
Learning from Guided Play: A Scheduled
Hierarchical Approach for Improving Exploration in

Adversarial Imitation Learning – Appendix

Anonymous Author(s)
Affiliation
Address
email

A Toy Example1

In this section, we show an example to provide intuition for the exploration problem by ex-2

ploiting the out-of-expert-distribution problem. Consider a sample MDP with seven states:3

s0,1, s1,1, s2,1, s0,2, s1,2, s2,2, sg, where sg is the goal state and s0,n are the initial states. The4

MDP has two actions: left and right (see Figure 1). Upon taking the right action, the agent transitions5

to the state on the right, and upon taking the left action, the agent transitions to the initial state s0,n de-6

pending on whether the agent is on the top or bottom half of the MDP. Assuming a uniformly random7

policy π, we derive the optimal discriminator from Equation 1 with on-policy data (i.e., expectation of8

first term is taken over π): D(sm,1, right) = 2
3 , D(sm,1, left) ≈ 0, D(sm,2, left or right) ≈ 0. Using9

the common reward function r(s, a) = − log(1 −D(s, a)), the rewards for state-action pairs not10

covered by the expert demonstration are 0, recovering a sparse reward function which provides no11

information for effective exploration towards the expert states. Using another reward formulation12

r(s, a) = logD(s, a), the rewards for the uncovered state-action pairs are the same negative values13

approaching −∞. Although the reward function is now dense, it still does not provide any informa-14

tion for effective exploration of the bottom half of the MDP. In general, it requires taking the right15

action consecutively, with a probability of 1
2N

where N is the length of the chain, in order to reach16

the goal state (in which we obtain higher reward). This problem is exacerbated when the chains17

become longer or when there are more chains.18

(a) MDP (b) Expert demonstration

Figure 1: a) An MDP with seven possible states, each with two possible actions – left and right. sg is
the goal state. b) Expert demonstration covering the top half of the chain.

B Learning from Guided Play Algorithm19

The complete pseudo-code is given in Algorithm 1. Our implementation builds on RL Sandbox [1],20

an open-source PyTorch [2] implementation for RL algorithms. For learning the discriminators, we21

apply gradient penalty to regularize the discriminators [3], as done in DAC [4]. We optimize the22

intentions via the reparameterization trick [5]. As commonly done in deep RL algorithms, we use the23

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Algorithm 1 Learning from Guided Play (LfGP)
Input: Expert replay buffers BEmain,BE1 , . . . ,BEK , scheduler period ξ, sample batch size N
Parameters: Intentions πT with corresponding Q-functions QT and discriminators DT , and sched-
uler πS (e.g. with Q-table QS)

1: Initialize replay buffer B
2: for t = 1, . . . , do
3: # Interact with environment
4: For every ξ steps, select intention πT using πS
5: Select action at using πT
6: Execute action at and observe next state s′t
7: Store transition 〈st, at, s′t〉 in B
8:
9: # Update discriminator DT ′ for each task T ′

10: Sample {(si, ai)}Ni=1 ∼ B
11: for each task T ′ do
12: Sample {(s′i, a′i)}

B
i=1 ∼ BEk

13: Update DT ′ following equation 3 using GAN + Gradient Penalty
14: end for
15:
16: # Update intentions πT ′ and Q-functions QT ′ for each task T ′
17: Sample {(si, ai)}Ni=1 ∼ B
18: Compute reward DT ′(si, ai) for each task T ′
19: Update π and Q following equations 7 and 8
20:
21: # Update scheduler πS if necessary
22: if at the end of effective horizon then
23: Compute main task return GTmain using reward estimate from Dmain
24: Update πS (e.g. update Q-table QS following equation 12 and recompute Boltzmann

distribution)
25: end if
26: end for

Clipped Double Q-Learning trick [6] to mitigate overestimation bias [7] and use a target network24

to mitigate learning instability [8] when training the Q-functions. We also learn the temperature25

parameter αT separately for each task T (see Section 5 of [9] for more details on learning α). The26

hyperparameters are provided in Appendix G. Please see attached video for a short representative27

example of what LfGP looks like in practice.28

C Environment Details29

A screenshot of our environment, simulated in PyBullet [10], is shown in Figure 2. We chose this30

environment because we desired tasks that a) have a large distribution of possible initial states,31

representative of manipulation tasks in the real world, b) have a shared observation/action space32

with several other tasks, allowing the use of auxiliary tasks and transfer learning, and c) require a33

reasonably long horizon and significant use of contact to solve. The environment contains a tray with34

sloped edges to keep the blocks within the reachable workspace of the end-effector, as well as a green35

and a blue block, each of which are 4 cm × 4 cm × 4 cm and set to a mass of 100 g. The dimensions36

of the lower part of the tray, before reaching the sloped edges, are 30 cm × 30 cm. The dimensions of37

the bring boundaries (shaded blue and green regions) are 8 cm × 8 cm, while the dimensions of the38

insertion slots, which are directly in the center of each shaded region, are 4.1 cm × 4.1 cm × 1 cm.39

The boundaries for end-effector movement, relative to the tool center point that is directly between40

the gripper fingers, are a 30 cm × 30 cm × 14.5 cm box, where the bottom boundary is low enough41

to allow the gripper to interact with objects, but not to collide with the bottom of the tray.42

2



Table 1: The components used in our environment observations, common to all tasks. Grip finger
position is a continuous value from 0 (closed) to 1 (open).

Component Dim Unit Privileged? Extra info

EE pos. 3 m No rel. to base
EE velocity 3 m/s No rel. to base
Grip finger pos. 6 [0, 1] No current, last 2
Block pos. 6 m Yes both blocks
Block rot. 8 quat Yes both blocks
Block trans vel. 6 m/s Yes rel. to base
Block rot vel. 6 rad/s Yes rel. to base
Block rel to EE 6 m Yes both blocks
Block rel to block 3 m Yes in base frame
Block rel to slot 6 m Yes both blocks
Force-torque 6 N,Nm No at wrist

Total 59

See Table 1 for a summary of our environment observations. In this work, we use privileged state43

information (e.g., block poses), but adapting our method to exclusively use image-based data is44

straightforward since we do not use hand-crafted reward functions as in [11].45

Figure 2: An image of our multitask environment
immediately after a reset.

The environment movement actions are 3-DOF46

translational position changes, where the posi-47

tion change is relative to the current end-effector48

position, and we leverage PyBullet’s built-in49

position-based inverse kinematics function to50

generate joint commands. Our actions also con-51

tain a fourth dimension for actuating the grip-52

per. To allow for the use of policy models with53

exclusively continuous outputs, this dimension54

accepts any real number, with any value greater55

than 0 commanding the gripper to open, and any56

number lower than 0 commanding it to close.57

Actions are supplied at a rate of 20 Hz, and58

each training episode is limited to being 18 sec-59

onds long, corresponding to 360 time steps per60

episode. For play-based expert data collection,61

we also reset the environment manually every62

360 time steps. Between episodes, block posi-63

tions are randomized to any pose within the tray,64

and the end-effector is randomized to any po-65

sition between 5 and 14.5 cm above the tray,66

within the earlier stated end-effector bounds,67

with the gripper fully opened. The only excep-68

tion to these initial conditions is during expert data collection and agent training of the Unstack-Stack69

task: in this case, the green block is manually set to be on top of the blue block at the start of the70

episode.71

D Procedure for Obtaining Experts72

As stated, we used SAC-X [11] to train models that we used for generating expert data. We used the73

same hyperparameters as we used for LfGP (see Table 2), apart from the discriminator which, of74

course, does not exist in SAC-X. See Appendix E for details on the hand-crafted rewards that we75

used for training these models. For an example of gathering play-based expert data, please see our76

attached video.77

We made two modifications to regular SAC-X to speed up learning. First, we pre-trained a Move-78

Object model before transferring it to each of our main tasks, as we did in Section 5.3 of our main79

paper, since we found that SAC-X would plateau when we tried to learn the more challenging tasks80

3



from scratch. The need for this modification demonstrates another noteworthy benefit of LfGP—when81

training LfGP, main tasks could be learned from scratch, and generally in fewer time steps, than it82

took to train our experts. Second, during the transfer to the main tasks, we used what we called a83

conditional weighted scheduler instead of a Q-Table: we defined weights for every combination of84

tasks, so that the scheduler would pick each task with probability P (T (h)|T (h−1)), ensuring that85

∀T ′ ∈ Tall,
∑
T ∈Tall

P (T |T ′) = 1. The weights that we used were fairly consistent between main86

tasks, and can be found in our included code. The conditional weighed scheduler ensured that every87

task was still explored throughout the learning process, ensuring that we would have high-quality88

experts for every auxiliary task, in addition to the main task.89

E Evaluation90

As stated in our paper, we evaluated all algorithms by testing the mean output of the main-task91

policy head in our environment and generating a success rate based on 50 randomly selected resets.92

These evaluation episodes were all run for 360 time steps to match our training environment, and if a93

condition for success was met within that time, they were recorded as a success. See our included94

video for sample runs. The remaining section describes in detail how we evaluated success for each95

of our main and auxiliary tasks.96

As previously stated, we also trained experts using modified SAC-X [11] that required us to define a97

set of reward functions for each task as well, which we also include in this section. The authors of98

[11] focused on sparse rewards, but also showed a few experiments in which dense rewards reduced99

the time to learn adequate policies, so we also used dense rewards. We would like to note that many100

of these reward functions are particularly complex and required significant manual shaping effort,101

further motivating the use of an imitation learning scheme like the one presented in this paper. It102

is possible that we could have gotten away with sparse rewards, such as those used in [11], but our103

compute resources made this impractical—for example, in [11], their agent took 5000 episodes × 36104

actors × 360 time steps = 64.8 M time steps to learn their stacking task, which would have taken105

over a month of wall-time on our fastest machine. To see the specific values used for the rewards and106

success conditions described in these sections, see our included code.107

Unless otherwise stated, each of the success conditions in this section had to be held for 10 time steps,108

or 0.5 seconds, before they registered as a success. This was to prevent registering a success when,109

for example, the blue block slipped off the green block during Stack.110

E.1 Common111

For each of these functions, we use the following common labels:112

• pb: blue block position,113

• vb: blue block velocity,114

• ab: blue block acceleration,115

• pg: green block position,116

• pe: end-effector tool center point position (TCP),117

• ps: center of a block pushed into one of the slots,118

• g1: (scalar) gripper finger 1 position,119

• g2: (scalar) gripper finger 2 position, and120

• ag: (scalar) gripper open/close action.121

A block is flat on the tray when pb,z = 0 or pg,z = 0. To further reduce training time for SAC-X122

experts, all rewards were set to 0 if ‖pb − pe‖ > 0.1 and ‖pg − pe‖ > 0.1 (i.e., the TCP must123

be within 10 cm of either block). During training while using the Unstack-Stack variation of our124

environment, a penalty of -0.1 was added to each reward if ‖pg,z‖ > 0.001 (i.e., there was a penalty125

to all rewards if the green block was not flat on the tray).126

4



E.2 Stack/Unstack-Stack127

The evaluation conditions for Stack and Unstack-Stack are identical, but in our Unstack-Stack128

experiments, the environment is manually set to have the green block start on top of the blue block.129

E.2.1 Success130

Using internal PyBullet commands, we check to see whether the blue block is in contact with the131

green block and is not in contact with both the tray and the gripper.132

E.2.2 Reward133

We include a term for checking the distance between the blue block and the spot above the the green134

block, a term for rewarding increasing distance between the block and the TCP once the block is135

stacked, a term for shaping lifting behaviour, a term for rewarding closing the gripper when the block136

is within a tight reaching tolerance, and a term for rewarding the opening the gripper once the block137

is stacked.138

E.3 Bring/Insert139

We use the same success and reward calculations for Bring and Insert, but for Bring the threshold for140

success is 3 cm, and for insert, it is 2.5 mm.141

E.3.1 Success142

We check that the distance between pb and ps is less than the defined threshold, that the blue block is143

touching the tray, and that the end-effector is not touching the block. For insert, the block can only be144

within 2.5 mm of the insertion target if it is correctly inserted.145

E.3.2 Reward146

We include a term for checking the distance between the pb and ps and a term for rewarding increasing147

distance between pb and pe once the blue block is brought/inserted.148

E.4 Open-Gripper/Close-Gripper149

We use the same success and reward calculations for Open-Gripper and Close-Gripper, apart from150

inverting the condition.151

E.4.1 Success152

For Open-Gripper and Close-Gripper, we check to see if ag < 0 or ag > 0 respectively.153

E.4.2 Reward154

We include a term for checking the action, as we do in the success condition, and also include a155

shaping term that discourages high magnitudes of the movement action.156

E.5 Lift157

E.5.1 Success158

We check to see if pb,z > 0.06.159

E.5.2 Reward160

We add a dense reward for checking the height of the block, but specifically also check that the161

gripper positions correspond to being closed around the block, so that the block does not simply get162

pushed up the edges of the tray. We also include a shaping term for encouraging the gripper to close163

when the block is reached.164

5



E.6 Reach165

E.6.1 Success166

We check to see if ‖pe − pb‖ < 0.015.167

E.6.2 Reward168

We have a single dense term to check the distance between pe and pb.169

E.7 Move-Object170

For Move-Object, we changed the required holding time for success to 1 second, or 20 time steps.171

E.7.1 Success172

We check to see if the vb > 0.05 and ab < 5. The acceleration condition ensures that the arm has173

learned to move the block in smooth trajectories, rather than vigorously shaking it or continuosly174

picking up and dropping it.175

E.7.2 Reward176

We include a velocity term and an acceleration penalty, as in the success condition, but also include a177

dense bonus for lifting the block.178

F Return Plots179

0 1 2 3 4

0

200

400

600

Stack

0 1 2 3 4

0

200

400

600

800

1000

Unstack-Stack

0 1 2 3 4
0

100

200

300

400

500

Bring

0 1 2 3 4

0

100

200

300

400

500
Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (multi)
LfGP-NS (multi)

BC (multi)
DAC

BC
BC (less data)

Expert

Figure 3: Episode return for LfGP compared with all baselines. Shaded area corresponds to standard
deviation.

As previously stated, we generated hand-crafted reward functions for each of our tasks for the purpose180

of training our SAC-X experts. Given that we have these rewards, we can also generate return plots181

corresponding to our results to add extra insight. The episode return plots corresponding to our main182

task performance (Figure 3 of the main paper), multitask performance (Figure 4 of the main paper),183

transfer performance (Figure 5 of the main paper) and play-based expert data performance (Figure 6184

of the main paper) are shown in Figure 3, Figure 4, and Figure 5 respectively. The patterns displayed185

in these plots are, for the most part, quite similar to the success rate plots. One notable exception186

was the fact that in Unstack-Stack, DAC performed far worse than LfGP as measured by return, as187

opposed to success rate—this can be explained by the fact that the DAC policies learned to unstack188

and restack the blue block continually, rather than letting the blue block rest on top of the green block189

(see included videos). As well, in the transfer experiments, it becomes clear that transferring from190

existing models did, in fact, have a notable increase in training speed for all tasks, which was not191

necessarily as evident from observing the success rate plots.192

6



0 2 4
0

500

St
ac

k

Stack

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

250

500

Lift

0 2 4

100

200

300
Reach

0 2 4

0

200

400

Move

0 2 4
0

500
U

ns
ta

ck
-S

ta
ck

Unstack-Stack

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

200

400
Lift

0 2 4

0

200

Reach

0 2 4

0

200

Move

0 2 4
0

200

400

B
ri

ng

Bring

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

0

250

500
Lift

0 2 4
0

200

Reach

0 2 4

0

200

Move

0 2 4
0

200

400

In
se

rt

Insert

0 2 4

0

200

Open

0 2 4

0

200

Close

0 2 4

200

400

Bring

0 2 4

0

250

500
Lift

0 2 4
0

200

Reach

0 2 4

0

200

Move

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)
0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (multi)
LfGP-NS (multi)
BC (multi)

Figure 4: Episode return for LfGP compared with multitask baselines on all tasks. Shaded area
corresponds to standard deviation.

0 1 2

0

200

400

600
Move Object to Stack

0 1 2

0

250

500

750

Stack to Unstack-Stack

0 1 2
0

200

400

Move Object to Bring

0 1 2

0

200

400

Bring to Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (from scratch) LfGP (transfer)

0 2 4

0

200

400

600

Stack

0 2 4

0

500

Unstack-Stack

0 2 4
0

200

400

Bring

0 2 4

0

200

400

Insert

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

E
pi

so
de

R
et

ur
n

LfGP (“reset” data) LfGP (“play” data)

Figure 5: Left: Episode return for our transfer experiments. Right: Episode return for our play-based
expert data experiments. Shaded area corresponds to standard deviation.

G Model Architectures and Hyperparameters193

All the single-task models share the same network architectures and all the multitask models share194

the same network architectures. All layers are initialized using the PyTorch default methods [2].195

For the single-task variant, the policy is a fully-connected network with two hidden layers followed196

by ReLU activation. Each hidden layer consists of 256 hidden units. The output of the policy is split197

into two vectors, mean µ̂ and variance σ̂2. The vectors are used to construct a Gaussian distribution198

(i.e. N(µ̂, σ̂2I), where I is the identity matrix). When computing actions, we squash the samples199

using the tanh function, and bounding the actions to be in range [−1, 1], as done in SAC [9]. The200

variance σ̂2 is computed by applying a softplus function followed by a sum with an epsilon ε = 1e-7201

to prevent underflow: σ̂i = softplus(x̂i) + ε. The Q-functions are fully-connected networks with two202

hidden layers followed by ReLU activation. Each hidden layer consists of 256 hidden units. The203

output of the Q-function is a scalar corresponding to the value estimate given the current state-action204

pair. Finally, The discriminator is a fully-connected network with two hidden layers followed by205

tanh activation. Each hidden layer consists of 256 hidden units. The output of the discriminator is a206

scalar corresponding to the logits to the sigmoid function. The sigmoid function can be viewed as the207

probability of the current state-action pair coming from the expert distribution.208

For multitask variant, the policies and the Q-functions share their initial layers. There are two shared209

fully-connected layers followed by ReLU activation. Each layer consists of 256 hidden units. The210

output of the last shared layer is then fed into the policies and Q-functions. Each policy head and211

7



Q-function head correspond to one task and have the same architecture: a two-layered fully-connected212

network followed by ReLU activations. The output of the policy head corresponds to the parameters213

of a Gaussian distribution, as described previously. Similarly, the output of the Q-function head214

corresponds to the value estimate. Finally, The discriminator is a fully-connected network with two215

hidden layers followed by tanh activation. Each hidden layer consists of 256 hidden units. The output216

of the discriminator is a vector, where the ith entry corresponds to the logit to the sigmoid function217

for task Ti. The ith sigmoid function corresponds to the probability of the current state-action pair218

coming from the expert distribution in task Ti.219

The hyperparameters for our experiments are listed in Table 2 and Table 3. In BC, overfit tolerance220

refers to the number of full dataset training epochs without an improvement in validation error before221

we stop training. All models are optimized using Adam Optimizer [12] with PyTorch default values,222

unless specified otherwise.223

Table 2: Hyperparameters for AIL algorithms across all tasks.
Algorithm LfGP (Ours) LfGP-NS DAC

Total Interactions 4M
Buffer Size 4M
Buffer Warmup 1000
Initial Exploration 1000

Intention
γ 0.99
Batch Size 256
Q Update Freq. 1
Target Q Update Freq. 1
π Update Freq. 1
Polyak Averaging 0.005
Q Learning Rate 3e-4
π Learning Rate 1e-5
α Learning Rate 3e-4
Initial α 1
Target Entropy 4
Max. Gradient Norm 10

Discriminator
Learning Rate 3e-4
Batch Size 256
Gradient Penalty λ 10

Scheduler
Type Q-table Select Tmain N/A
ξ 45 N/A N/A
φ 0.6 N/A N/A
Initial Temp. 360 N/A N/A
Temp. Decay 0.9995 N/A N/A
Min. Temp. 0.1 N/A N/A

Table 3: Hyperparameters for BC algorithms across all tasks.
Algorithm BC BC (Less Data) Multitask BC

Batch Size 256
Learning Rate 3e-4

Overfit Tolerance 100

H Experimental Hardware224

For a list of the software we used in this work, see our included code and instructions. We used a225

number of different computers for completing experiments:226

8



1. GPU: NVidia Quadro RTX 8000, CPU: AMD - Ryzen 5950x 3.4 GHz 16-core 32-thread,227

RAM: 64GB, OS: Ubuntu 20.04.228

2. GPU: NVidia V100 SXM2, CPU: Intel Gold 6148 Skylake @ 2.4 GHz (only used 4 threads),229

RAM: 32GB, OS: CentOS 7.230

3. GPU: Nvidia GeForce RTX 2070, CPU: RYZEN Threadripper 2990WX, RAM: 32GB, OS:231

Ubuntu 20.04.232

I Open-Action and Close-Action Distribution Matching233

There was one exception to the “reset-based” method we used for collecting our expert data. Specif-234

ically, our Open-Gripper and Close-Gripper tasks required several additional considerations. It is235

worth reminding the reader that our Open-Gripper and Close-Gripper tasks were meant to simply236

open or close the gripper, respectively, while remaining reasonably close to either block. If we were237

to use the approach described above verbatim, the Open-Gripper and Close-Gripper data would238

contain no (s, a) pairs where the gripper actually released or grasped the block, instead immediately239

opening or closing the gripper and simply hovering near the blocks. Perhaps unsurprisingly, this240

was detrimental to our algorithm’s performance: as one example, an agent attempting to learn Stack241

would, if Open-Gripper was selected while the blue block was held above the green block, move242

the currently grasped blue block away from the green block before dropping it on the tray. This243

behaviour, of course, is not what we would want, but it better matches an expert distribution collected244

using the method described above.245

To mitigate this, our Open-Gripper data actually contain a mix of each of the other sub-tasks called246

first for 45 time steps, followed by a switch to Open-Gripper, ensuring that the expert dataset contains247

some degree of block-releasing, with the trade-off being that 25% of the Open-Gripper expert data248

is specific to whatever the main task is. We left this detail out of our main paper for clarity, since249

it corresponds to only 4-5% of the data (2250/45000 or 2250/54000) that was claimed as being250

reusable being, in actuality, task-specific. Similarly, the Close-Gripper data calls Lift for 15 time251

steps before switching to Close-Gripper, ensuring that the Close-gripper dataset will contain a large252

proportion of data where the block is actually grasped. Given the simplicity of designing a reward253

function in these two cases, a natural question is whether Open-Gripper and Close-Gripper could use254

hand-crafted reward functions, or even hand-crafted policies, instead of these specialized datasets. In255

our experiments, both of these alternatives proved to be quite detrimental to our algorithm, so we256

leave further exploration of these options for future work.257

References258

[1] Bryan Chan. Rl sandbox. https://github.com/chanb/rl_sandbox_public, 2020.259

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,260

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative261

style, high-performance deep learning library. Advances in neural information processing262

systems, 32:8026–8037, 2019.263

[3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.264

Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.265

[4] Ilya Kostrikov, Kumar Krishna Agrawal, Sergey Levine, and Jonathan Tompson. Addressing266

sample inefficiency and reward bias in inverse reinforcement learning. CoRR, abs/1809.02925,267

2018.268

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint269

arXiv:1312.6114, 2013.270

[6] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in271

actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.272

PMLR, 2018.273

[7] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double274

q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.275

9

https://github.com/chanb/rl_sandbox_public


[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan276

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint277

arXiv:1312.5602, 2013.278

[9] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,279

Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms280

and applications. arXiv preprint arXiv:1812.05905, 2018.281

[10] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,282

robotics and machine learning. 2016.283

[11] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom284

Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving285

sparse reward tasks from scratch. In International Conference on Machine Learning, pages286

4344–4353. PMLR, 2018.287

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint288

arXiv:1412.6980, 2014.289

10


	Toy Example
	Learning from Guided Play Algorithm
	Environment Details
	Procedure for Obtaining Experts
	Evaluation
	Common
	Stack/Unstack-Stack
	Success
	Reward

	Bring/Insert
	Success
	Reward

	Open-Gripper/Close-Gripper
	Success
	Reward

	Lift
	Success
	Reward

	Reach
	Success
	Reward

	Move-Object
	Success
	Reward


	Return Plots
	Model Architectures and Hyperparameters
	Experimental Hardware
	Open-Action and Close-Action Distribution Matching

