of the 11 video sequences. Fig. 3 also illus- 

trates some examples of the detection results. As can be seen from 

Fig. 3 , our method can detect every abnormal event, and there 

is no false alarm. Using different distance functions, the proposed 

method implements basically the same performance as presented 

in Table 1 . 

Comparison with the existing approaches: In Table 1 , we 

compare the proposed method with h-mixture of dynamic tex- 

Table 1 

AUC by using different methods on the UMN 

dataset. 

Methods 

AUC on UMN dataset (%) 

(Scene 1/2/3) 

Proposed ( χ 2 ) 99.3 

(99.4/99.1/99.4) 

Proposed ( L 2 ) 99.2 

(99.4/99.1/99.3) 

H-MDT 99.5 

OCAE 99.6 

(99.9/99.1/99.8) 

DCC (90.9/87.5/97.7) 

SS (99.1/95.1/99.0) 

SRC (99.5/97.5/96.4) 

CFS 88.3 

χ2 means using χ2 test; L 2 means using L 2 norm; 

“-” means the results are not provided. 

tures (H-MDT) [21] , object-centric auto-encoders (OCAE) [25] , div- 

curl characteristics (DCC) [11] , scan statistic (SS) [30] , sparse recon- 

struction cost (SRC) [13] , and compact feature sets (CFS) [12] . Since 

the type of anomaly is known and consistent, crowd abnormal ac- 

tivity detection on this dataset is relatively easy. Almost all frame- 

level AUC scores are higher than 90% as listed in Table 1 . The top 

two scores of 99.6% and 99.5% are reported by OCAE and H-MDT, 

and the proposed method attains a competitive performance on 

the UMN dataset. In addition, both of the best-performing meth- 
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Fig. 4. Examples of the detection results on the Subway dataset. The red color indicates correct detection and the yellow color denotes false alarm. (a) and (e) Wrong 

direction: Some persons are entering through the exit gate. (b) and (f) Loitering: A person is wandering; Two persons are entering through the exit gate. (c) and (g) 

Miscellany: A person is cleaning the wall; A person gets off the train and then gets on the train again very soon. (d) and (h) False alarm: An adult is helping a child pass 

the turnstile; A person is coming up from the turnstile with an irregular jump; A correct detection: A person is entering through the exit gate. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

ods require more computational cost, such as the OCAE requires 

running on high-performance GPUs and the processing time per 

video frame of the H-MDT is about 1100 milliseconds. The com- 

parison of the detection results also verifies the performance of 

the features. From the comparison, we can see that the proposed 

shape descriptor of short-term trajectories outperform the compact 

set of highly descriptive features based on foreground occupancy 

and optical flow information, such as optical flow energy and a 

histograms of optical flow (HOF) descriptor in the CFS [12] . For 

the UMN dataset, detection results are compared in terms of the 

frame-level AUC, that is, the whole scene is identified as normal or 

abnormal. Since this dataset provides no pixel-level ground truth 

[13] , we will further accurately compare our method with others. 

6.3. Anomalous event detection on subway dataset 

The Subway dataset is provided by Adam et al. [16] . In the ex- 

periment, we use the surveillance videos at the exit of subway 

to examine the performances of different approaches. The cam- 

era is pointed toward the exit gate, where the dominant behav- 

iors are exiting from the platform, coming up through the turn- 

stiles, and turning to the left or right. The video lasts about 43 min 

with a resolution of 384 ×512 pixels, which contains 19 anomalous 
events, mainly involving walking in the wrong direction, loitering, 

and miscellany [29] . 

Results : The starting frame of each clip is divided into non- 

overlapping patches of 20 ×20 pixels, and the length of each video 
clip is set to be 10 consecutive frames (400 milliseconds), where 

no overlap exists between two continuous clips. The first 10 min 

of the video are used for training, while the rest of the frames are 

used for testing. Some examples of the detection results achieved 

by using the proposed method are shown in Fig. 4 , where correct 

detections and false alarms are both included. The results validate 

that the proposed method with a fixed threshold can capture mul- 

tiple abnormal objects simultaneously at different scale no mat- 

ter whether the anomalies are close to or far from the camera. 

In fact, the regions marked with yellow grids in Fig. 4 to denote 

false alarms in accordance with the ground truth can also be true 

anomalies. For example, in the case shown in Fig. 4 (d), an adult is 

Table 2 

Comparison of abnormal event detection rate and false alarm 

rate on the Subway dataset. 

Methods TP WD LT Misc. Total FA 

Ground - 9 3 7 19 0 

Proposed 10 9 3 7 19 2 

SCL 15 9 3 7 19 2 

STC 15/CL 9 3 7 19 2 

SS CL 9 3 7 19 2 

CFS CL 6 3 2 11 7 

SRC c 10 9 - - 9 0 

LOF c 5 9 - - 9 2 

TP: Training period; CL: Continuous learning; WD: Wrong di- 

rection; LT: Loitering; Misc.: Miscellany; FA: False alarm; “-”

means the results are not provided. c Used annotation with a 

reduced number of abnormality types. 

helping a child pass the turnstile, and for the case shown in Fig. 

4(h), a person is coming up from the turnstile with an irregular 

jump. Such unusual behaviors are missed in the annotations of the 

ground truth [29] but detected by the proposed method. Besides, 

it is apparent that the proposed method can accurately detect and 

localize anomalies in surveillance videos with perspective distor- 

tion. 

Comparison with the existing approaches : In Table 2 , we 

compare quantitatively the proposed method with sparse combi- 

nation learning (SCL) [28] , spatio-temporal compositions (STC) [9] , 

scan statistic (SS) [30] , sparse reconstruction cost (SRC) [13] , com- 

pact feature sets (CFS) [12] and local optical flow (LOF) [16] at 

event level. It can be seen that the proposed method requires the 

least training data to achieve the same level of high detection rate 

and low false alarm rate in comparison with SCL and STC. 

6.4. Anomaly detection and localization on UCSDped1 dataset 

We conduct anomaly detection and localization test on the 

UCSDped1 dataset [3] , which records a large number of pedes- 

trians walking on the walkway in a college campus to approach 

or move far away from the camera. Since the number as well as 

the density of the people appearing in the monitoring area varies 
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Fig. 5. Some examples of the detection results on the UCSDped1 dataset. The red color means correct detection and the yellow color denotes false alarm according to the 

ground truth. The last row shows some true anomalies missing annotations in the ground truth but captured by the proposed method, where a pedestrian crossing the 

walkway in abnormal direction, a skate, the frontal of a vehicle, and a person on wheelchair take places in the frames labeled “Test019 : 042”, “Test018 : 052”, “Test019 : 

062”, and “Test023 : 002”, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

with time and the video sequences are captured with a certain de- 

gree of perspective distortion, this benchmark is quite challenging. 

There are 34 training video sequences of normal cases and 36 test- 

ing video sequences involving various abnormal events, which in- 

clude non-pedestrians on the walkway (e.g., bikers, skaters, small 

carts, and people in wheelchairs etc.), as well as pedestrians with 

anomalous motion patterns or in non-walkway regions (e.g., peo- 

ple running or walking across the grass etc.). Each video sequence 

has 200 frames with 158 ×238 resolution. 
Results : To enable detection of anomalies of small sizes, we 

uniformly divide the starting frame of every video clip into a cou- 

ple of patches of 3 ×3 pixels without overlap, and then link the 
optical flows in the 10 consecutive frames of each video clip to 

obtain short-term trajectories. Some examples of the detection re- 

sults achieved by using the proposed method are shown in Fig. 5 , 

which should be the most difficult tasks in the literature. One chal- 

lenging issue is that multiple objects may appear in one scene. For 

instance, 4 persons with abnormal behaviors appear in the frames 

labeled “Test007 : 082” and “Test031 : 132”. Another difficulty is 

the occlusions caused by the high density of people. For example, 

a large portion of the biker in the frame labeled “Test003 : 192” is 

blocked and thus invisible due to the high density of people. In the 

aforementioned examples, the anomalies are detected correctly by 

using the proposed method, which are marked with red grids as 

shown in Fig. 5 . In Fig. 5 , we also illustrate some examples of false 

alarm, which are labeled in yellow color. To our surprise, some re- 

gions labeled in yellow color are indeed true anomalies such as 

the yellow region in the frame labeled “Test014 : 102”, which cor- 

responds to a partially visible biker blocked by the vegetation and 

pedestrians. In the previous frame labeled “Test014 : 092”, the cor- 

responding object is a true anomaly but it misses being annotated 

in the ground truth of the frame labeled “Test014 : 102” [3] . The 

results manifest that the proposed method is able to detect differ- 

ent types of anomalies and performs well on very small patches. In 

another words, the proposed method can adapt to the whole scene 

with perspective distortion as it can detect the anomalies wherever 

they are, close to or far from the camera. 

Comparison with the existing approaches : In Fig. 6 , we com- 

pare the ROC curves of the proposed method with Gaussian pro- 

cess regression (GPR) [7] , sparse reconstruction cost (SRC) [13] , 

sparse combination learning (SCL) [28] , scan statistic (SS) [30] , 

spatio-temporal compositions (STC) [9] , compact feature sets (CFS) 

[12] and local optical flow (LOF) [16] . The ROC curves in Fig. 6 il- 

lustrate the True Positive Rate and False Positive Rate tradeoff. In 

order to quantitatively evaluate the performances of different ap- 

proaches, EER and AUC of anomaly detection at both pixel level 

and frame level as suggested by [3] are listed in Table 3. The 

dense STC is implemented by [7] and the results of these meth- 

ods are obtained from the above-mentioned papers. For the frame- 

level evaluation, EERs of GPR, CFS, SRC, SS, SCL, and STC are 23.7%, 

21.2%, 19%, 17.5%, 17% and 16%, respectively. These baseline ap- 

proaches achieve comparative performances in contrast to the pro- 

posed method with an EER of 19.5% (AUC of 86.9%). 

However, frame-level evaluation does not consider whether the 

detection coincides with the actual location of the anomaly [3] . In 

contrast, pixel-level evaluation emphasizes the localization ability 

of an algorithm [9] . In surveillance videos, perspective distortion 

causes the motion vectors not consistent with each other to fall in 

diverse directions and scales. This will significantly affect anomaly 

detection in local regions. Since almost all approaches [7,9,13] treat 
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Fig. 6. The comparison of ROC curves on the UCSDped1 dataset using different approaches. The dashed diagonal is the EER line. (a) Frame-level evaluation. (b) Pixel-level 

evaluation. 

Table 3 

Comparison of EER and AUC using different ap- 

proaches (%). 

Methods 

Frame Level Pixel Level 

AUC EER AUC EER 

Proposed 86.9 19.5 76.2 25.6 

GPR 83.8 23.7 63.3 37.3 

SRC 91.4 a 19 47 a 54 

SCL 88.4 a 17 64.3 a 42 

SS 87.6 a 17.5 66 a 36 

STC 89.9 16 41.7 57.7 

LOF 65.2 a 38 17.3 a 76 

CFS - 21.2 - 39.7 

“-” means the results are not provided; 
a Estimated in terms of the corresponding ROC 

curves. 

all the volumes in a scene equally by applying uniform threshold 

or vocabulary without taking into account the aforementioned ef- 

fect caused by perspective distortion, their performances degrade 

in locating anomalies due to perspective distortion. SRC, SCL, CFS, 

GPR and SS yield EERs of 54%, 42%, 39.7%, 37.3% and 36%, respec- 

tively. The values of EERs at pixel level localization are significantly 

larger than the values of EERs achieved by them at frame level de- 

tection. Our method identifies the testing sample to appear with 

a low probability as anomaly, which is calculated in the form of 

the joint probability of the similarities from the testing sample to 

the K -NN samples under the Gaussian model computed from the 

corresponding K -NN similarities. Since the probability threshold is 

capable of adapting to perspective distortion, the proposed method 

achieves an EER of 25.6% (AUC of 76.2%) as listed in Table 3 , and 

performs much better than the other approaches at pixel level as 

shown in Fig. 6 (b). 

6.5. Influence of K 

As the K training samples similar to the testing sample at 

most are retrieved to establish the K -NN similarity-based Gaussian 

model, it is necessary to further analyze the influence of K . EER for 

the UCSDped1 dataset at frame level and pixel level with differ- 

ent K value are plotted in Fig. 7 . It can be seen that the EER reach 

minimum at the value of K close to 35. Overall, the EER varies little 

for different settings of the value of K from 15 to 70. This demon- 

strates that the proposed method is robust to the value of K . In 

Table 4 

Computational time of different approaches (processing time per frame 

in milliseconds). 

Methods Learning Inferring CPU (GHz) RAM (GB) 

Proposed total: 175 ms 3.4 16 

GPR 140.2 ms 515.3 ms 3.4 4 

STC 2432.5 ms 2424.1 ms 3.4 4 

SRC - 3800 ms 2.6 2 

SCL 37 mins 6.965 ms 3.4 8 

CFS total: 31 ms 2.7 8 

SS - 200 ms 3 4 

“ms” and “mins” are short for millisecond and minute, respectively; “-”

means the results are not provided. 

contrast, for the clustering algorithm, the number of the prototyp- 

ical patterns has a strong impact on the clustering result. 

6.6. Computational complexity 

We compare the computational time of the proposed method 

with the approaches that have comparative performances on the 

frame-level evaluation, including GPR [7] , STC [9] , SRC [13] , SCL 

[28] , and SS [30] on the UCSDped1 dataset. The speed of the ap- 

proaches reported in the corresponding literatures are listed in 

Table 4 . 

The proposed method is implemented using MATLAB and the 

experiments are performed on a computer with Core i7-2600 

3.4GHz CPU and 16GB RAM. Our method requires training and in- 

ferring time, approximately 175 milliseconds per frame, which con- 

tains the shape feature extraction, and the construction of the K - 

NN similarity-based model as well as the decision making. It is ob- 

viously that the proposed method is very efficient. 

The average speed of SCL is 143.58 frames per second, which 

is the fastest testing speed in the literature so far. However, in ac- 

tual deployment, this approach needs to do specialized training for 

different scenes. This restricts the practical application of this ap- 

proach, because the training process is inefficient, that is, training 

20K-sample data approximately needs 20 min. From the above ex- 

periments, we can see that the CFS is very fast, but its performance 

is inferior to that of our method. It can be drawn from Fig. 6 (b) 

and Table 4 that our method leads to the least training and infer- 

ring time among the approaches for comparison while results in 

the highest accuracy in locating anomalies. 
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Fig. 7. Influence of the value of K for anomaly detection on the UCSDped1 dataset. 

7. Conclusions 

The contribution of this paper is two-fold: (1) The represen- 

tation of video contents is one key issue for anomaly detection. 

We transfer the problem into shape description on short-term mo- 

tion trajectories by associating the optical flows between multi- 

ple frames. The advantage is that the low-level short-term tra- 

jectory feature does not rely on unreliable object segment and 

tracking in crowded scenes while preserve the motion informa- 

tion of object parts, which is a promise of robustness. More- 

over, the rich contexts of shape description enables discriminative 

representations of such short-terms trajectories for pattern anal- 

ysis. (2) A new outlier detector is proposed. It is a homogene- 

ity testing of the similarities. The mechanism is that if testing 

sample is compatible with its K -NN samples, the similarities be- 

tween it and its K -NN samples should be compatible in a statisti- 

cal sense with the similarities between its K -NN samples. We test 

the similarity homogeneity, rather than directly judge the homo- 

geneity of samples in feature space, in order to avoid the overfit- 

ting problem caused by high-dimensional features. The proposed 

similarity-based statistical model for detecting anomalies over time 

and space is an unsupervised one-class learning algorithm, which 

does not require clustering or prior assumption in contrast to the 

existing solutions, for example, some approaches need to manu- 

ally set distortion parameters for each scene. Compared with the 

error threshold and distance threshold that is not applicable to 

the whole scene due to the perspective distortion, the proposed 

statistical model determines anomaly according to the probabil- 

ity, which can adapt to the whole scene, since the probability of 

different position motion patterns is not affected by motion dis- 

tortions arising from perspective distortion. We carried out ex- 

periments on three real-world surveillance videos, UMN dataset, 

Subway dataset and UCSDped1 dataset, for anomaly detection and 

localization, and the results demonstrate that our method is ro- 

bust to the parameter variation, and promises competitive per- 

formance in terms of anomaly detection and better performance 

in the sense of localization compared with the state-of-the-art 

approaches. 
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