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ABSTRACT

Synthetic tabular data generation has traditionally been a challenging problem due
to the high complexity of the underlying distributions that characterise this type of
data. Despite recent advances in deep generative models (DGMs), existing meth-
ods often fail to produce realistic datapoints that are well-aligned with available
background knowledge. In this paper, we address this limitation by introducing
Disjunctive Refinement Layer (DRL), a novel layer designed to enforce the align-
ment of generated data with the background knowledge specified in user-defined
constraints. DRL is the first method able to automatically make deep learning
models inherently compliant with constraints as expressive as quantifier-free lin-
ear formulas, which can define non-convex and even disconnected spaces. Our
experimental analysis shows that DRL not only guarantees constraint satisfaction
but also improves efficacy in downstream tasks. Notably, when applied to DGMs
that frequently violate constraints, DRL eliminates violations entirely. Further,
it improves performance metrics by up to 21.4% in F1-score and 20.9% in Area
Under the ROC Curve, thus demonstrating its practical impact on data generation.

1 INTRODUCTION

The problem of tabular data generation is a critical area of research, driven by its numerous practical
applications across various domains. High-quality synthetic data offers solutions to pressing chal-
lenges such as data scarcity (Choi et al., 2017), bias in unbalanced datasets (van Breugel et al., 2021),
and the general need for privacy protection (Lee et al., 2021). However, due to the varied nature of
the data distributions in the tabular domain—which are often multi-modal, and present complex de-
pendencies among features—it is difficult to create models able to generate realistic data. Indeed, no
matter the Deep Generative Model (DGM) used, when synthetic datapoints are tested for alignment
with the available background knowledge, they frequently fail such a test. Even when considering
simple knowledge like “the feature representing the maximum recorded level of hemoglobin should
be greater than or equal to the one representing its minimum”, DGMs often generate datapoints vio-
lating it. So far, this problem has only been solved by either rejecting the non-aligned samples, or by
adding a layer to the DGM that restricts its output space to coincide with the one defined by linear
inequalities (Stoian et al., 2024). However, while the first solution is not feasible in the presence
of a high violation rate, the second is only available when the knowledge can be captured by linear
inequalities, which have very limited expressivity.

(a) (b)

Figure 1: Example of spaces
defined by (a) a set of linear
inequalities and (b) a set of
QFLRA formulas.

In this paper, we propose a novel layer—called Disjunctive Refine-
ment Layer (DRL)—able to constrain any DGM output space ac-
cording to background knowledge expressed as Quantifier-Free Lin-
ear Real Arithmetic (QFLRA) formulas. QFLRA formulas can cap-
ture any relationship over the features that can be represented as a
combination of conjunctions, disjunctions and negations of linear in-
equalities. Thanks to their expressivity, QFLRA formulas can define
spaces that are not only non-convex but can also be disconnected.
On the contrary, linear inequalities can only capture convex output
spaces. See Figure 1 for an example of spaces defined by linear
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inequalities and QFLRA formulas. While linear inequalities establish a single lower and upper
bound (if existent) for each feature, QFLRA formulas define multiple intervals where the back-
ground knowledge holds, each with its own boundaries. This significantly increases the complexity
of the problem, as compiling knowledge into DRL not only requires keeping track of these intervals
but also deriving the intricate hidden interactions among variables.
Example 1. The knowledge: “The value of x5 should be always at least x1, and if greater than x2

then it should also be at least equal to x3. In any case, x5 should never be greater than x4”, which
cannot be expressed by a set of linear inequalities, corresponds to the QFLRA formula:

(x5 ≥ x1) ∧ ((x5 > x2)→ (x5 ≥ x3)) ∧ (x5 ≤ x4). (1)
Moreover, this formula entails other hidden relations among the variables such as, e.g., ¬(x1 > x4).

To derive such additional hidden relations, we developed a novel variable elimination method which
generalises the analogous procedure for systems of linear inequalities based on the Fourier-Motzkin
result (see, e.g., (Dechter, 1999)). Once compiled, by definition, DRL (i) guarantees the satisfaction
of the constraints, (ii) can be seamlessly added to the topology of any neural model, (iii) allows
the backpropagation of the gradients at training time, (iv) performs all the computations in a single
forward pass (i.e., no cycles), and (v) given a sample generated by a DGM, it returns a new one
that is optimal with respect to the original (intuitively, which minimally differs from the original
sample while taking into account the user preferences on which features should be changed first).
Our experimental analysis also shows that adding DRL to DGMs improves their machine learning
efficacy (Xu et al., 2019) on a range of different scenarios. This is the most widely used performance
measure for evaluating the quality of synthetic data, as it assesses how useful the generated data is for
downstream tasks. In particular, we considered five DGMs, added DRL into their topology and got
improvements for all datasets of up to 21.4%, 20.5%, and 20.9% in terms of F1-score, weighted F1-
score, and Area Under the ROC Curve, respectively. Finally, our experiments demonstrate a strong
need for a method like ours. Indeed, DGMs generate synthetic datapoints violating the background
knowledge more often than expected. In 13 out of 25 scenarios, the DGMs produced datasets with
over 50% datapoints violating the constraints, and in five cases this reached 100%.

Main contributions: (i) We propose the first-ever layer that can be integrated into any DGM
to enforce background knowledge expressed as QFLRA formulas. This required generalising the
Fourier-Motzkin variable elimination procedure in order to handle disjunctions of linear inequalities.
(ii) We show experimentally how integrating our layer in DGMs improves their machine learning
efficacy, even when the constraints define a possibly non-convex and disconnected space.

2 PROBLEM DEFINITION AND NOTATION

Constrained generative modelling is defined as the problem of learning the parameters θ of a gener-
ative model, given an unknown distribution pX over X ∈ RD, a training dataset D consisting of N
i.i.d. samples drawn from pX , and formally expressed background knowledge about the problem—
stating which samples are admissible and which are not—such that (i) the model distribution pθ
approximates pX , and (ii) the sample space of pθ is aligned with what is stated in the background
knowledge. As described in the introduction, so far this problem has only been solved by either re-
jecting the non-aligned samples or by including a layer into the DGM that restricts its output space
to coincide with the one defined by the linear inequalities (Stoian et al., 2024).

In this paper, we allow for background knowledge expressed as a set of formulas, each being a dis-
junction of linear inequalities. This enables us to capture any relationship among features which can
be represented as Quantifier-Free Linear Real Arithmetic (QFLRA) formulas. Indeed, through syn-
tactic manipulation using De Morgan’s laws and the mathematical properties of linear inequalities,
any knowledge formulated as a combination of conjunctions, disjunctions, and negations of linear
inequalities can be rewritten as a set of disjunctions over linear inequalities. Formally, we consider
a set Π of constraints, where a constraint is a disjunction of nΨ ∈ N linear inequalities of the form:

Ψ = Φ1 ∨ Φ2 ∨ · · · ∨ ΦnΨ
, (2)

where each Φi is a linear inequality over the set of variablesX = {xk | k = 1, . . . , D}, each variable
uniquely corresponding to a feature in the dataset. We assume each linear inequality has form:∑

k

wkxk + b ≥ 0, (3)
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with wk ∈ R, b ∈ R, and xk ranging over R. When wi ̸= 0, we say that xi occurs in (3), and that it
occurs positively if wi > 0 and negatively otherwise.

For an easy formulation of the problem and its solution, given two linear expressions φ =∑
k wkxk + b and φ′ =

∑
k w

′
kxk + b′, we write, e.g., (φ + φ′) for the linear expression∑

k(wk+w′
k)xk+(b+b′), and similarly for (φ−φ′) and φ/w if w ∈ R\{0}. We will also express

the linear inequality (3) as wixi + φ, by this implicitly assuming wi ̸= 0 and that xi does not occur
in φ, i.e., that φ =

∑
k ̸=i wkxk + b. Finally, we also write φ ≥ φ′ (resp. φ ≤ φ′) as abbreviations

for φ− φ′ ≥ 0 (resp. φ′ − φ ≥ 0).

Given a DGM with distribution pθ, a sample x̃ ∼ pθ is an assignment to the variables in X , and x̃k

indicates the value assigned by x̃ to the variable xk. We say that a sample x̃ satisfies

• the linear inequality (3) if
∑

k wkx̃k + b ≥ 0,
• the constraint Ψ with form (2) if Φi is satisfied by x̃ for some i = 1, . . . , nΨ, and
• a set Π of constraints if x̃ satisfies all the constraints in Π.

Further, we associate to each linear inequality Φ, (resp. constraint Ψ, resp. set of constraints Π) the
set Ω(Φ) (resp. Ω(Ψ), resp. Ω(Π)) of the points in RD that satisfy Φ (resp. Ψ, resp. Π). Clearly,
Ω(Φ), Ω(Ψ) and Ω(Π) define a subspace of RD, and have the following properties:

1. Ω(Φ) is non-empty and convex,
2. Ω(Ψ) is non-empty but may be non-convex and also disconnected, and
3. Ω(Π) may be empty, non-convex and also disconnected,

all the above assuming some variable occurs in Φ, Ψ and Π. A linear inequality Φ (resp. a constraint
Ψ, resp. a set of constraints Π) is violated by a sample x̃ if x̃ does not belong to the corresponding set
Ω(Φ) (resp. Ω(Ψ), resp. Ω(Π)). A linear inequality Φ (resp. a constraint Ψ, resp. a set of constraints
Π) is satisfiable if the corresponding set Ω(Φ) (resp. Ω(Ψ), resp. Ω(Π)) is not empty. Notice that,
for the sake of simplicity, we do not consider strict inequalities (i.e., inequalities with >). From a
theoretical perspective, the entire theory can be easily generalised to consider them. From a practical
perspective, for any computing system of choice, we can simply rewrite each strict inequality of the
following form:

∑
k wkxk + b > 0 as

∑
k wkxk + b − ϵ ≥ 0, where ϵ > 0 denotes the desired

precision of the representation, taking into account the limitations of floating-point accuracy. Finally,
we represent each constraint Ψ ∈ Π of form (2) also as the set {Φ1,Φ2, . . . ,ΦnΨ

}. With this
notation, Π is a set of sets of linear inequalities. Hence, the linear inequalities in a set should be
interpreted as disjunctively defining a constraint in Π, while the constraints are to be interpreted as
conjunctively defining Π.

3 DISJUNCTIVE REFINEMENT LAYER

Given a finite set of constraints Π and a DGM, we show how to build a layer with all the desired
properties stated in the introduction. In Appendix A we visualize how to add our DRL to each of the
DGMs considered in the experimental analysis. Before illustrating the general case, in the following
subsection we assume Π is a finite set of constraints in a single variable xi.

3.1 SINGLE VARIABLE CASE

Each constraint Ψ of form (2) defines a single left boundary lΨi and a single right boundary rΨi for
the variable xi: 1

lΨi = max
(wixi+φ≥0)∈Ψ:wi<0

(
− φ

wi

)
, rΨi = min

(wixi+φ≥0)∈Ψ:wi>0

(
− φ

wi

)
. (4)

Assuming Ψ contains a linear inequality in which wi ̸= 0, a sample x̃ satisfies Ψ if and only if
either x̃i ≤ lΨi or x̃i ≥ rΨi , as represented in Figure 2. As the Figure clearly shows, Ω(Ψ) is already
non-convex whenever lΨi ̸= −∞, rΨi ̸= +∞ and lΨi < rΨi . When considering a set Π with multiple

1We use the “left” and “right” terminology because in a non-vacuous constraint we have lΨi < rΨi . We
assume the function min(S) over a finite set S of values in R to be defined as min(∅) = +∞, and min({v} ∪
S ′) = v if v ≤ min(S ′) and min(S ′) otherwise. Analogously for the function max(S).
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i (x̃) xi

Figure 2: Visualisation of
left and right boundaries de-
fined by constraint Ψ. The
green regions correspond to
the values of xi ∈ Ω(Ψ).

constraints in xi, we may arrive at a set Ω(Π) that is the union of up
to |Π|+ 1 disjoint intervals.

In general, computing the intervals requires finding the satisfying
boundaries and then ordering them. Luckily, given a sample x̃ violat-
ing some constraint in Π, we are only interested in setting DRL(x̃)i
equal to the bound that satisfies Π and that is at minimal Euclidean
distance from x̃i. To this end, we first define the closest satisfying left
and right boundary for x̃i as:

lΠi (x̃) = max
Ψ∈Π

({lΨi : x̃i > lΨi , l
Ψ
i ∈ Ω(Π)}), rΠi (x̃) = min

Ψ∈Π
({rΨi : x̃i < rΨi , r

Ψ
i ∈ Ω(Π)}), (5)

respectively. Then, for k ̸= i, DRL(x̃)k = x̃k and

DRL(x̃)i =


x̃i if x̃ ∈ Ω(Π),

lΠi (x̃) if x̃ ̸∈ Ω(Π) and |x̃i − lΠi (x̃)| < |x̃i − rΠi (x̃)|,
rΠi (x̃) otherwise.

(6)

By construction, DRL(x̃) satisfies the constraints in Π and is optimal w.r.t. x̃: there does not exist a
sample satisfying Π with smaller Euclidean distance from x̃.
Lemma 3.1. Let Π be a finite and satisfiable set of constraints in a single variable xi. For every
sample x̃, DRL(x̃) satisfies Π and is optimal w.r.t. x̃.

The proof of the Lemma can be found in Appendix B.

Example 2. Let Π be the set of constraints {Ψ1,Ψ2,Ψ3} over
the unique variable x5, with Ψ1,Ψ2 and Ψ3 as shown in Fig-
ure 3. Then, lΨ1

5 = −∞, lΨ2
5 = b, lΨ3

5 = d, rΨ1
5 = a, rΨ2

5 =

c, rΨ3
5 = +∞. Depending on the value of x̃5, we get correspond-

ingly different values for DRL(x̃)5. In particular,

Ψ3
Ψ2
Ψ1

a b c d x5
Figure 3: Constraints for Ex. 2.

1. if x̃5 < a then DRL(x̃)5 = a,

2. if a ≤ x̃5 ≤ b then DRL(x̃)5 = x̃5,

3. if b < x̃5 < (b+ c)/2 then DRL(x̃)5 = b,

4. if (b+ c)/2 ≤ x̃5 < c then DRL(x̃)5 = c,

5. if c ≤ x̃5 ≤ d then DRL(x̃)5 = x̃5,

6. if x̃5 > d then DRL(x̃)5 = d.

Independently from the value of x̃5, DRL(x̃)5 satisfies the constraints and is optimal w.r.t. DRL(x̃)5.

3.2 GENERAL CASE

Among the desiderata for our DRL, we have that all the necessary computations need to be done in
a single forward pass. To this end, we consider a variable ordering x1;x2; . . . ;xD corresponding to
the order of computation of the features. The ordering can be arbitrarily selected or, more appropri-
ately, may reflect the user preferences on which features should be changed first when the sample
violates the constraints. Indeed, the value of each feature xi will be computed taking into account the
values of the features x1, . . . , xi−1, the latter considered immutable. To make this possible, when
building the layer, we need to ensure that the chosen value for the variables xj , with j < i, guaran-
tees the existence of a value for xi satisfying the constraints. Starting from ΠD = Π and i = D, this
amounts to deriving a finite set Πi−1 of constraints in the variables x1, x2, . . . , xi−1 whose conjunc-
tion is logically equivalent to ∃xi

∧
Ψ∈Πi

Ψ. This entails that for every value of x1, x2, . . . , xi−1

satisfying Πi−1 there must exist a value for xi satisfying Πi, or alternatively, that each assignment
to x1, x2, . . . , xi−1 and satisfying Πi−1 can be extended to satisfy also Πi.

In order to define such set Πi−1, given two constraints Ψ = (
∨n

k=1(wkxi + φk ≥ 0) ∨ Φ) and
Ψ′ = (

∨m
j=1(w

′
jxi + φ′

j ≥ 0) ∨ Φ′), with w′
1, . . . , w

′
m < 0 < w1, . . . , wn and m,n ≥ 1, we define

the cutting planes (CP) resolution rule between Ψ and Ψ′ on xi to be:∨m
j=1(w

′
jxi + φ′

j ≥ 0) ∨ Φ′ ∨n
k=1(wkxi + φk ≥ 0) ∨ Φ∨m

j=1

∨n
k=1(φk/wk − φ′

j/w
′
j ≥ 0) ∨ Φ ∨ Φ′ . (7)

In the above rule, Ψ and Ψ′ are the premises, and the formula below the line is the conclusion
denoted with CPresi(Ψ,Ψ′). This rule, which can be derived from the standard propositional and
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CP rules defined, e.g., in (Krajı́cek, 1998), is sound for any possible Φ and Φ′. Despite this, we
assume that Φ′ (resp. Φ) does not contain negative (resp. positive) occurrences of xi. As we will
see, it is possible to impose much stronger conditions (defined later) on the applicability of the rule,
still enabling the derivation of a set of constraints Πi−1 with the desired properties.
Lemma 3.2. The CP resolution rule is sound: the premises entail the conclusion of the rule.
Example 3 (Example 1, cont’d). The QFLRA formula in the introduction translates into the set of
constraints: Π = {Ψ1,Ψ2,Ψ3} with Ψ1 = (x5 ≥ x1),Ψ2 = ((x5 ≤ x2) ∨ (x5 ≥ x3)) and
Ψ3 = (x5 ≤ x4). By applying the CP resolution rule, we can obtain a new set of constraints
entailed by Π and logically equivalent to ∃x5

∧
Ψ∈Π Ψ.

CPres5(Ψ1,Ψ2) = x1 ≤ x2 ∨ x5 ≥ x3 CPres5(Ψ1,Ψ3) = x1 ≤ x4

CPres5(Ψ3,CPres5(Ψ1,Ψ2)) = x1 ≤ x2 ∨ x3 ≤ x4.

As derived from the multiple application of the CP resolution rule, the above set of constraints
admits a solution for x5 if and only if (x1 ≤ x4) ∧ (x1 ≤ x2 ∨ x3 ≤ x4).

The proof of Lemma 3.2 is in Appendix C. In the example, there is only one constraint with both
positive and negative occurrences of xi and the CP resolution of any two distinct constraints always
leads to a conclusion with either only positive or negative occurrences of xi. However, in general,
the CP resolution of two constraints Ψ and Ψ′ will lead to a new constraint CPresi(Ψ,Ψ′) which
might contain both positive and negative occurrences of xi. This new constraint can be the premise
of other CP resolutions which can produce new constraints and the process can iterate. Nevertheless,
our goal is to derive the constraints in the variables x1, . . . , xi−1 whose satisfying assignments can
be extended to satisfy also the constraints with xi. The standard solution to make all the possible CP
resolutions on xi while considering also the CP resolvent of the already done resolution may turn
out to be too computationally expensive. Luckily, we can further restrict to CP resolutions between
two constraints Ψ and Ψ′ in which Ψ does not contain negative occurrences of xi. To this end, let

1. Π+
i (resp. Π−

i ) to be the set of constraints in Πi with (resp. without) positive occurrences
of xi and without (resp. with) negative occurrences of xi ;

2. Π±
i to be the set of constraints in Πi with both positive and negative occurrences of xi;

3. Π ++

i to be the set of constraints obtained by the recursive application of the CP-resolution
between one constraint without negative occurrences of xi and one constraint in Π±

i :

Π ++

i =

|Π±
i |⋃

k=0

Πk
i with Πk+1

i = {CPresi(Ψ,Ψ′) | Ψ ∈ Πk
i ,Ψ

′ ∈ Π±
i },

and Π0
i = Π+

i . Every constraint in Π ++

i has only positive occurrences of xi.

Then, Πi−1 is the set of constraints in Πi in which xi does not occur plus the set of constraints
obtained by the CP resolution of the constraints in Π+

i ∪Π−
i ∪Π ++

i . More formally,

Πi−1 = (Πi \ (Π+
i ∪Π−

i ∪Π±
i )) ∪ {CPresi(Ψ,Ψ′) | Ψ ∈ Π ++

i ,Ψ
′ ∈ Π−

i }. (8)

Clearly, each set Πi−1 does not contain any occurrence of xi and can contain a non-polynomial
number of constraints, the latter fact echoing similar results for variable elimination methods in
propositional logic and sets of linear inequalities (Dechter, 1999). The above definition, generalises
to disjunctions of linear inequalities the standard variable elimination procedure proposes for sys-
tems of linear inequalities based on the Fourier-Motzkin result.
Example 4 (Example 3, cont’d). Consider the variable ordering x1;x2;x3;x4;x5. Then, Π5 =

Π,Π−
5 = {Ψ3},Π±

5 = {Ψ2},Π+
5 = Π0

5 = {Ψ1},Π1
5 = {x1 ≤ x2 ∨ x5 ≥ x3}, and Π ++

5 = Π0
5 ∪Π1

5.
As a consequence, Π4 = {x1 ≤ x4, x1 ≤ x2 ∨ x3 ≤ x4}, and Π3 = Π2 = Π1 = ∅.

For each set of constraints Πi, the set Πi−1 has the desired property, stated in the lemma below.
Lemma 3.3. Let Π be a set of constraints in the variables x1, . . . , xi. Πi = Π and Πi−1 are
equisatisfiable, and each assignment to the variables x1, . . . , xi−1 satisfying Πi−1 can be extended
in order to satisfy Πi.

5



Published as a conference paper at ICLR 2025

Algorithm 1 Compile & Apply DRL
function DRL COMPILE(Π, x1; . . . ;xD)

ΠD ← Π
for i← D downto 1 do

compute Π+
i ,Π

−
i ,Π

±
i , Π ++

i

Πi−1 ← (Πi \ (Π+
i ∪Π−

i ∪Π±
i ))∪

{CPresi(Ψ,Ψ′) |Ψ∈Π ++

i ,Ψ
′∈Π−

i }
if Π0 is unsatisfiable then

return UNSAT FLAG
else return Π1; . . . ; ΠD

function DRL APPLY(x̃, Π1, . . . ,ΠD)
for i← 1 to D do

compute Π̃i, Ω(Π̃i), lΠ̃i
i (x̃), rΠ̃i

i (x̃)

if x̃i ∈ Ω(Π̃i) then DRL(x̃)i ← x̃i

else if |x̃i−lΠ̃i
i (x̃)| < |x̃i−rΠ̃i

i (x̃)| then
DRL(x̃)i ← lΠ̃i

i (x̃)

else DRL(x̃)i ← rΠ̃i
i (x̃)

return DRL(x̃)1; . . . ;DRL(x̃)D

The proof of the Lemma is in Appendix D. As a corollary of the above lemma we have that the CP
resolution is refutationally complete: if Π is unsatisfiable then it is possible to derive a disjunction
of linear inequalities in Π0 in which each inequality (3) has wi = 0 for i = 1, . . . , D and b < 0
(otherwise, it is possible to incrementally define assignments satisfying Π1,Π2, . . . ,ΠD = Π).
Thus, at the end of the layer construction, we are able to automatically detect Π unsatisfiability,
returning a corresponding value in such case.
Corollary 3.4. For any finite set of constraints, the CP resolution rule is refutationally complete.

Starting from i = 1, the value of DRL(x̃)i is computed considering the constraints in Π̃i, where Π̃i is
the set of constraints in the variable xi obtained by substituting the variables x1, x2, . . . , xi−1 with
DRL(x̃)1,DRL(x̃)2, . . . ,DRL(x̃)i−1 in Πi. As in the single variable case, assuming x̃i violates
some constraint in Π̃i, we define the closest satisfying left and right boundaries for x̃i as:

lΠ̃i
i (x̃) = max

Ψ∈Π̃i

({lΨi : x̃i > lΨi , l
Ψ
i ∈ Ω(Π̃i)}), rΠ̃i

i (x̃) = min
Ψ∈Π̃i

({rΨi : x̃i < rΨi , r
Ψ
i ∈ Ω(Π̃i)}).

Then, for j > i, DRL(x̃)j = x̃j , for j < i, DRL(x̃)j = DRL(x̃)i and

DRL(x̃)i =


x̃i if x̃i ∈ Ω(Π̃i),

lΠ̃i
i (x̃) if x̃i ̸∈ Ω(Π̃i) and |x̃i − lΠ̃i

i (x̃)| < |x̃i − rΠ̃i
i (x̃)|,

rΠ̃i
i (x̃) otherwise.

(9)

A simple, non-optimised version of the algorithm is given in Algorithm 1. The compilation step
happens only once before training, while the application step is performed for each sample.
Example 5 (Examples 2, 4, cont’d). Consider a sample x̃ where x̃1 = a, x̃2 = b, x̃3 = c, and
x̃4 = d (i.e., arranged as in Figure 3). Then, since Π3 = Π2 = Π1 = ∅, DRL leaves the values
unchanged for the features x1, x2, x3 and DRL(x̃)1 = a,DRL(x̃)2 = b,DRL(x̃)3 = c. Regarding
x̃4, we know that Π̃4 = {x4 ≥ a, a ≤ b ∨ x4 ≥ c} which reduces to {x4 ≥ a}, and, since it is
satisfied, DRL(x̃) = d. Finally, Π̃5 = {x5 ≥ a, x5 ≤ b∨x5 ≥ c, x5 ≤ d} and the value of DRL(x̃)5
can be computed on the ground of x̃5, as detailed in Example 2.

Theorem 3.5. Let Π be a finite and satisfiable set of constraints. For any sample x̃ and variable
ordering, the corresponding sample DRL(x̃) satisfies Π.

Further, considering the variable ordering x1;x2; . . . ;xD, DRL(x̃) is optimal w.r.t. x̃ and Π and
the variable ordering: for each i = 1, . . . , D there does not exist a sample x̃′ ∈ Ω(Π) such that
|x̃i − x̃′

i| < |x̃i − DRL(x̃)i|, and for all j < i, x̃′
j = DRL(x̃)j .

Theorem 3.6. Let Π be a finite and satisfiable set of constraints. For any sample x̃ and variable
ordering, the corresponding sample DRL(x̃) is optimal w.r.t. x̃, Π and the variable ordering.

The proofs of Theorems 3.5 and 3.6 are in Appendix E and F, respectively.

4 EXPERIMENTAL ANALYSIS

To assess how DRL2 performs in practice, we conduct the following studies. First, in Section 4.1,
we investigate whether our layer improves the quality of the synthetic data generated by standard

2The code is available at https://github.com/mihaela-stoian/DRL_DGM.
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Figure 4: Sample distributions for real and synthetic data from TVAE, TVAE+LL and TVAE+DRL.
The regions where samples violate the constraints are in red.

DGMs. In Section 4.2, we then compare our constrained models (which we refer to as DGMs+DRL)
with the models obtained by considering only the linear constraints in each dataset and adding the
layer proposed by Stoian et al. (2024). We refer to the linearly constrained DGMs as DGMs + Linear
Layer (DGMs+LL). Then, in Section 4.3, we conduct experiments to determine how the background
knowledge injection affects the sample generation time. Before delving into these studies, we de-
scribe the metrics we use to compute the sample quality, along with the models and datasets.

Sample Quality Evaluation. To judge the quality of our samples we measure (i) how well they align
with the background knowledge and (ii) how well they can replace the real data in downstream tasks.
To measure background knowledge alignment, we consider the metrics proposed in (Stoian et al.,
2024): i.e, constraint violation rate (CVR), constraint violation coverage (CVC), and samplewise
constraints violation coverage (sCVC). To determine their usability in downstream tasks we consider
the metric machine learning efficacy (Kim et al., 2023), also known as utility (e.g., in (Liu et al.,
2022)). To compute it, we follow the “Train on Synthetic, Test on Real” protocol (Esteban et al.,
2017). Specifically, to compute the efficacy for classification (resp., regression) datasets, we train six
classifiers (resp., four regressors) on synthetic data and test them on real data. A detailed description
of the evaluation protocol and the hyperparameter tuning description for the classifiers and regressors
can be found in Appendix I. For classification datasets, we report: F1-score (F1), weighted F1-score
(wF1), and Area Under the ROC Curve (AUC), while for the regression dataset, we compute the
mean absolute error (MAE) and the root mean square error (RMSE). For reference, we report the
same metrics when training on the real data in Table 25 of Appendix O.

Models. We consider five DGMs: WGAN (Arjovsky et al., 2017), TableGAN (Park et al., 2018),
CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), and GOGGLE (Liu et al., 2022), and build our
DRL on top of each to create DGM+DRL models. A description of these models is in Appendix H.

Datasets. We consider five real-world datasets and associated constraints. Four datasets (i.e., URL,
CCS, LCLD, and Heloc) are used for classification tasks, while one dataset (i.e., House) is used for
regression. A detailed description of the datasets and their respective constraints are in Appendix G.

4.1 SYNTHETIC DATA QUALITY

Table 1: CVR for each model and dataset. Cases with
CVR≥50% are underlined. Best results are in bold.

URL CCS LCLD Heloc House

WGAN 22.8±4.9 44.7±7.1 47.5±14.5 80.6±9.3 100.0±0.0

TableGAN 8.5±2.2 61.2±13.3 32.0±4.7 59.9±16.7 100.0±0.0

CTGAN 9.7±2.0 78.5±5.7 7.1±1.3 56.6±9.8 100.0±0.0

TVAE 10.3±1.1 16.9±1.6 10.3±0.6 44.9±1.0 100.0±0.0

GOGGLE 7.3±8.1 60.3±6.8 70.4±16.1 52.7±6.3 100.0±0.0

All + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Background knowledge align-
ment. To assess how often the
samples violate the constraints,
we calculate the CVR, which
is defined as the percentage of
samples that violate at least one
constraint. Table 1 shows the
CVR for each unconstrained model
(first five rows) and our models
equipped with the DRL (last row).
More detailed findings are reported
in Appendix K (Table 8), where the results for sCVC and CVC can also be found (Tables 9, 10). As
expected, the models with our DRL always satisfy the constraints, while the samples obtained with
standard DGMs very often violate them. Additionally, in many cases, the CVR is extremely high:
out of 25 cases, 13 cases have CVR greater than 50% and 5 cases have CVR equal to 100%, thus
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Table 2: Efficacy comparison between the unconstrained DGMs, and their +DRL and +RS counter-
parts. The performance is measured using F1, wF1, and AUC, for each classification dataset.

F1 wF1 AUC

URL CCS LCLD Heloc URL CCS LCLD Heloc URL CCS LCLD Heloc

WGAN 0.794 0.303 0.139 0.665 0.796 0.330 0.296 0.648 0.870 0.814 0.605 0.717
+ RS 0.792 0.051 0.156 0.628 0.794 0.088 0.312 0.617 0.862 0.570 0.611 0.685
+ DRL 0.800 0.313 0.197 0.721 0.801 0.340 0.339 0.652 0.875 0.885 0.623 0.717

TableGAN 0.562 0.196 0.259 0.593 0.659 0.228 0.393 0.615 0.843 0.802 0.655 0.707
+ RS 0.544 0.138 0.251 0.568 0.648 0.172 0.389 0.599 0.854 0.682 0.653 0.685
+ DRL 0.619 0.163 0.269 0.628 0.693 0.196 0.401 0.628 0.865 0.742 0.657 0.709

CTGAN 0.822 0.145 0.247 0.736 0.799 0.159 0.379 0.675 0.859 0.914 0.651 0.744
+ RS 0.817 0.086 0.201 0.706 0.795 0.095 0.342 0.650 0.856 0.515 0.615 0.706
+ DRL 0.836 0.288 0.288 0.744 0.815 0.308 0.409 0.680 0.883 0.955 0.643 0.745

TVAE 0.810 0.325 0.185 0.717 0.802 0.351 0.330 0.686 0.863 0.858 0.631 0.750
+ RS 0.788 0.024 0.237 0.420 0.778 0.061 0.283 0.465 0.846 0.522 0.480 0.497
+ DRL 0.835 0.467 0.189 0.731 0.832 0.487 0.330 0.694 0.893 0.926 0.635 0.752

GOGGLE 0.622 0.039 0.248 0.596 0.648 0.076 0.296 0.566 0.742 0.549 0.551 0.600
+ RS 0.608 0.047 0.235 0.577 0.639 0.084 0.322 0.549 0.727 0.571 0.532 0.592
+ DRL 0.720 0.253 0.298 0.698 0.673 0.281 0.310 0.636 0.747 0.758 0.563 0.691

making the standard procedure of rejecting non-aligned samples unfeasible. Further, to visualise
the impact of DRL, we consider the features Price and Zipcode from the House dataset and create
the scatter plots of (i) the real data, and the synthetic data from (ii) the unconstrained DGMs, (iii)
the DGMs+LL, and (iv) the DGMs+DRL. We also highlight in red the regions that violate the
constraints: (i) if the Zipcode is 98004 or 98005 then the Price is greater than 400K USD and (ii)
if the Zipcode is between 98006 and 98008 then the Price exceeds 225K USD. The scatter plots
obtained for the real datapoints and TVAE (with and without LL and DRL) are shown in Figure 4,
while the ones obtained from the other models are given in Figure 6, Appendix M. The Figures
clearly show that standard DGMs and DGMs+LL fail to comply with the constraints, and indeed,
many of the samples fall in the red-shaded regions. On the contrary, the samples obtained using
DRL not only never violate the constraints, but also better match the real data distribution.

Machine Learning Efficacy. Table 2 shows that: (i) making the samples compliant with the
constraints via rejection sampling (RS) often reduces their machine learning efficacy (indicated
as DGMs+RS), and that (ii) adding DRL improves the performance of the unconstrained models
according to at least one metric in all cases but one (TableGAN over the CCS dataset). Regarding
the performance obtained with rejection sampling we can see that it decreases with respect to the
standard DGMs in 17, 17 and 17 out of 20 cases for F1, wF1 and AUC, respectively. Regarding the
performance of DGMs+DRL, the layer improves the performance w.r.t. the unconstrained models
in 19, 18 and 17 out of 20 cases for F1, wF1 and AUC, respectively. Additionally, the improvements
are often non-negligible. For F1, in more than half of the cases, the improvement is of at least 3.5%,
with the largest one recorded on GOGGLE for CCS of 21.4%. For wF1, in more than half of the
cases, the improvement is of at least 1.0%, with the largest improvement, of 20.5%, again recorded
on GOGGLE for CCS. And, for AUC, the improvement is at least 1.2% in half of the cases, with the
largest improvement, of 20.9%, recorded on GOGGLE for CCS. On the regression dataset, House,
we find a similar trend in terms of improvements brought by DRL (Appendix K,Table 14), where the
DGM+DRL models improve the performance w.r.t. the unconstrained models in all cases. We also
verify the statistical significance of the results following the recommendation of (Demsar, 2006).
We perform the Wilcoxon signed-rank test on the efficacy results for the classification datasets and
we obtain p-value < 0.01 w.r.t. the F1 and wF1 results and < 0.05 w.r.t. AUC, thus confirming that
DRL significantly improves the performances of DGMs.

4.2 LINEAR VS. QFLRA CONSTRAINTS

Background knowledge alignment. Table 4 shows the CVR for each DGM+LL model (first five
rows) and for the DGM+DRL models (last row). As expected, DGMs+LL cannot guarantee the
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Table 3: Efficacy comparison between the DGM+LL models and the models with DRL. The perfor-
mance is measured using F1, wF1, and AUC, for each classification dataset.

F1 wF1 AUC

URL CCS LCLD Heloc URL CCS LCLD Heloc URL CCS LCLD Heloc

WGAN+LL 0.803 0.359 0.183 0.694 0.799 0.383 0.330 0.662 0.869 0.857 0.608 0.732
WGAN+DRL 0.800 0.313 0.197 0.721 0.801 0.340 0.339 0.652 0.875 0.885 0.623 0.717

TableGAN+LL 0.612 0.169 0.232 0.638 0.695 0.203 0.373 0.633 0.868 0.794 0.640 0.704
TableGAN+DRL 0.619 0.163 0.269 0.628 0.693 0.196 0.401 0.628 0.865 0.742 0.657 0.709

CTGAN+LL 0.836 0.250 0.265 0.729 0.820 0.271 0.392 0.688 0.880 0.959 0.641 0.755
CTGAN+DRL 0.836 0.288 0.288 0.744 0.815 0.308 0.409 0.680 0.883 0.955 0.643 0.745

TVAE+LL 0.824 0.413 0.158 0.730 0.816 0.436 0.310 0.691 0.878 0.933 0.633 0.747
TVAE+DRL 0.835 0.467 0.189 0.731 0.832 0.487 0.330 0.694 0.893 0.926 0.635 0.752

GOGGLE+LL 0.787 0.233 0.284 0.723 0.749 0.262 0.310 0.663 0.802 0.765 0.554 0.719
GOGGLE+DRL 0.720 0.253 0.298 0.698 0.673 0.281 0.310 0.636 0.747 0.758 0.563 0.691

compliance with QFLRA constraints and in 5 out of 25 cases we see a CVR greater than 50%.
Moreover, we have one case where CVR is 100%, thus demonstrating the need for models that
support more expressive constraints. In Appendix L, Tables 15, 16, 17, we report the results for all
metrics: CVR, sCVC, and CVC.

Table 4: CVR for each DGM+LL model and dataset. Cases
with CVR≥50% are underlined. Best results are in bold.

URL CCS LCLD Heloc House

WGAN+LL 8.9±3.2 51.5±11.2 27.0±3.6 20.6±6.3 100.0±0.0

TableGAN+LL 3.6±0.8 54.0±17.8 11.3±0.9 26.6±7.7 23.9±2.7

CTGAN+LL 7.0±2.6 55.7±16.3 2.6±1.1 2.6±2.4 10.8±7.8

TVAE+LL 6.8±0.6 8.4±2.0 5.8±0.8 0.0±0.0 13.0±12.6

GOGGLE+LL 6.5±7.0 23.0±10.7 81.9±6.5 11.5±7.1 2.6±2.6

All + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Machine Learning Efficacy. For
the sake of completeness, in Table 3
we include the comparison between
DGMs+DRL and DGMs+LL on
the classification datasets. Since
Stoian et al. (2024) already re-
ported improvements over their un-
constrained counterpart by adding
the linear layer, as expected in this
scenario, we get more modest im-
provements than the ones w.r.t. the
unconstrained models. As we can see from the Table, the DGM+DRL models improve the efficacy
w.r.t. the DGMs+LL for at least one metric in 17 out of 20 cases. Similarly, the number of times
DGM+DRL outperforms the respective DGM+LL is lower than the number of times it outperforms
its unconstrained counterpart. Indeed, out of 20 comparisons, the models with DRL outperform their
linearly constrained counterparts 13, 10 and 11 times for F1, wF1, and AUC, respectively. Regard-
ing the regression dataset, House, Table 21 in Appendix L shows that the DGM+DRL models have
a comparable performance to the DGM+LL models, with 6 out of 10 the cases showing an improve-
ment in performance when using our layer. As in the previous experiment, we use the Wilcoxon
signed-rank test to assess whether adding DRL significantly improves over the linear layer. In this
case, we obtain p-value < 0.05 for F1, while as expected, the test confirms that the performances of
DGMs+DRL and DGMs+LL are not statistically different w.r.t. wF1 and AUC.

4.3 SAMPLE GENERATION TIME

Table 5: Sample generation time in seconds.

URL CCS LCLD Heloc House

DGM 0.15 0.08 0.07 0.06 0.05
DGM+RS 0.37 0.83 1.54 0.66 -
DGM+DRL 0.22 0.13 0.14 0.10 0.13

To assess the impact of constraints on sample gen-
eration time, we compare the runtimes of uncon-
strained DGMs, DGMs+DRL and DGMs+RS. We
generate 1,000 samples for each model and dataset
using five different seeds and report the average run-
time in Table 5 (for a detailed breakdown, see Ap-
pendix N, Table 22). As expected, DGMs+DRL are
slower on average than their unconstrained counterparts. However, they are faster than DGMs+RS.
Indeed, excluding extreme cases with 100% CVR (where we were unable to generate samples even
in 24h), in all other cases, DGMs+RS take more than twice as long as the unconstrained DGMs.
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5 RELATED WORK

Our work lies at the intersection of two fields: Neuro-symbolic AI and tabular data generation. Thus,
our related work section will mirror this duality.

Neuro-symbolic AI. Neuro-symbolic AI (Raedt et al., 2020; d’Avila Garcez & Lamb, 2023) refers
to the broad area of AI that combines the strengths of symbolic reasoning with neural networks. As
our work falls into the more specific field of injection of background knowledge into neural models,
(see, e.g., (Stewart & Ermon, 2017; Hoernle et al., 2022; Giunchiglia et al., 2024a; Daniele et al.,
2023; Calanzone et al., 2024)) we will focus the discussion on this topic. Many methods for this task
are based on the intuition that logical constraints can be transformed into differentiable loss function
terms that penalise the networks for violating them (see, e.g., (Xu et al., 2018; Badreddine et al.,
2022; Diligenti et al., 2012; Fischer et al., 2019)). As expected, since these methods operate at a loss
level, they give no guarantee that the constraints will be satisfied. Other works manage to integrate
neural networks and probabilistic reasoning through the mapping of predicates appearing in logical
formulae to neural networks (Manhaeve et al., 2018; Yang et al., 2020; Sachan et al., 2018; Pryor
et al., 2023; van Krieken et al., 2023). This allows these methods to both perform reasoning on the
networks’ predictions as well as constrain the output according to the background knowledge. The
most similar line of work to ours is the one where the constraints in input are automatically compiled
into neural layers (Giunchiglia & Lukasiewicz, 2021; Ahmed et al., 2022; Giunchiglia et al., 2024b).
However, these methods can compile and incorporate constraints that are at best as expressive as
propositional logic formulae. Focusing specifically on the incorporation of constraints on generic
generative models, we can find the work by Stoian et al. (2024), where the tabular generation process
was simply constrained by linear inequalities. If we consider different application domains, we can
find the work proposed by Misino et al. (2022), where ProbLog (Raedt et al., 2007) works in tandem
with variational-autoencoders, and the one by Liello et al. (2020), where the authors incorporate
propositional logic constraints on GANs for structured objects generation.

Tabular Data Generation. In recent years, various DGMs have been proposed to tackle the prob-
lem of tabular data synthesis. Many of these approaches are based on Generative Adversarial Net-
works (GANs), like TableGAN (Park et al., 2018), CTGAN (Xu et al., 2019), IT-GAN (Lee et al.,
2021), OCT-GAN (Kim et al., 2021), and PacGAN (Lin et al., 2018). Other methods try to reduce the
problems that often characterise GANs, such as mode collapse and unstable training, by introducing
Variational AutoEncoders (VAEs) based models, see, e.g., (Xu et al., 2018; Srivastava et al., 2017;
Wan et al., 2017). An alternative solution to such problems is given by the usage of denoising diffu-
sion probabilistic models as done in (Kotelnikov et al., 2023) or (Kim et al., 2023), where the authors
designed a self-paced learning method and a fine-tuning approach to adapt the standard score-based
generative modeling to the challenges of tabular data generation. Finally, GOGGLE (Liu et al.,
2022) uses graph learning to infer relational structure from the data and use it to their advantage
especially in data-scarce setting. Since synthetic tabular data are often used to replace the original
dataset to preserve privacy in sensitive settings, a parallel line of research revolves around the devel-
opment of DGMs with privacy guarantees. Examples of models that have such privacy guarantees
are PATEGAN (Yoon et al., 2020) and DP-CGAN (Torkzadehmahani et al., 2020).

6 CONCLUSIONS

In this paper, we have proposed Disjunctive Refinement Layer (DRL) the first-ever Neuro-symbolic
AI layer able to automatically compile constraints expressed as QFLRA formulas into a neural layer
and thus guarantee their satisfaction. This sort of work is really needed in the tabular data synthe-
sis field, as our experimental analysis shows that Deep Generative Models (DGMs) very frequently
generate datapoints that are not aligned with the background knowledge, with some extreme cases
where all the datapoints are violating the constraints. DRL presents many desirable properties: (i) it
can be seamlessly integrated into the topology of any neural network, (ii) it allows the backpropa-
gation of the gradients, (iii) it performs all the computations in a single forward pass (i.e., there are
no cycles), (iv) it optimally refines the original predictions and, last but not least, (v) it improves the
performance of all the tested DGMs in terms of machine learning efficacy. Indeed, in our experi-
mental analysis we got improvements for all datasets of up to 21.4%, 20.5%, and 20.9% in terms of
F1-score, weighted F1-score, and Area Under the ROC Curve, respectively.
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7 ETHICS STATEMENT

The development and application of synthetic data generation techniques, particularly in tabular
data, have the potential to significantly impact a wide range of sectors, including healthcare, fi-
nance, and social sciences. While our method, Disjunctive Refinement Layer (DRL), improves the
quality and fidelity of generated data by ensuring alignment with user-specified constraints, there
are ethical implications of synthetic data use. Firstly, there is the potential for misuse. Synthetic
data may be seen as a substitute for real-world data, but it should not be viewed as a perfect replace-
ment. Secondly, the use of synthetic data in automated decision-making systems poses risks for
fairness and bias. While DRL allows for the specification of constraints that align with real-world
domain knowledge, it is important that the user-specified constraints do not encode existing biases
or discrimination.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we included all the necessary details in the Appendix
of the paper. The proofs of the Lemmas and Theorems can be found in Appendices B, C, D, E,
and F, the detailed description of the datasets, the baseline models used (together with their links),
evaluation protocol for the machine learning efficacy metric, and the chosen hyperparameters can
be found in G, H, I, and J.
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Mihaela Cătălina Stoian is supported by the EPSRC under the grant EP/T517811/1. She has also re-
ceived support for this work through the G-Research Women in Quant Finance Grant and St Hilda’s
College Travel for Research and Study Grant. We also acknowledge the use of the Advanced Re-
search Computing (ARC) facilities of University of Oxford.

REFERENCES

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Se-
mantic probabilistic layers for neuro-symbolic learning. In Proceedings of Neural Information
Processing Systems, 2022.
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Figure 5: Visualisation of the considered types of DGMs and how to add DRL in their topology.

A DISJUNCTIVE REFINEMENT LAYER VISUALIZATIONS

In Figure 5 we give an overview on how to add DRL in the topology of the three types of models we
considered. In all figures we indicate with z a noise vector, with x a real datapoint from the original
dataset, with x̃ a sample generated with the DGM, and with DRL(x̃) the final sample obtained from
DRL. Considering each of the Figures, we can see that:

• Figure 5a shows that DRL needs to be added on top of the generator module in GAN-based
models,

• Figure 5b shows that DRL needs to be added after the decoder module in VAE-based mod-
els, and

• Figure 5c shows that DRL needs to be added after the generator module in GOGGLE-like
models.

In general, we can see that DRL can be added in many different DGMs, and it simply needs to be
added right after the sample x̃ is generated.

B PROOF OF LEMMA 3.1

Lemma. Let Π be a finite and satisfiable set of constraints in a single variable xi. For every sample
x̃, DRL(x̃) satisfies Π and is optimal wrt x̃.

Proof. We first prove that for every sample x̃, DRL(x̃)i always satisfies Π, and then that for every
sample x̃, DRL(x̃)i is the solution of Π with minimal Euclidean distance from x̃.

Suppose there exists a sample x̃ such that DRL(x̃) ̸∈ Ω(Π). This entails (i) that Π ̸= ∅ and (ii) that
x̃ ̸∈ Ω(Π). Since Π ̸= ∅ and Π is satisfiable, lΠi (x̃) ̸= −∞ or rΠi (x̃) ̸= +∞, and DRL(x̃)i = lΠi (x̃)
or DRL(x̃)i = rΠi (x̃). Since by definition lΠi (x̃) and rΠi (x̃) satisfy Π we reached a contradiction.

Assume x̃ ̸∈ Ω(Π) (otherwise we would have again DRL(x̃) = x̃ and the thesis would trivially
hold). Let d be the minimum Euclidean distance between any point in Ω(Π) and x̃. Let r and l be
the two samples with rk = lk = x̃k = DRL(x̃)k when k ̸= i and k ∈ {1, . . . , D}, ri = x̃i + d
and li = x̃i − d. Either r or l or both belong to Ω(Π). Let v be r if r ∈ Ω(Π), and l otherwise. By
definition, v ∈ Ω(Π) and is optimal wrt x̃. Assume v = l. Then, from the optimality of v, we have
that for every v′ with v′i ∈ (vi, x̃i + d), v′ ̸∈ Ω(Π). Hence, there must exist a constraint Ψ such that
vi = lΨi and thus vi = DRL(x̃)i. Analogously for the case v = r.

C PROOF OF LEMMA 3.2

Lemma. The CP resolution rule is sound: the premises entail the conclusion of the rule.

Proof. Consider the CP resolution rule (7), reported below for simplicity:∨m
j=1(w

′
jxi + φ′

j ≥ 0) ∨ Φ′ ∨n
k=1(wkxi + φk ≥ 0) ∨ Φ∨m

j=1

∨n
k=1(φk/wk − φ′

j/w
′
j ≥ 0) ∨ Φ ∨ Φ′ .
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with w′
1, . . . , w

′
m < 0 < w1, . . . , wn and m,n ≥ 1. We have to show that any model x̃ of the

premises is also a model of the conclusion. Assuming x̃ satisfies the premises and not (Φ ∨ Φ′)
(otherwise the thesis trivially holds), it must be the case that:

x̃i ≥
n

min
k=1
−x̃(φk/wk) and x̃i ≤

m
max
j=1
−x̃(φ′

j/wj),

where, given a linear expression φ, x̃(φ) is the application of x̃ to φ, i.e., the value obtained by
replacing each variable xj with x̃j in φ. The above is possible if and only if

n
min
k=1
−x̃(φk/wk) ≤

m
max
j=1
−x̃(φ′

j/wj),

i.e., there exist a pair (j, k) such that (−x̃(φk/wk) ≤ −x̃(φ′
j/wj)), and hence the thesis.

D PROOF OF LEMMA 3.3

Lemma. Let Π be a set of constraints in the variables x1, . . . , xi. Πi = Π and Πi−1 are equisatis-
fiable, and each assignment to the variables x1, . . . , xi−1 satisfying Πi−1 can be extended in order
to satisfy Πi.

Proof. Clearly, given the soundness of the CP resolution rule, if Πi is satisfiable, then also Πi−1 is
satisfiable (each constraint in Πi−1 and not in Πi is entailed by Πi).

It remains to show that if x̃:i is an assignment to the variables x1, . . . , xi−1 satisfying Πi−1, the
set of constraints x̃:i(Πi) is satisfiable. Similarly to the notation used in the proof of lemma 3.2 in
Appendix C, given a set of constraints Π, the expression x̃:i(Π) denotes the set of constraints in the
variable xi obtained by substituting each variable xj (j < i) with the corresponding value x̃:i

j in the
constraints in Π.

Assume x̃:i(Πi) is not satisfiable. Then, there exist two constraints Ψ and Ψ′ in x̃:i(Πi) equivalent
to (xi ≥ ri) and (xi ≤ li), respectively, and

1. either li < ri,

2. or li ≥ ri and there exists n ≥ 1 constraints {Ψ1,Ψ2, . . . ,Ψn} in x̃:i(Πi) with each
Ψj equivalent to (xi ≤ l

Ψj

i ) ∨ (xi ≥ r
Ψj

i ) and lΨ1
i , lΨ2

i , . . . , lΨn
i , rΨ1

i , rΨ2
i , . . . , rΨn

i such
that lΨ1

i < ri ≤ rΨ1
i , lΨ2

i < rΨ1
i ≤ rΨ2

i , . . . , lΨn
i < r

Ψn−1

i ≤ li < rΨn
i and thus

lΨ1
i < ri ≤ li < rΨn

i .

However, li < ri is not possible because CPresi(Ψ,Ψ′) belongs to x̃:i(Πi−1) and is equivalent to
(ri ≤ li). Regarding the second case, x̃i(Π ++

i ) contains the constraints ( ≡ denotes logical equiva-
lence)

Υ1 = CPresi(Ψ,Ψ1) ≡ (xi ≥ rΨ1
i ) ∨ (ri ≤ lΨ1

i ) ≡ xi ≥ rΨ1
i ,

Υ2 = CPresi(Υ1,Ψ2) ≡ (xi ≥ rΨ2
i ) ∨ (rΨ1

i ≤ lΨ2
i ) ≡ xi ≥ rΨ2

i ,

. . . ,

Υn = CPresi(Υn−1,Ψn) ≡ xi ≥ rΨn
i ,

and thus x̃:i(Πi−1) contains CPresi(Υn,Ψ
′) ≡ rΨn

i ≤ li, thus reaching a contradiction.

E PROOF OF THEOREM 3.5

Theorem. Let Π be a finite and satisfiable set of constraints. For any sample x̃ and variable
ordering, the corresponding sample DRL(x̃) satisfies Π.

Proof. We prove the statement by induction over the number n of variables appearing in Π.

Let n = 0. In this case Π is satisfied by any sample x̃, and DRL(x̃) = x̃.
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Let n > 1. Let xi be the last variable in the ordering occurring in Π. Since Πi−1 contains (n − 1)

variables, DRL(x̃) satisfies Πi−1 by the inductive hypothesis. From Lemma 3.3 we know that Π̃i is
satisfiable, and hence the thesis follows from Lemma 3.1.

F PROOF OF THEOREM 3.6

Theorem. Let Π be a finite and satisfiable set of constraints. For any sample x̃ and variable
ordering, the corresponding sample DRL(x̃) is optimal wrt x̃, Π and the variable ordering.

Proof. We prove the statement by induction over the number n of variables occurring in Π.

Let n = 0. In this case Π is satisfied by any sample x̃, and DRL(x̃) = x̃.

Let n > 1. Let xi be the last variable in the ordering occurring in Π. Since Πi−1 contains only
the variables x1, x2, . . . xi−1, we know that for any sample x̃, DRL(x̃) is optimal with respect to x̃,
Πi−1 and the variable ordering for the inductive hypothesis. From Lemma 3.3 we know that Π̃i is
satisfiable. From Lemma 3.1 we know that for every x̃, DRL(x̃) is optimal wrt to x̃ and Π̃i, and
hence the thesis.

G DATASETS

Below we provide a brief description for each dataset and the links to the pages where they can be
downloaded.

• URL3 (Hannousse & Yahiouche, 2021) is used to perform webpage phishing detection
with features describing statistical properties of the URL itself as well as the content of the
page.

• CCS4 is used to identify individuals at high risk of cervical cancer from features describing
the patients’ demographic and medical history, including age, sexual behavior, contracep-
tive use, and various medical test results.

• LCLD5 is used to predict whether the debt lent is unlikely to be collected from features
related to the loan as well as client history. In particular, we use the feature-engineered
dataset from Simonetto et al. (2022), inspired from the LendingClub loan data.

• HELOC6 is a dataset from FICO used to predict whether customers will repay their credit
lines within 2 years from features related to the credit line and the client’s history.

• House7 was used to predict the prices of houses in King County (USA) and contains data
collected from May 2014 to May 2015. The features describe various features of the sold
houses, including the date of sale, house prices, the number of bedrooms and bathrooms,
square footage, condition, grade, year built, and location, among others.

For each dataset above, Table 6 shows the number of samples in the train, validation and test parti-
tions, along with the number of features and the number of constraints. Regarding the constraints,
they were already included in some of the original datasets. This is true for URL, Heloc and LCLD.
Regarding CCS and House, we manually annotated the constraints using our background knowledge
about the problem, then we checked whether the data were compliant with our constraints and fi-
nally we retained only those constraints that were satisfied by all the datapoints. Simple examples of
these constraints (from CCS) state simple facts like “if the feature capturing the number of cigarettes
packs per day is greater than 0 then the feature capturing whether the patient smokes or not should
be equal to 1” or “the feature representing the age should always be higher than the age at the first
intercourse”.

3Link to dataset: https://data.mendeley.com/datasets/c2gw7fy2j4/2
4Link to dataset:https://www.kaggle.com/datasets/ranzeet013/cervical-cancer-dataset/data
5Link to dataset: https://figshare.com/s/84ae808ce6999fafd192
6Link to dataset: https://huggingface.co/datasets/mstz/heloc
7Link to dataset: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction/data
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Table 6: Dataset statistics.

Dataset # Train # Val # Test # Features # Constraints Task (# classes)

URL 7K 2K 2K 64 18 Binary classification
CCS 1K 0.02K 0.15K 36 12 Binary classification
LCLD 494K 199K 431K 29 16 Binary classification
Heloc 8K 2K 0.2K 24 12 Binary classification
House 17K 0.5K 4K 20 13 Regression

H MODELS

Below we give a brief description of each of the models used in our experimental analysis:

• WGAN (Arjovsky et al., 2017): it is a GAN based model which has been trained by using
the Wasserstein distance as a loss, which improves the stability of learning.

• TableGAN (Park et al., 2018): is a GAN-based model designed for generating realistic
tabular data. It uses a convolutional neural network (CNN) as a discriminator to better the
capture dependencies among features.

• CTGAN (Xu et al., 2019): is again a GAN-based model which uses a conditional gener-
ator to model feature distributions and applies a mode-specific normalisation technique to
improve the generation of imbalanced categorical data.

• TVAE (Xu et al., 2019): uses a variational autoencoder architecture to capture both continu-
ous and categorical feature distributions, learning a probabilistic latent space representation
of the data. By optimising the evidence lower bound, it balances reconstruction accuracy
and regularisation.

• GOGGLE (Liu et al., 2022): uses a VAE framework combined with a graph neural network,
which allows the model to learn complex feature relationships by representing the data as a
graph, where each node corresponds to a feature, and edges capture dependencies between
features.

I EFFICACY EVALUATION PROTOCOL

In order to evaluate the efficacy of the models, we closely follow the protocol outlined in (Kim et al.,
2023). For clarity, we describe the protocol below.

First, we generate a synthetic dataset and split it into training, validation, and test sets, maintaining
the same proportions as in the real dataset. Next, we conduct a hyperparameter search using the
synthetic training set to train various classifiers and regressors. Specifically, for the classification
datasets (i.e., URL, CCS, LCLD, Heloc), we use the following classifiers: AdaBoost (Schapire,
2013), Decision Tree (Wu et al., 2008), Logistic Regression (Cox, 1958) Multi-layer Perceptron
(MLP) (Haykin, 1994), Random Forest (Ho, 1995), and XGBoost (Chen & Guestrin, 2016). For the
regression dataset (i.e., House), we use: Linear Regression, MLP, Random Forest regressors, and
XGBoost. Across all classifiers and regressors, we use the same hyperparameter settings as those in
Table 26 of (Kim et al., 2023). Then, based on the F1-score obtained on the real validation set, we
select the best hyperparameter configuration. As a last step, we evaluate the selected models on the
real test set and average the performance across all classifiers/regressors. The results for all models
are reported using three metrics (i.e., F1-score, weighted F1-score, and the Area Under the ROC
Curve) for the classification datasets, and two metrics (i.e., Mean Absolute Error and Root Mean
Square Error) for the regression dataset.

We run the entire process five times for each model, then compute the average results for each metric
individually across the repetitions.
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Table 7: Best hyperparameter settings used for DGMs (and also for DGMs+LL and DGMs+DRL)
in our experiments.

Model/Dataset Hyperparameter URL CCS LCLD Heloc House

WGAN

Batch size 510 256 510 510 510
Optimiser Adam Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001 0.0002
Epochs 150 1250 15 150 100
Discriminator iters 5 5 5 5 1
LL Ordering Corr KDE Rnd Corr Rnd
DRL Ordering Rnd Rnd KDE Rnd KDE

TableGAN

Batch size 128 128 510 128 256
Optimiser Adam Adam Adam Adam Adam
Learning rate 0.001 0.0002 0.01 0.001 0.0001
Epochs 300 2000 20 200 50
LL Ordering Corr KDE KDE Corr KDE
DRL Ordering KDE KDE KDE Corr Rnd

CTGAN

Batch size 500 70 500 500 500
Optimiser Adam Adam Adam Adam Adam
Learning rate 0.0002 0.001 0.0002 0.0002 0.0002
Epochs 150 1000 20 500 150
LL Ordering KDE KDE KDE Corr Rnd
DRL Ordering KDE Corr Corr Corr Rnd

TVAE

Batch size 70 70 500 500 70
Optimiser Adam Adam Adam Adam Adam
Learning rate 0.0002 0.0001 0.00001 0.000005 0.0002
Epochs 150 1500 40 150 150
Loss factor 2 2 4 2 2
LL Ordering KDE Rnd Corr KDE Rnd
DRL Ordering Rnd Rnd Corr Corr KDE

GOGGLE

Batch size 128 32 128 64 64
Optimiser Adam Adam Adam Adam Adam
Learning rate 0.005 0.01 0.001 0.001 0.01
Epochs 1000 500 60 1000 400
Threshold 0.1 0.2 0.2 0.1 0.2
Patience 50 50 50 50 50
LL Ordering KDE Rnd Rnd Rnd Rnd
DRL Ordering Rnd Rnd Rnd Rnd Rnd

J HYPERPARAMETER SEARCH

We carried out an extensive hyperparameter search to identify the optimal configurations for each
DGM. We selected these configurations based on the efficacy performance: for the classification
datasets (i.e., URL, CCS, LCLD, and Heloc), we used the average of the F1-score, weighted F1-
score, and Area Under the ROC Curve (AUC), whereas for the regression dataset (i.e., House), we
used the average of the Mean Absolute Error and Root Mean Square Error.

For clarity, we describe the hyperparameter search space below, for each of the considered models.
For the GOGGLE model, we adopted the same optimiser and learning rate settings as in (Liu et al.,
2022). Specifically, we used the Adam optimizer (Kingma & Ba, 2015) with five learning rates:
1× 10−3, 5× 10−3, 1× 10−2. Additionally, we experimented with a set of values for the threshold
parameter: {1× 10−1, 2× 10−1}. For the TVAE model, Adam was used again, but with a different
set of five learning rates: 5× 10−6, 1× 10−5, 1× 10−4, 2× 10−4, 1× 10−3. For the other three
models (i.e., WGAN, TableGAN, and CTGAN), we tested three different optimisers: Adam, RM-
SProp (Hinton, 2014), and SGD (Ruder, 2016), each paired with its own set of learning rates, as
follows:
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Table 8: Constraint violation rate (CVR) for each unconstrained DGM model and each dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear

WGAN 17.9±5.0 15.0±5.6 28.5±16.3 69.1±8.6 100.0±0.0

TableGAN 5.4±1.4 14.5±3.6 19.1±3.7 45.6±16.3 100.0±0.0

CTGAN 3.8±1.3 56.1±7.5 1.9±1.1 55.8±10.2 100.0±0.0

TVAE 3.0±0.7 8.6±1.9 3.9±0.5 44.8±1.0 100.0±0.0

GOGGLE 47.3±6.9 42.5±3.9 16.5±13.2 47.3±6.9 99.9±0.1

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN 8.6±1.7 38.3±10.0 26.8±5.2 47.3±15.5 74.2±4.4

TableGAN 3.9±1.4 56.1±14.4 16.0±3.5 33.8±14.7 73.7±14.8

CTGAN 6.3±1.0 58.8±6.4 5.3±0.8 1.7±1.4 42.8±23.1

TVAE 7.6±0.7 11.8±0.7 6.6±0.5 0.0±0.0 52.7±24.7

GOGGLE 2.0±2.8 37.1±15.8 65.3±15.8 35.2±4.2 20.4±20.5

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

• WGAN: Adam: {1×10−4, 2×10−4, 1×10−3}, RMSProp: {5×10−5, 1×10−4, 1×10−3},
SGD: {1× 10−4, 1× 10−3}

• TableGAN: Adam: {5 × 10−5, 1 × 10−4, 2 × 10−4, 1 × 10−3, 1 × 10−2}, RMSProp:
{1× 10−4, 2× 10−4, 1× 10−3}, SGD: {1× 10−4, 1× 10−3}

• CTGAN: Adam: {5 × 10−5, 1 × 10−4, 2 × 10−4, 1 × 10−3}, RMSProp: {1 × 10−4, 2 ×
10−4, 1× 10−3}, SGD: {1× 10−4, 1× 10−3}

Additionally, we explored various batch sizes for each model:

• WGAN: {64, 128, 256, 510}
• TableGAN: {128, 256, 510}
• CTGAN and TVAE: {70, 280, 500}
• GOGGLE: {32, 64, 128}

We did not separately tune our DGM+DRL models, nor the DGM+LL models. However, for each
of the DGM+DRL and DGM+LL models, we ran three versions corresponding to three different
ways of ordering the variables that decided the order in which the layers (LL and DRL) change the
values of the features. More precisely, we tried: (i) a random (Rnd) ordering, (ii) the correlation
(Corr)-based ordering. (iii) the Kernel Density Estimation (KDE)-based ordering. The last two
orderings are proposed by Stoian et al. (2024), and are defined in the Appendix of their paper. For
completeness, we also define them here. The Corr-based ordering is computed as follows: for each
feature, the absolute difference is taken between the pairwise feature correlations (with respect to
all other features) of samples generated by the unconstrained DGM and the real data. The features
are then ranked in ascending order based on these scores. This ensures that features with the most
similar correlations between the generated and real data are prioritised by DRL (and LL) first. The
KDE-based ordering is computed by first fitting a Kernel Density Estimator (KDE) on the real data
and estimating the log-likelihood for each real and synthetic sample. In a discrete setting, regardless
of the variable domains, two marginal probability mass functions are approximated for each variable
using the real and synthetic data, respectively. The variables are then ranked by computing the
Kullback-Leibler divergence between these two and sorting the results in ascending order. We then
selected the best ordering separately for each DGM+DRL and DGM+LL model. In Table 7, we
report the optimal hyperparameter configurations, which we use in all experiments presented in our
paper that involve the DGM, DGM+LL and DGM+DRL models.

K SYNTHETIC DATA QUALITY.

Background knowledge alignment. In addition to the CVR metric reported in the main paper,
we also compute the samplewise constraints violation coverage (sCVC) and the constraint violation
coverage (CVC), where sCVC indicates the average percentage of constraints violated per sample,
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Table 9: Samplewise constraints violation coverage (sCVC) for each unconstrained DGM model
and each dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear

WGAN 2.2±0.6 7.9±2.9 15.1±9.4 14.3±2.5 50.0±0.0

TableGAN 0.7±0.2 7.5±1.9 9.8±1.9 9.0±3.3 50.0±0.0

CTGAN 0.5±0.2 32.1±5.6 1.0±0.5 9.9±2.8 50.0±0.0

TVAE 0.4±0.1 4.4±1.0 2.0±0.3 7.4±0.2 50.0±0.0

GOGGLE 17.2±4.9 22.0±2.3 8.6±7.1 17.2±4.9 50.0±0.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN 0.9±0.2 5.3±1.7 2.2±0.5 11.5±4.4 7.0±0.4

TableGAN 0.4±0.1 6.8±1.9 1.5±0.3 7.9±3.7 6.7±1.3

CTGAN 0.6±0.1 8.0±1.2 0.4±0.1 0.3±0.3 3.9±2.1

TVAE 0.8±0.1 1.3±0.1 0.5±0.0 0.0±0.0 4.8±2.3

GOGGLE 0.2±0.3 5.0±2.1 10.0±3.4 7.1±0.9 1.9±1.9

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Table 10: Constraints violation coverage (CVC) for each unconstrained DGM model and each
dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear

WGAN 45.0±5.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

TableGAN 34.0±4.2 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

CTGAN 17.5±4.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

TVAE 12.5±0.0 100.0±0.0 100.0±0.0 99.4±1.3 100.0±0.0

GOGGLE 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN 50.0±0.0 40.0±0.0 28.0±1.3 80.0±0.0 34.9±2.4

TableGAN 53.6±3.8 40.0±0.0 51.3±3.9 80.0±0.0 36.4±0.0

CTGAN 56.4±5.0 40.0±0.0 22.3±2.2 55.2±6.6 34.9±3.3

TVAE 55.2±4.6 40.0±0.0 20.3±3.4 24.8±11.1 36.0±0.8

GOGGLE 28.4±21.3 40.0±0.0 49.1±8.1 48.8±15.6 33.3±5.2

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

across all samples, and CVC represents the percentage of constraints violated at least once by the
samples. In Tables 8, 9, and 10, we provide the CVR, sCVC, and CVC, respectively, for the
unconstrained DGM models, according to the two possible types: linear and disjunctive constraints.
Indeed, as constraints expressed as linear inequalities are a special case of the QFLRA constraints,
we have also partitioned the constraints between those that can be captured as linear inequalities and
those that cannot. Then, we checked how much each of the two partitions contributes to the high
CVR results, and found that in 13 (resp. 6) out of 25 cases, the CVR was greater than 25% (resp.
50%) on the constraints presenting disjunctions alone.

Efficacy. Tables 11, 12, 13 show the efficacy, along with the standard deviations from the mean, for
each unconstrained DGM model and the corresponding DGM+DRL models on every classification
dataset, using the F1, wF1, and AUC metrics, respectively. Similarly, in Table 14, we report MAE
and RMSE for each unconstrained DGM model and the corresponding DGM+DRL models on the
regression dataset (i.e., House).

L LINEAR VS. QFLRA CONSTRAINTS

Background knowledge alignment. In Tables 15, 16, and 17, we provide the CVR, sCVC,
and CVC, respectively, for the DGM+LL models, according to the two possible types: linear and
disjunctive constraints.
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Table 11: Efficacy comparison between the unconstrained DGM models and their DRL counterparts
in terms of F1. The performance, along with the standard deviation, is reported for each classification
dataset.

URL CC LCLD HELOC

WGAN 0.794±0.041 0.303±0.060 0.139±0.053 0.665±0.050

WGAN+RS 0.792±0.031 0.051±0.037 0.156±0.074 0.628±0.043

WGAN+DRL 0.800±0.011 0.313±0.127 0.197±0.060 0.721±0.027

TableGAN 0.562±0.051 0.196±0.037 0.259±0.011 0.593±0.058

TableGAN+RS 0.544±0.071 0.138±0.025 0.251±0.020 0.568±0.077

TableGAN+DRL 0.619±0.046 0.163±0.079 0.269±0.025 0.628±0.083

CTGAN 0.822±0.017 0.145±0.040 0.247±0.087 0.736±0.035

CTGAN+RS 0.817±0.008 0.086±0.016 0.201±0.066 0.706±0.014

CTGAN+DRL 0.836±0.004 0.288±0.116 0.288±0.013 0.744±0.020

TVAE 0.810±0.008 0.325±0.190 0.185±0.021 0.717±0.013

TVAE+RS 0.788±0.023 0.024±0.011 0.237±0.018 0.420±0.007

TVAE+DRL 0.835±0.009 0.467±0.100 0.189±0.022 0.731±0.009

GOGGLE 0.622±0.094 0.039±0.016 0.248±0.156 0.596±0.072

GOGGLE+RS 0.608±0.098 0.047±0.024 0.235±0.149 0.577±0.093

GOGGLE+DRL 0.720±0.086 0.253±0.144 0.298±0.153 0.698±0.023

Table 12: Efficacy comparison between the unconstrained DGM models and their DRL counter-
parts in terms of wF1. The performance, along with the standard deviation, is reported for each
classification dataset.

URL CC LCLD HELOC

WGAN 0.796±0.026 0.330±0.057 0.296±0.037 0.648±0.027

WGAN+RS 0.794±0.020 0.088±0.035 0.312±0.056 0.617±0.018

WGAN+DRL 0.801±0.014 0.340±0.122 0.339±0.049 0.652±0.036

TableGAN 0.659±0.035 0.228±0.035 0.393±0.010 0.615±0.030

TableGAN+RS 0.648±0.046 0.172±0.024 0.389±0.015 0.599±0.036

TableGAN+DRL 0.693±0.028 0.196±0.076 0.401±0.018 0.628±0.038

CTGAN 0.799±0.033 0.159±0.042 0.379±0.061 0.675±0.015

CTGAN+RS 0.795±0.014 0.095±0.019 0.342±0.054 0.650±0.009

CTGAN+DRL 0.815±0.011 0.308±0.118 0.409±0.007 0.680±0.011

TVAE 0.802±0.012 0.351±0.182 0.330±0.016 0.686±0.004

TVAE+RS 0.778±0.026 0.061±0.010 0.283±0.007 0.465±0.001

TVAE+DRL 0.832±0.014 0.487±0.096 0.330±0.014 0.694±0.006

GOGGLE 0.648±0.074 0.076±0.015 0.296±0.066 0.566±0.050

GOGGLE+RS 0.639±0.068 0.084±0.023 0.322±0.065 0.549±0.051

GOGGLE+DRL 0.673±0.039 0.281±0.139 0.310±0.057 0.636±0.020

Efficacy. Tables 18, 19, 20 show the efficacy, along with the standard deviations from the mean,
for each DGM+LL model and the corresponding DGM+DRL models on every classification dataset,
using the F1, wF1, and AUC metrics, respectively. Similarly, in Table 21, we report MAE and
RMSE for each unconstrained DGM+LL model and the corresponding DGM+DRL models on the
regression dataset (i.e., House).

M BACKGROUND KNOWLEDGE ALIGNMENT: A QUALITATIVE ANALYSIS

Figure 6 accompanies Figure 4 from the main body of our paper and shows the relevant sample
space for the same two constraints from the House dataset: if the Zipcode is 98004 or 98005 then
the Price is greater than 400K USD and if the Zipcode is between 98006 and 98008 then the Price
exceeds 225K USD. As we can see, in all cases, the unconstrained DGMs and the DGMs+LL fail to
comply with the constraints. Unlike the synthetic data from the unconstrained DGMs, the samples
generated using our DRL layer never cross into the areas that mark regions where datapoints violate
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Table 13: Efficacy comparison between the unconstrained DGM models and their DRL counter-
parts in terms of AUC. The performance, along with the standard deviation, is reported for each
classification dataset.

URL CC LCLD HELOC

WGAN 0.870±0.012 0.814±0.072 0.605±0.010 0.717±0.021

WGAN+RS 0.862±0.019 0.570±0.070 0.611±0.022 0.685±0.023

WGAN+DRL 0.875±0.007 0.885±0.050 0.623±0.023 0.717±0.029

TableGAN 0.843±0.020 0.802±0.044 0.655±0.011 0.707±0.007

TableGAN+RS 0.854±0.016 0.682±0.086 0.653±0.010 0.685±0.020

TableGAN+DRL 0.865±0.022 0.742±0.096 0.657±0.007 0.709±0.011

CTGAN 0.859±0.040 0.914±0.039 0.651±0.020 0.744±0.009

CTGAN+RS 0.856±0.010 0.515±0.083 0.615±0.031 0.706±0.014

CTGAN+DRL 0.883±0.009 0.955±0.022 0.643±0.019 0.745±0.008

TVAE 0.863±0.011 0.858±0.100 0.631±0.004 0.750±0.004

TVAE+RS 0.846±0.024 0.522±0.040 0.480±0.008 0.497±0.006

TVAE+DRL 0.893±0.010 0.926±0.039 0.635±0.002 0.752±0.003

GOGGLE 0.742±0.071 0.549±0.051 0.551±0.034 0.600±0.056

GOGGLE+RS 0.727±0.060 0.571±0.077 0.532±0.049 0.592±0.052

GOGGLE+DRL 0.747±0.029 0.758±0.091 0.563±0.027 0.691±0.039

Table 14: Efficacy performance comparison between DGM and DGM+DRL models trained on
House, using MAE and RMSE.

MAE RMSE

WGAN 547652.6±6.1 688130.1±4.8

WGAN+DRL 547637.5±17.4 688118.0±14.9

TableGAN 547655.3±5.9 688132.7±4.9

TableGAN+DRL 547653.6±22.8 688131.4±18.7

CTGAN 547652.9±2.7 688130.4±2.0

CTGAN+DRL 547642.9±18.1 688122.1±14.0

TVAE 547650.0±5.1 688128.5±4.2

TVAE+DRL 547645.4±31.8 688124.6±27.8

GOGGLE 547639.5±13.8 688119.6±11.5

GOGGLE+DRL 547633.9±16.0 688115.7±11.3

the constraints and, in addition, their distribution resembles more closely the real data in all five
cases.

In addition, we show a similar comparison but for a different dataset and different constraints.
Specifically, we consider the following two constraints from the URL dataset: if the Number of
Subdomains is less than 2 then the Hostname length is less than 30 and if the Number of Subdo-
mains is less than 3 then the Hostname length is less than 55. The two constraints capture the relation
between the two features (i.e., Number of Subdomains and Hostname length ) and, differently from
the two constraints from the House dataset mentioned above, their respective violation space inter-
sects, as shown in red in Figure 7. Nevertheless, our constrained models never violate any of the
constraints, unlike the unconstrained and DGM+LL models.

Finally, in order to show the unintended consequences of using rejection sampling, we visualise us-
ing t-SNE (van der Maaten & Hinton, 2008) the differences between the distributions of the samples
generated by the standard DGMs and by DGMs+RS (i.e, with rejection sampling). These visuali-
sations can be found in Figure 8. As we can see in the Figure, there can be cases where rejection
sampling actually creates some changes in the distribution, which can then affect the machine learn-
ing efficacy.
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Figure 6: Comparison of sample distributions between real data and synthetic data generated by the
unconstrained DGM models and their corresponding DGM+LL and DGM+DRL models, using the
Zipcode and Price features from the House dataset. In order (from the top to the bottom row), the
DGM models used in the plots are: WGAN, TableGAN, CTGAN, TVAE, and GOGGLE. The areas
in red indicate regions where samples violate the constraints on the given features.
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Figure 7: Comparison of sample distributions between real data and synthetic data generated by
the unconstrained DGM models and their corresponding DGM+LL and DGM+DRL models, using
the No. subdomains and Hostname length features from the URL dataset. In order (from the top
to the bottom row), the DGM models used in the plots are: WGAN, TableGAN, CTGAN, TVAE,
and GOGGLE. The areas in red indicate regions where samples violate the constraints on the given
features.
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Table 15: Constraint violation rate (CVR) for each DGM+LL model and dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear All models + LL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN+LL 8.9±3.2 51.5±11.2 27.0±3.6 20.6±6.3 100.0±0.0

TableGAN+LL 3.6±0.8 54.0±17.8 11.3±0.9 26.6±7.7 23.9±2.7

CTGAN+LL 7.0±2.6 55.7±16.3 2.6±1.1 2.6±2.4 10.8±7.8

TVAE+LL 6.8±0.6 8.4±2.0 5.8±0.8 0.0±0.0 13.0±12.6

GOGGLE+LL 6.5±7.0 23.0±10.7 81.9±6.5 11.5±7.1 2.6±2.6

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Table 16: Samplewise constraints violation coverage (sCVC) for each DGM+LL model and each
dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear All models + LL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN+LL 0.9±0.4 6.9±1.1 2.2±0.4 4.2±1.4 9.1±0.0

TableGAN+LL 0.4±0.1 6.5±2.3 1.0±0.1 5.9±1.7 2.2±0.3

CTGAN+LL 0.7±0.3 7.0±2.1 0.2±0.1 0.5±0.5 1.0±0.7

TVAE+LL 0.7±0.1 0.9±0.2 0.4±0.1 0.0±0.0 1.2±1.2

GOGGLE+LL 0.7±0.7 2.6±1.4 11.2±2.1 2.3±1.4 0.2±0.2

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

N SAMPLE GENERATION TIME

As we can see from Table 22, the DGM+DRL models bring additional time to the sample gener-
ation runtimes. However, this is often much smaller than the additional time required to use an
unconstrained model and then doing rejection sampling. Indeed, the largest runtime difference reg-
istered between a unconstrained DGM and its constrained counterpart is of only 0.12 seconds (i.e.,
for CTGAN on the URL and LCLD datasets). Notably, in 20 out of 25 cases, the overhead for the
DGM+DRL models is less than 0.1 seconds. On the other hand, for the DGM+RS models, the sam-
ple generation procedure timed out after 24h for all the models tested on the House dataset (where
we had 100% CVR). The registered times are also not very promising for any of the other datasets
when using DGM+RS, where the minimum absolute difference registered equals 0.07 seconds and
the maximum equals 5.55 seconds (notice that no DGM nor DGM+DRL model has sampling time
above 0.29 seconds).

O REAL DATA PERFORMANCE

In Table 25 we report the average F1-score, weighted F1-score and Area Under the ROC Curve
obtained by training the same six classifiers (resp. four regressors) on the four real classification
datasets (resp. real regression dataset). This allows us to compare the machine learning efficacy
of the synthetic data with one of the real data. As we can see from the results, the synthetic data
generated with all the DGMs (unconstrained, +LL and +DRL) manage to obtain very good results.
In multiple occasions, the models trained on the synthetic data not only get results comparable with
the ones obtained with the real data, but actually perform better than them. In spite of this, the
classification models trained on synthetic data never manage to get better performance than those
trained on the real data for all metrics. On the other hand, the regressors trained on the synthetic
version of the House dataset always manage to get lower MAE and RMSE, no matter the DGM used
to generate the synthetic data (with the exception of TVAE+LL which got slightly higher MAE than
the one obtained with the real data).
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Table 17: Constraints violation coverage (CVC) for each DGM+LL model and each dataset.

Constraint Type Model/Dataset URL CCS LCLD Heloc House

Linear All models + LL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Disjunctive

WGAN+LL 50.0±0.0 40.0±0.0 28.0±1.3 79.2±1.8 13.1±4.1

TableGAN+LL 54.0±4.7 30.0±0.0 27.3±0.0 84.8±11.1 36.7±0.8

CTGAN+LL 52.8±2.3 30.0±0.0 25.4±2.7 41.6±12.8 32.7±5.0

TVAE+LL 51.2±1.1 29.2±1.8 22.6±0.6 20.8±14.3 32.0±4.6

GOGGLE+LL 33.6±12.4 27.5±5.0 46.2±0.0 28.0±16.7 17.6±1.0

All models + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0 ±0.0

Table 18: Efficacy comparison between the DGM+LL models and their DRL counterparts in terms
of F1. The performance, along with the standard deviation, is reported for each classification dataset.

URL CC LCLD HELOC

WGAN+LL 0.803±0.038 0.359±0.096 0.183±0.094 0.694±0.033

WGAN+DRL 0.800±0.011 0.313±0.127 0.197±0.060 0.721±0.027

TableGAN+LL 0.612±0.111 0.169±0.044 0.232±0.026 0.638±0.061

TableGAN+DRL 0.619±0.046 0.163±0.079 0.269±0.025 0.628±0.083

CTGAN+LL 0.836±0.002 0.250±0.081 0.265±0.040 0.729±0.027

CTGAN+DRL 0.836±0.004 0.288±0.116 0.288±0.013 0.744±0.020

TVAE+LL 0.824±0.004 0.413±0.057 0.158±0.011 0.730±0.009

TVAE+DRL 0.835±0.009 0.467±0.100 0.189±0.022 0.731±0.009

GOGGLE+LL 0.787±0.014 0.233±0.180 0.284±0.123 0.723±0.018

GOGGLE+DRL 0.720±0.086 0.253±0.144 0.298±0.153 0.698±0.023

P COMPARISON BETWEEN DGMS+DRL AND LLM-BASED TABULAR DATA
GENERATION

Table 23: CVR for each model and dataset. Cases with
CVR≥50% are underlined. Best results are in bold.

URL CCS LCLD Heloc House

GreAT 0.7±0.2 98.0±0.3 1.1±0.1 9.60±0.5 15.7±1.4

All + DRL 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

A recent trend in the tabular data
generation field has been to use
LLMs to perform the task. While
these models are very promising,
they are also not exempt from
the problems that affect the other
DGMs. In this section we thus
compare the performance of the
standard DGMs equipped with our DRL and GreAT (Borisov et al., 2023), a state-of-the-art LLM-
based tabular data generator. For all datasets considered, GreAT was trained and run on an A100
GPU with 40GB of RAM, using the pre-defined hyperparameters.

Firstly, in Table 23, we report the CVR obtained with GreAT and with all the models+DRL. As we
can see from the Table, even though in two out of five cases GreAT manages to get a very low CVR,
for CCS its CVR shoots up to 98.0%. As CCS is by far our smallest dataset (with only 1K datapoints
in the training set), this hints to the fact that LLM-based models struggle to learn the distribution
from datasets with few datapoints.

Table 24: Sample generation time in seconds.

URL CCS LCLD Heloc House

GreAT 51.8 28.4 22.3 26.3 14.4

DGM+DRL 0.22 0.13 0.14 0.10 0.13

Secondly, we generate 1,000 samples with
GreAT and we report the average runtime in
Table 24 together with the average sampling
time obtained with the DGMs+DRL. As we
can see from the Table, GreAT takes two or-
ders of magnitude longer to perform the sam-
pling than the average DGM+DRL model.
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Table 19: Efficacy comparison between the DGM+LL models and their DRL counterparts in terms
of wF1. The performance, along with the standard deviation, is reported for each classification
dataset.

URL CC LCLD HELOC

WGAN+LL 0.799±0.022 0.383±0.092 0.330±0.068 0.662±0.021

WGAN+DRL 0.801±0.014 0.340±0.122 0.339±0.049 0.652±0.036

TableGAN+LL 0.695±0.071 0.203±0.042 0.373±0.017 0.633±0.036

TableGAN+DRL 0.693±0.028 0.196±0.076 0.401±0.018 0.628±0.038

CTGAN+LL 0.820±0.008 0.271±0.083 0.392±0.030 0.688±0.010

CTGAN+DRL 0.815±0.011 0.308±0.118 0.409±0.007 0.680±0.011

TVAE+LL 0.816±0.008 0.436±0.055 0.310±0.011 0.691±0.007

TVAE+DRL 0.832±0.014 0.487±0.096 0.330±0.014 0.694±0.006

GOGGLE+LL 0.749±0.029 0.262±0.173 0.310±0.039 0.663±0.012

GOGGLE+DRL 0.673±0.039 0.281±0.139 0.310±0.057 0.636±0.020

Table 20: Efficacy comparison between the DGM+LL models and their DRL counterparts in terms
of AUC. The performance, along with the standard deviation, is reported for each classification
dataset.

URL CC LCLD HELOC

WGAN+LL 0.869±0.014 0.857±0.058 0.608±0.021 0.732±0.013

WGAN+DRL 0.875±0.007 0.885±0.050 0.623±0.023 0.717±0.029

TableGAN+LL 0.868±0.007 0.794±0.015 0.640±0.005 0.704±0.030

TableGAN+DRL 0.865±0.022 0.742±0.096 0.657±0.007 0.709±0.011

CTGAN+LL 0.880±0.007 0.959±0.027 0.641±0.015 0.755±0.007

CTGAN+DRL 0.883±0.009 0.955±0.022 0.643±0.019 0.745±0.008

TVAE+LL 0.878±0.007 0.933±0.036 0.633±0.003 0.747±0.007

TVAE+DRL 0.893±0.010 0.926±0.039 0.635±0.002 0.752±0.003

GOGGLE+LL 0.802±0.016 0.765±0.084 0.554±0.039 0.719±0.005

GOGGLE+DRL 0.747±0.029 0.758±0.091 0.563±0.027 0.691±0.039

Table 21: Efficacy performance comparison between DGM+LL and DGM+DRL models trained on
House, using MAE and RMSE.

MAE RMSE

WGAN+LL 547638.5±11.4 688118.2±11.0

WGAN+DRL 547637.5±17.4 688118.0±14.9

TableGAN+LL 547638.0±18.9 688118.3±17.9

TableGAN+DRL 547653.6±22.8 688131.4±18.7

CTGAN+LL 547642.3±14.6 688121.4±14.5

CTGAN+DRL 547642.9±18.1 688122.1±14.0

TVAE+LL 547658.1±9.8 688137.4±9.4

TVAE+DRL 547645.4±31.8 688124.6±27.8

GOGGLE+LL 547651.9±9.9 688129.6±8.4

GOGGLE+DRL 547633.9±16.0 688115.7±11.3

This difference is particularly striking given that GreAT was the only model requiring an A100
to run.

This analysis shows that not only LLM-based are still prone to the violation of the constraints, but
also that they require more powerful hardware and much longer time to sample.
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(a) (b)

(c) (d)

(e)

Figure 8: t-SNE visualisations of the distribution of the samples generated for the CCS dataset
by (i) WGAN and WGAN+RS in Figure 8a, (ii) TableGAN and TableGAN+RS in Figure 8b, (iii)
CTGAN and CTGAN+RS in Figure 8c, (iv) TVAE and TVAE+RS in Figure 8d, and (v) GOGGLE
and GOGGLE+RS in Figure 8e. Note that changes in distribution are marked with red contours.

29



Published as a conference paper at ICLR 2025

Table 22: Sample generation time (in seconds) for all DGMs and their respective DGM+DRL mod-
els and DGM+RS models (i.e, DGMs with rejection sampling), for all datasets. The hyphen indi-
cates timeout after 24h.

URL CCS LCLD Heloc House

WGAN 0.01 0.01 0.01 0.01 0.00
WGAN+RS 0.08 0.11 0.12 0.25 -
WGAN+DRL 0.08 0.07 0.08 0.04 0.09

TableGAN 0.21 0.10 0.09 0.10 0.07
TableGAN+RS 0.43 1.57 0.38 0.78 -
TableGAN+DRL 0.28 0.14 0.19 0.15 0.18

CTGAN 0.16 0.11 0.10 0.09 0.07
CTGAN+RS 0.45 1.71 0.37 1.01 -
CTGAN+DRL 0.28 0.19 0.22 0.14 0.16

TVAE 0.14 0.08 0.07 0.06 0.05
TVAE+RS 0.37 0.31 1.08 0.96 -
TVAE+DRL 0.25 0.16 0.20 0.11 0.14

GOGGLE 0.22 0.08 0.08 0.06 0.06
GOGGLE+RS 0.48 0.35 5.63 0.25 -
GOGGLE+DRL 0.29 0.14 0.11 0.09 0.16

Table 25: Efficacy scores calculated on real data. For classification datasets URL, CCS and LCLD,
we used F1-score, weighted F1-score and Area Under the Curve to measure the performance, while
for the regression dataset House, we used the Mean Absolute Error metrics and the Root Mean
Square Error.

F1 wF1 AUC MAE RMSE

URL 0.884±0.007 0.875±0.014 0.903±0.009 - -
CCS 0.529±0.011 0.547±0.011 0.948±0.010

LCLD 0.171±0.030 0.316±0.013 0.645±0.007 - -
Heloc 0.772±0.003 0.662±0.011 0.707±0.008 - -
House - - - 547655.7±38.2 688133.1±30.8
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