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A Conditions for Proposition 2.

Condition (A1). The quantile density functions Q′
s′ , s

′ = 1, . . . ,K, are twice continuously differen-
tiable in (0, 1), and satisfy inft∈[0,1] Q

′
s′(t) ≥ c0 > 0, for a constant c0 > 0, ∀s′. There is a γ > 0

such that supu∈[0,1] u(1− u)|Js′(u)| ≤ γ for all s′, where Js′(u) := [d logQ′
s′(u)/du].

Condition (A2). There exists 0 < L0 < ∞, such that supu∈[0,1] |
∫ 1

0
Q′

s′(t)Kh(u− t)dt| ≤ L0,∀k.

Condition (A3). The kernel functions K is probability density functions which is symmetric around 0.
For any function f that is at least twice continuously differentiable in (0, 1), it holds that for a ρ > 1/2,
lim supN→∞ h2Nρ < ∞, and supu∈[a,b]⊂(0,1)

∣∣∣f(u)− ∫ 1

0
f(t)Kh(u− t)dt

∣∣∣ = O (N−ρ) , where
N is defined to ensure that the numbers of measurement asymptotically increases in the same way
across the groups, we assume that there exists a sequence N = N(n) with N → ∞, as n → ∞, such
that Ns′/N → τs′ for positive constants, and 0 < c0 ≤ inf1≤s′≤K τs′ ≤ sup1≤s′≤K τs′ < C0 <
∞, s′ = 1, . . . ,K.
Remark 1. Conditions (A1) - (A3) guarantee the existence of a strong approximation of the em-
pirical quantile process by a sequence of weighted Brownian bridges as established in [6]. Con-
dition (A3) posited on kernel functions assures that the integral transform F̂−1 7→ Q̂ possesses
good approximation properties for smooth functions, and it is shown that (A3) holds for any
difference kernel dtKh(u, t) = h−1k ((u− t)/h) dt with a vanishing bandwidth h. for exam-
ple, the gaussian density K(u) = exp(−u2/2h2) [3, 16, 17] or the triangular density function
K(u) = (1− |u|/h)I(|u|/h ≤ 1) with a vanishing bandwidth hn.

B Proofs related to CFQP

In this section, we prove the validity of the CFQP prediction intervals described in Section 4 of the
main paper. First, we recap some results on distribution-free order statistics from Romano et al. [11].

The quantile function Q of a random variable Z, with cumulative distribution function F (z) :=
P{Z ≤ z}, is defined by the equivalence

Q(α) ≤ z if and only if α ≤ F (z)

for all α ∈ (0, 1) and z ∈ R. And less standardly, the right quantile function R of the random variable
Z is defined by the equivalence F−(z) ≤ α if and only if z ≤ R(α), where F−(z) := F (z−) =
P{Z < z}. The quantile functions have the explicit formulas

Q(α) = inf{z ∈ R : α ≤ F (z)}, R(α) = sup
{
z ∈ R : F−(z) ≤ α

}
.

As a special case, the empirical quantile function Q̂n of random variables Z1, . . . , Zn is the quantile
function with respect to the empirical CDF F̂n(z) := 1

n

∑n
i=1 1{Zi ≤ z}. Likewise, the right

empirical quantile function R̂n of Z1, . . . , Zn is the right quantile function with respect to F̂−
n (z) =

1
n

∑n
i=1 1{Zi < z}. They have the explicit formulas

Q̂n(α) = Z(⌈αn⌉), R̂n(α) = Z(⌊αn⌋+1),
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where Z(k) denotes the k th smallest value in Z1, . . . , Zn. Several variants of the following lemmas
are showed in Vovk et al. [13],Vovk et al. [14] and Romano et al. [12]. We restate them here for
clarification.
Lemma 1 (Quantiles and exchangeability). Suppose Z1, . . . , Zn are exchangeable random variables.
For any α ∈ (0, 1),

P
{
Zn ≤ Q̂n(α)

}
≥ α.

Moreover, if the random variables Z1, . . . , Zn are almost surely distinct, then also

P
{
Zn ≤ Q̂n(α)

}
≤ α+

1

n
.

Here the probabilities are taken over all the variables Z1, . . . , Zn.
Lemma 2 (Inflation of quantiles). Suppose Z1, . . . , Zn+1 are exchangeable random variables. For
any α ∈ (0, 1),

P

{
Zn+1 ≤ Q̂n

((
1 +

1

n

)
α

)}
≥ α.

Moreover, if the random variables Z1, . . . , Zn+1 are almost surely distinct, then also

P

{
Zn+1 ≤ Q̂n

((
1 +

1

n

)
α

)}
≤ α+

1

n+ 1
.

Applying the previous auxiliary lemmas, we can prove the validity of the CFQP prediction intervals
described in Section 4.

Theorem 1. If (X̃i, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction interval C(X̃n+1)
constructed by the split CFQP algorithm satisfies

P{Yn+1 ∈ C(X̃n+1)} ≥ 1− α.

Moreover, if the conformity scores Ei are almost surely distinct, the prediction interval is nearly
exactly calibrated,

P{Yn+1 ∈ C(X̃n+1)} ≤ 1− α+ 1/(|I2|+ 1).

Proof of Theorem 1. Conditionally on the proper training set. Denote by En+1 the conformity score

Ei := max
{
ĝαlo

(
X̃i

)
− Yi, Yi − ĝαhi

(
X̃i

)}
at the test point

(
X̃n+1, Yn+1

)
. By the construction of the prediction interval, we have

Yn+1 ∈ C
(
X̃n+1

)
if and only if En+1 ≤ Q1−α (E, I2) ,

and thus,

P
{
Yn+1 ∈ C

(
X̃n+1

)
|
(
X̃i, Yi

)
: i ∈ I1

}
= P

{
En+1 ≤ Q1−α (E, I2) |

(
X̃i, Yi

)
: i ∈ I1

}
(1)

Since the original pairs
(
X̃i, Yi

)
are exchangeable, so are the calibration variables Ei for i ∈ I2 and

i = n+ 1. Thus, by Lemma 2 on inflated empirical quantiles,

P
{
En+1 ≤ Q1−α (E, I2) |

(
X̃i, Yi

)
: i ∈ I1

}
≥ 1− α, (2)

and, under the additional assumption that the Ei ’s are almost surely distinct,

P
{
En+1 ≤ Q1−α (E, I2) |

(
X̃i, Yi

)
: i ∈ I1

}
≤ 1− α+

1

|I2|+ 1
(3)

The exact coverage result is derived by taking expectations over the proper training set in 1, 2, and
3.
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Next, we likewise prove the validity of the extended CFQP prediction intervals that control the left
and right tails independently.

Corollary 1. Define the prediction interval

C(X̃n+1) :=
[
ĝαlo

(
X̃n+1

)
−Q1−αlo

(Elo, I2) , ĝαhi

(
X̃n+1

)
+Q1−αhi

(Ehi, I2)
]

where Q1−αlo
(Elo, I2) is the (1− αlo)-th empirical quantile of {ĝαlo,i − Yi : i ∈ I2} and

Q1−αhi
(Ehi, I2) is the (1− αhi)-th empirical quantile of {Yi − ĝαhi,i : i ∈ I2}. If the samples(

X̃n+1, Yi

)
, i = 1, . . . , n+ 1 are exchangeable, then

P
{
Yn+1 ≥ ĝαlo

(
X̃n+1

)
−Q1−αlo

(Elo, I2)
}
≥ 1− αlo, (4)

and P
{
Yn+1 ≤ ĝαhi

(
X̃n+1

)
+Q1−αhi

(Ehi, I2)
}
≥ 1− αhi. (5)

Consequently, we also have P
{
Yn+1 ∈ C

(
X̃n+1

)}
≥ 1− α assuming α = αlo + αhi.

Proof. The two events inside the probabilities (4) as well as (5) are equivalent to ĝαlo
(Xn+1) −

Yn+1 ≤ Q1−αlo
(Elo, I2) and Yn+1 − ĝαhi

(Xn+1) ≤ Q1−αhi
(Ehi, I2), respectively. The results

are derives by applying Lemma 2 twice, in the same manner as in the proof of Theorem 1.

C Proofs related to DP

Proof of Proposition 2. By Theorem 2.1(2) in Cheng and Parzen [3], we have

sup
t∈[0,1]

∣∣∣Q̂2,qα|s′(t)−Qqα|s′(t)
∣∣∣ = Op

(
N−1/2 +N−ρ

)
= Op

(
N−1/2

)
, (6)

for each k, as ρ > 1/2. according to Assumption (A1) , conditions (Q1)-(Q3) in Cheng and Parzen
[3] are satisfied, and since we choose the kernel function Kh with the properties in (A3), conditions
(K1)-(K3) in Cheng and Parzen [3] are ensured. Moreover, the extension from [a, b] ⊂ (0, 1) to
[0, 1] is made possible by Assumption (A1). At last, assumption (A2) and the fact that the bound in
equation (2.7) in Cheng and Parzen [3] is a universal bound which does not depend on s′ allow the
extension from Eq. 6 to

sup
s′

sup
t∈[0,1]

∣∣∣Q̂2,qα|s′(t)−Qqα|s′(t)
∣∣∣ = Op

(
N−1/2

)
, s′ = 1, . . . ,K.

Before showing the exact DP guarantee, we utilize Lemma E.1. (stated in Lemma 3) from Chzhen
and Schreuder [4] and references therein, where rigorous proofs are given.

Lemma 3. Let V1, . . . , Vn, Vn+1, n ≥ 1 be exchangeable real-valued random variables and U
distributed uniformly on [0, 1] be independent from V1, . . . , Vn, Vn+1, then the constructed location
statistic

T (V1, . . . , Vn, Vn+1, U) =
1

n+ 1

(
n∑

i=1

1 {Vi < Vn+1}+ U ·

(
1 +

n∑
i=1

1 {Vi = Vn+1}

))
is distributed uniformly on [0, 1].

The proof of Theorem 2 for quantile DP is a direct adaptation of demographic parity guarantee from
Chzhen and Schreuder [4] for the mean regression.

Proof of Theorem 2. To prove the claimed DP guarantee for fixed quantile level α ∈ {αlo, αhi}, we
will show that the Kolmogorov-Smirnov distance between νĝα|s and νĝα|s′ equals to zero for any
s ̸= s′ ∈ [K].
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Note that, according to the formulation of ĝα in Eq. (12), we have for any (x, s) ∈ Rp × [K],

ĝα(x, s) =

K∑
s′=1

p̂s′Q̂2,qα|s′ ◦ F̂1,qα|s ◦ q̃α(x, s),∀α ∈ {αlo, αhi}.

Denote by Q̂(t) =
∑K

s′=1 p̂s′Q̂2,qα|s′ . Note that we use the training set to estimate the location
statistic for the new test point, Q̂(t) is independent from F̂1,qα|s ◦ q̃α(x, s) for each s ∈ [K].

Since the test point belongs to group S = s for some fixed s ∈ [K] and, for all i = 1, . . . , |Is
1 |, set

Vi = q̃s1,i with VNs+1
d
= (q̃α(x, s)) independent from (Vi)i=1,...,|Is

1 |
. Since the random variables

V1, . . . , VNs
, VNs+1 are exchangeable (more ideally, independent), Lemma 3 implies that for all

s ∈ [K], the location statistic F̂1,qα|s ◦ q̃α(x, s) is distributed uniformly on [0, 1]. Thus for all
s, s′ ∈ [K], we have

KS
(
νĝα|s, νĝα|s′

)
=sup

t∈R
|P (ĝα ≤ t | S = s)− P (ĝα ≤ t | S = s′)|

=sup
t∈R

∣∣∣P (F̂1,qα|s ◦ q̃α(x, s) ≤ Q̂−1(t) | S = s
)
− P

(
F̂1,qα|s ◦ q̃α(x, s) ≤ Q̂−1(t) | S = s′

)∣∣∣
=sup

t∈R

∣∣∣E [Q̂−1(t) | S = s
]
− E

[
Q̂−1(t) | S = s′

]∣∣∣ = 0.

The first equality uses the definition of Eq. (9); the second uses the fact that Q̂ is monotone
by construction [4]; finally since the independence of Q̂ is independent from F̂1,qα|s ◦ q̃α(x, s)

conditionally on S = s for any s ∈ [K], also Q̂ remains independent from S. The exact DP is
concluded.

D Experiments

D.1 Data Description & Pre-processing

1. Law School (LAW)[15]: The dataset contains 20,649 examples aiming to predict students’
GPA based on their information and capacities, with gender as the sensitive attribute (male
vs. female).

2. Community&Crime (CRIME)[10]: This dataset contains socio-economic, law enforcement,
and crime data about communities in the US with 1,994 examples. The task is to predict the
number of violent crimes per 100,000 population with race as the sensitive attribute.

3. MEPS 2016 (MEPS)[1, 12]: The Medical Expenditure Panel Survey 2016 dataset contains
information on individuals and their utilization of medical services. The goal is to predict
the health care system utilization score of each individual by their features including age,
marital status, race, poverty status, health status, health insurance type, and more. There are
15,656 examples on p = 41 features with race as the sensitive attribute (nonwhite vs. white).

4. Government Salary (GOV)[8, 9]: The government salary dataset (available in R package
"fairadapt") is collected from the 2018 American Community Survey by the US Census
Bureau. The yearly salary for over 200,000 examples is the response variable, and employee
race (7 categories) is identified as the sensitive attribute.

In order to smoothly run the regression model, several preprocessing steps are utilized before running
the model. For example, in the CRIME dataset, we impute the missing value by mean, and the race
feature is created by the maximum value of the four races. The clean data are uploaded to the GitHub
repo for future research.

D.2 Adaptation of other algorithms in [2, 5]

First, our approach is built upon the one proposed by Chzhen et al. [5], we incorporated the kernel
smoothing procedure in quantile estimation and applied the local linear smoothing method provided in
NumPy [7] which shows its functionality when there are subgroups of small sample sizes, especially
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for the CRIME dataset. It is also feasible to compute Eq. (8) via some global kernels, such as the
gaussian density K(u) = exp(−u2/2h2) [3, 16, 17] or the triangular density function K(u) =
(1 − |u|/h)I(|u|/h ≤ 1) with a vanishing bandwidth hn. For the bandwidth selection, there is a
publicly available R package lokern with the global bandwidth choice.

Second, we adjusted the reduction-based approach in Agarwal et al. [2] in several respects: we rescale
and discretize the responses, and modify their algorithm by replacing the loss function l by ρα of
Eq. (4) in our paper. It is worth mentioning that the reduction-based approach is sensitive to the
hyperparameters: discretization parameter N and slack ε̂a in training. We used logistic regression
and SVM classifiers in tuning.

D.3 Additional experiment results

We show the additional results using quantile random forest and quantile neural network for the
comparison of our post-processing fairness adjustment procedure in figures 1 and 2.

Figure 1: Results using Quantile random forest for estimating the lower (αlo) and upper (αhi)
quantiles using some state-of-the-art DP-fairness requirement methods on all the datasets. ‘Unfair’,
‘Chzhen’, and ‘Agarwal’ stand for the quantile model without fairness adjustment, barycenter method
[5] and reduction-based algorithm [2] respectively. We present the MAE and KS of lower quantile
estimation, as well as upper quantile estimation. We set ‘n estimator’ to 50.

LAW

Coverage Length KS(lo) KS(hi)

Ln-CFQP (with both smoothing) 90.02±0.51 0.46±.004 0.02±0.01 0.02±0.01
Ln-CFQP (with jittering) 89.99±0.49 0.39±.002 0.03±.008 0.03±0.01

Ln-CFQP (with kernel smoothing) 89.99±0.50 0.38±.002 0.03±0.009 0.03±0.01
Ln-CFQP (without smoothing) 89.96±0.49 0.40±.002 0.04±0.01 0.03±0.01

CRIME

Coverage Length KS(lo) KS(hi)

Ln-CFQP (with both smoothing) 90.44±1.84 1.64±0.05 0.11±0.03 0.12±0.04
Ln-CFQP (with jittering) 90.55±1.35 1.69±0.05 0.31±0.11 0.33±0.12

Ln-CFQP (with kernel smoothing) 90.58±1.36 1.69±0.05 0.25±0.13 0.29±0.12
Ln-CFQP (without smoothing) 90.53±1.27 1.69±0.05 0.36±0.12 0.40±0.12

Table 1: Ablation test results when removing either or both of the smoothing strategies. Our methods
are shown in bold.

The three quantile models present consistent results, our post-processing based upon kernel smoothing
outperforms the other two approaches, which is reflected in more KS value reduction. We also
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conducted a brief ablation study by testing the experimental results of removing either or both of the
smoothing strategies in our CFQP approach. Results are presented in table 1. We found incorporating
the jittering and kernel smoothing methods works better when the subgroups are unbalanced and there
exist subgroups of small sample sizes, especially for the CRIME dataset. Finally, the computational
time analysis is also incorporated in figure 3.

Figure 2: Results using Quantile neural network model for estimating the lower (αlo) and upper (αhi)
quantiles using some state-of-the-art DP-fairness methods on all the datasets. ‘Unfair’, ‘Chzhen’,
and ‘Agarwal’ stand for the quantile model without fairness adjustment, barycenter method [5] and
reduction-based algorithm [2] respectively. We present the MAE and KS of lower quantile estimation,
as well as upper quantile estimation.

In the current experiment, the kernel we used is the local linear one in defining the quantile functions
of subgroups instead of the global kernels. When calculating the τ -th quantile xτ of qα using local
linear smoothing, we choose a constant distance size h (kernel radius) and compute a weighted
average for all data points that are closer to xτ (the closer to xτ points get higher weights). The time
complexity for computing the local kernel smoother (Eq.(8)) is O(1), while if we applied the global
kernels in Eq.(8), O(n) time would cost.

Figure 3: Empirical running times of methods used for experimental comparisons. We utilized the
linear quantile model on the MEPS dataset. For methods of "Chzhen" and "Agarwal", normalizing
factors are applied to present the graph.

For the CFQP method, The steps determining the time complexity of Algorithms 1 and 2 reside in
the following two parts:
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1. The for-loop where we perform a post-processing which takes
∑

s′∈[K] O (Ns′ logNs′)

time, as we need to sort the grouped samples;
2. The evaluation of ĝα on a new point (x, s) is performed in maxs′∈[K] O(logNs) time as it

involves locating ĝα in a sorted array.
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