
Appendices for PLUGIn: A simple algorithm for inverting generative

models with recovery guarantees

A Some Results on Gaussian Matrices

Here we state some results on Gaussian Matrices, which will be used in the proofs later.
Lemma 2 ([21, 22]). Let � : R ! R be a positively homogeneous activation function. Let

A 2 Rm⇥n
have i.i.d. N

�
0, 1

m

�
entries. Then for any x 2 Rn

,

EA|
�(Ax) = �x,

where � := E g · �(g) with g ⇠ N (0, 1). In particular, � = 1
2 when � is ReLU.

Proof. Since � is positively homogeneous, we can assume (without loss of generality) x 2 Sn�1.
Denote by a

|
j the j-th row of A. Then

EA|
�(Ax) = E

mX

j=1

�(a|j x) aj = mE�(a|1x) a1 = E�(a|x) a

where a :=
p
ma1 ⇠ N (0, In). Take an orthogonal matrix U such that Ux = kxke1 = e1 where

e1 = (1, 0, . . . , 0)|. Note that by rotation invariance for standard Gaussian, Ua and a have the same
distribution N (0, In), thus

E�(a|x) a = E�(a|U|
e1)U

|
Ua = E�(a|e1)U|

a = U
|E�(a|e1)a = �U

|
e1 = �x.

The following theorem is the concentration of (Gaussian) measure inequality for Lipschitz functions.
Here we only state a one-sided version, though it is more commonly stated with a two-sided one, i.e.,
P (|f(g)� Ef(g)| � t)  2 exp

⇣
�t

2
/(2L2

f )
⌘

.

Theorem 2. Let f : Rn ! R be a Lipschitz function with Lipschitz constant Lf . Let g 2 Rn
be a

random vector with independent N (0, 1) entries. Then, for all t > 0,

P (f(g)� Ef(g) � t)  exp

 
� t

2

2L2
f

!
.

A proof of Theorem 2 can be found in [30, Chap. 8]. Based on this theorem, it is easy to prove the
following results.
Lemma 3. Let A 2 Rm⇥n

have i.i.d. N (0, 1) entries.

(a) For any fixed point s 2 Rn
, we have

P
⇣
kAsk �

p
mksk+

p
tksk

⌘
 e

�t/2
, 8t > 0.

(b) For any fixed k-dimensional subspace S ✓ Rn
, we have

P
⇣
kAkS �

p
m+

p
k +

p
t

⌘
 e

�t/2
, 8t > 0.

Proof. (a) Without loss of generality, assume ksk = 1. Then As ⇠ N (0, Im) and by Jensen’s
inequality, EkAsk 

p
EkAsk2 =

p
m. The result follows immediately from Theorem 2 (with

f(g) = kgk and g = As).

(b) Let U be an orthogonal matrix such that U|S = span{e1, . . . , ek} =: S0, then kAkS = kAUkS0 .
Also, since AU has the same distribution as A (by rotation invariance), we get

P
⇣
kAkS �

p
m+

p
k +

p
t

⌘
= P

⇣
kAkS0 �

p
m+

p
k +

p
t

⌘
.
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Notice that kAkS0 is the operator norm for a particular sub-matrix (obtained by taking first k-columns)
of A, so without loss of generality, we can assume k = n.

Let f(A) = kAk. Since |f(A)� f(A0)|  kA�A
0kF , f is 1-Lipschitz when viewed as a mapping

from Rmn to R. By Theorem 2,

P
⇣
f(A) � Ef(A) +

p
t

⌘
 e

�t/2
, 8t > 0.

The result follows since EkAk 
p
m+

p
n (see, e.g., [31, Section 7.3]).

B Preliminaries and Proof for Lemma 1

Preliminaries

For ↵ � 1, the  ↵-norm of a random variable X is defined as

kXk ↵ := inf{t > 0 : E exp(|X|↵/t↵)  2}.

We say X is sub-Gaussian if kXk 2 < 1 and sub-exponential if kXk 1 < 1. The  2 and  1

norms are also called sub-Gaussian and sub-exponential norms respectively. Loosely speaking, a
sub-Gaussian (or a sub-exponential) random variable has tail dominated by the tail of a Gaussian (or
an exponential) random variable.

For independent, mean zero, sub-exponential random variables X1, . . . , Xm, their sum concentrates
around zero. In particular, the following Bernstein’s Inequality [31, Section 2.8] holds:

P
 ���

mX

i=1

Xi

��� � t

!
 2 exp

"
�cmin

 
t
2

Pm
i=1 kXik2 1

,
t

maxi kXik 1

!#
.

The above inequality also suggests that
Pm

i=1 Xi has a mixed tail, i.e., a tail consisting of both a
sub-Gaussian part and a sub-exponential part. In our proof, we will use the following result from
generic chaining for mixed tail processes.
Theorem 3 (Theorem 3.5 [24]). If (Xt)t2T has a mixed tail with respect to metric pair (d1, d2), i.e.

P
�
|Xt �Xs| �

p
ud2(t, s) + ud1(t, s)

�
 2e�u

, 8u � 0.

Then there are constants c, C > 0 such that for any u � 1,

P
✓
sup
t2T

|Xt �Xt0 | � C(�2(T, d2) + �1(T, d1)) + c(
p
u�d2(T ) + u�d1(T ))

◆
 e

�u
.

Here t0 is any fixed point in T , �↵(T, d) is the �↵-functional and �di is the diameter given by

�di(T ) = sups,t2T di(s, t).

The �↵-functional of (T, d) is defined as

�↵(T, d) := inf
(Tn)

sup
t2T

1X

n=0

2n/↵d(t, Tn), (10)

where the infimum is taken with respect to all admissible sequences. A sequence (Tn)n�0 of subsets
of T is called admissible if |T0| = 1 and |Tn|  22

n

for all n � 1.

For our proof, we will use the following estimate on �↵(T, d), which involves the generalized
Dudley’s integral [32, 24].

�↵(T, d)  C(↵)

Z �d(T )

0
(logN(T, d, "))1/↵ d", (11)

where C(↵) is a constant depending only on ↵ and N(T, d, ") is the covering number, i.e., the smallest
number of balls (in metric d and with radius ") needed to cover set T .
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Proof for Lemma 1

We recall the statement of Lemma 1 below.
Lemma 1. Let � = ReLU. Fix w 2 Rn

and let A 2 Rm⇥n
have i.i.d. N

�
0, 1

m

�
entries. Define

Z(u, v;w) := hAu,�(Av)� �(Aw)i � 1
2 hu, v � wi .

Suppose T1, T2 are sets (not depending on A) such that

T1 = S1 \ Bn(0,↵) and T2 = S2 \ B(w,↵r)
for some q-dimensional (affine) subspaces S1,S2 ✓ Rn

and real numbers ↵, r > 0. Then for any

t � 1,

sup
u2T1
v2T2

|Z(u, v;w)|  C1↵
2
r

 r
q

m
+

q

m
+

r
t

m
+

t

m

!

with probability at least 1� e
�t

. Here C1 > 0 is an absolute constant.

Proof. First, we establish that Z(u, v;w) has a mixed tail.

Let a|i be the i-th row of A, then ai ⇠ N (0, In/m). For u 2 Bn(0,↵) and v 2 B(w,↵r), define
random variables

Z
i
u,v := hai, ui [�(hai, vi)� �(hai, wi)]� 1

2m hu, v � wi , i 2 [m].

We have EZi
u,v = 0 by Lemma 2, and

Zu,v :=
mX

i=1

Z
i
u,v = hAu,�(Av)� �(Aw)i � 1

2 hu, v � wi = Z(u, v;w).

For the increments of Zi
u,v , we have

Z
i
u,v � Z

i
u0,v0 = hai, ui�(a|i v)� 1

2m hu, vi � hai, u0i�(a|i v
0) + 1

2m hu0
, v

0i
� hai, u� u

0i�(a|i w) + 1
2m hu� u

0
, wi

= hai, ui�(a|i v)� 1
2m hu, vi �

⇥
hai, ui�(a|i v

0)� 1
2m hu, v0i

⇤

+
⇥
hai, ui�(a|i v

0)� 1
2m hu, v0i

⇤
� hai, u0i�(a|i v

0) + 1
2m hu0

, v
0i

� hai, u� u
0i�(a|i w) + 1

2m hu� u
0
, wi

= hai, ui [�(a|i v)� �(a|i v
0)]� 1

2m hu, v � v
0i

+ hai, u� u
0i [�(a|i v

0)� �(a|i w)]� 1
2m hu� u

0
, v

0 � wi

We can estimate its sub-exponential norm from Lemma 4, which gives

kZi
u,v � Z

i
u0,v0k 1  C2m

�1 (kukkv � v
0k+ ku� u

0kkv0 � wk)
 C2↵m

�1 (rku� u
0k+ kv � v

0k) .

By Bernstein’s inequality,

P (|Zu,v � Zu0,v0 | � t)  2 exp

✓
�cmin

✓
t
2

d
2
2

,
t

d1

◆◆

where the metrics di are given by

d
2
2 =

↵
2

m
(rku� u

0k+ kv � v
0k)2 and d1 =

↵

m
(rku� u

0k+ kv � v
0k) .

Therefore (Zu,v)(u,v)2T has a mixed tail with respect to the metric pair (Cd1, Cd2) for some absolute
constant C.

Next, we bound the supremum of Z(u, v;w). Without loss of generality, we will assume that q � 1.
(In fact, if q = 0, then T1, T2 are either empty set or singleton, in which case the result is trivial or
follows directly from Bernstein’s inequality).
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Denote T := T1 ⇥ T2 and define a metric d on T as

d ((u, v), (u0
, v

0)) := rku� u
0k+ kv � v

0k.

It is easy to see that d2 = ↵p
m
d and d1 = ↵

md. Also note that �i(T , td) = t�i(T , d) from definition
(10). We can assume that S1 is a subspace4, then Z0,v = 0 for v 2 T2. Thus by Theorem 3, we have

sup
(u,v)2T

|Zu,v| .
↵p
m
�2(T , d) +

↵

m
�1(T , d) +

p
t
4↵2

rp
m

+ t
4↵2

r

m

with probability at least 1� e
�t. It remains to estimate �i(T , d).

From (11) we have

�i(T , d)  C3

Z �d(T )

0
(logN(T , d, "))1/i d", i = 1, 2.

Let d`2 be the Euclidean metric. Note that one can always obtain a "-covering on T (with metric d)
from the product set of a "/2-covering on T1 (with metric rd`2 ) and a "/2-covering on T2 (with metric
d`2 ). Moreover, note that T1 is contained in a q-dimensional ball of radius ↵ and T2 is contained in a
q-dimensional ball of radius ↵r. Hence

N(T , d, ")  N (T1, rd`2 , "/2) ·N (T2, d`2 , "/2)
 N (↵Bq

, rd`2 , "/2) ·N (↵rBq
, d`2 , "/2)

= N

⇣
Bq

, d`2 ,
"

2↵r

⌘
·N
⇣
Bq

, d`2 ,
"

2↵r

⌘


✓
1 +

4↵r

"

◆2q

.

Here the last line uses estimate N(Bq
, d`2 , ") 

�
1 + 2

"

�q for the covering number of unit balls (see
e.g., [31, Section 4.2]).

Note the estimate5 R a
0 log

�
2a
x

�
dx = a(log 2 + 1) < 2a, we get

�1(T , d)  C3

Z 4↵r

0
2q log

✓
1 +

4↵r

"

◆
d"  2C3q

Z 4↵r

0
log

✓
8↵r

"

◆
d"  16C3↵rq.

Also note the inequality
p
log(1 + x) <

p
2 log(1 + x) for x � 1, we have

�2(T , d)  C3

Z 4↵r

0

p
2q log

1
2

✓
1 +

4↵r

"

◆
d"

 2C3
p
q

Z 4↵r

0
log

✓
1 +

4↵r

"

◆
d"

 2C3
p
q

Z 4↵r

0
log

✓
8↵r

"

◆
d"

 16C3↵r
p
q.

Therefore with probability at least 1� e
�t,

sup
(u,v)2T

|Zu,v|  C1↵
2
r

 r
q

m
+

q

m
+

r
t

m
+

t

m

!
.

4If S1 is an affine subspace, let q0 = q + 1 and let S 0
1 be the q0-dimensional subspace containing S1 (and

origin). One can proceed with S 0
1 and q0 for the proof. Finally, notice that

q
q0

m + q0

m  2
�p

q
m + q

m

�
, so this

will give the same result with only a different absolute constant. (In fact, in our application of Lemma 1 for the
multi-layer proof, S1 is chosen as range(Ai · · ·A1), which is always a subspace.)

5This comes from the indefinite integral
R
log

�
a
x

�
dx = x log

�
a
x

�
+ x+ C.
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Lemma 4. Let � = ReLU. For u, x, y 2 Rn
and g ⇠ N (0, In), the (mean zero) random variable

Z
g := hg, ui [�(g|x)� �(g|y)]� 1

2 hu, x� yi
has sub-exponential norm kZgk 1  C2kukkx� yk, where C2 is an absolute constant.

Proof. It is easy to see that Zg is mean zero from Lemma 2. Also from the following two properties
of  1, 2-norms (see [31, Section 2.7]):

kX � EXk 1 . kXk 1 and kXY k 1  kXk 2kY k 2 ,

we have (note that � is 1-Lipschitz)

kZgk 1 . k hg, ui k 2k�(g|x)� �(g|y)k 2 . k hg, ui k 2k hg, x� yi k 2 .

The result follows by noting that k hg, ui k 2 = kg1k 2kuk where g1 ⇠ N (0, 1).

C Proof for Theorem 1

Additional notations: We use PAi to denote that the probability is taken only with respect to
Ai. In neural network G : Rn0 ! Rnd , let Gi : Rn0 ! Rni be the mapping that corresponds to
the first i layers, i.e. Gi(x) = �(Ai . . .�(A1x) . . .). For its weight matrices, let Ã0 = In0 and
Ãi = AiAi�1 · · ·A1 for i 2 [d].

Proof of Theorem 1. First we write

x
k+1 � x

⇤ = ✓

⇣
x
k � x

⇤ � 2dÃ|
d [G(x

k)� y]
⌘
+ (1� ✓)(xk � x

⇤).

For any fixed r > 0, using triangle inequality and Lemma 5 (with events Ei defined as in Lemma 5)
we can conclude that if kxk � x

⇤k  r, then with probability at least 1� P(E1)� P(E2)� 2e�10n0 ,

kxk+1 � x
⇤k  ✓

2

✓
r + 30 · 2d

r
n0

nd
k✏k
◆
+ |1� ✓|r = ↵(r + �") (12)

where
↵ =

✓

2
+ |1� ✓|, � =

✓/2

|1� ✓|+ ✓/2
, " = 30 · 2d

p
n0/ndk✏k.

Now define a sequence {rk}k2N such that rk+1 = ↵(rk + �") and r0 = R. We can find its general
formula as follow:

rk+1 �
↵�

1� ↵
" = ↵

✓
rk � ↵�

1� ↵
"

◆
) rk = ↵

k

✓
R� ↵�

1� ↵
"

◆
+

↵�

1� ↵
".

Next, by induction on k (i.e., apply (12) with r = rk for k = 0, 1, 2, . . . ) we get

kxk � x
⇤k  rk  ↵

k
R+

↵�

1� ↵
", k 2 N. (13)

Notice that the events E1, E2 remain unchanged throughout iterations, so (13) holds with probability
at least 1� P(E1)� P(E2)� 2ke�10n0 .

Lastly, from Lemma 6 and Lemma 8 we know P(Ei)  3e�10n0 and kG(xk)�G(x⇤)k  3kxk�x
⇤k

on Ec
2 . This completes the proof.

Lemma 5. Fix r > 0 and assume assumptions A1-A4 hold. If kxk�x
⇤k  r, then after one iteration

according to (5) with step size ⌘ = 2d, we have

kxk+1 � x
⇤k  1

2

✓
r + 30 · 2d

r
n0

nd
k✏k
◆

with probability at least 1� P(E1)� P(E2)� 2e�10n0 .

Here E1, E2 are the events

E1 := {kÃ|
d✏k > 15

p
n0/ndk✏k} and E2 := {max(LÃi

, LGi) > 3 for all i 2 [d]}

where LGi and LÃi
denote the Lipschitz constants of Gi, Ãi : Rn0 ! Rni respectively.
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Proof. For x 2 Rn0 , denote x0 = x and xi = Gi(x) for i 2 [d]. Then

x
k+1 � x

⇤ = x
k � x

⇤ � 2dÃ|
d [G(x

k)� G(x⇤)� ✏]

= (xk
0 � x

⇤
0)� 2Ã|

1(x
k
1 � x

⇤
1)

+ 2Ã|
1

⇥
(xk

1 � x
⇤
1)� 2A|

2(x
k
2 � x

⇤
2)
⇤

+ . . .

+ 2d�1
Ã

|
d�1

⇥
(xk

d�1 � x
⇤
d�1)� 2A|

d(x
k
d � x

⇤
d)
⇤

+ 2dÃ|
d✏

thus we can write
kxk+1 � x

⇤k = sup
u2Sn0�1

2
�⌦
A1u, x

k
1 � x

⇤
1

↵
� 1

2

⌦
u, x

k
0 � x

⇤
0

↵�

+ 22
⇣D

A2Ã1u, x
k
2 � x

⇤
2

E
� 1

2

D
Ã1u, x

k
1 � x

⇤
1

E⌘

+ . . .

+ 2d
⇣D

AdÃd�1u, x
k
d � x

⇤
d

E
� 1

2

D
Ãd�1u, x

k
d�1 � x

⇤
d�1

E⌘

� 2d
D
u, Ã

|
d✏

E

 2dkÃ|
d✏k+

d�1X

i=0

2i+1 sup
u2Sn0�1

Zi+1

⇣
Ãiu, x

k
i

⌘

where
Zj(u, v) :=

⌦
Aju,�(Ajv)� �(Ajx

⇤
j�1)

↵
� 1

2

⌦
u, v � x

⇤
j�1

↵
, j 2 [d].

On event Ec
2 , 8i 2 [d� 1] we have

ÃiSn0�1 ✓ range(Ãi) \ Bni(0, 3) =: T i
1 ,

x
k
i 2 range(Gi) \ B(x⇤

i , 3r) =: T i
2 .

By Lemma 7, there are NGi many n0-dimensional affine subspaces {Si,j} such that

T i
2 ✓ [j2[NGi ]

T i
2,j where T i

2,j = Si,j \ B(x⇤
i , 3r) ✓ Rni and NGi  �i :=

iY

j=1

✓
enj

n0

◆n0

.

For i 2 [d� 1], apply Lemma 1 on T i
1 ⇥ T i

2,j followed by a union bound over j 2 [NGi ], we get

sup
T i
1 ⇥T i

2

Zi+1(u, v)  C1(9r)

✓r
n0

ni+1
+

n0

ni+1
+

r
ti+1

ni+1
+

ti+1

ni+1

◆

with probability (over Ai+1 and conditioning on {Aj}j2[i]) at least 1� �ie
�ti+1 .

Choose ti+1 = 2 log�i = 2n0
Pi

j=1 log(
enj

n0
), then we get

PAi+1

 
sup

T i
1 ⇥T i

2

Zi+1(u, v)  9C1r · 4

s
2 log�i

ni+1

!
� 1� e

� log�i , 8i 2 [d� 1].

Also for i = 0, applying Lemma 1 on Bn0(0, 1)⇥ B(x⇤
, r), we get

sup
u2Bn0 (0,1)
v2B(x⇤,r)

Z1(u, v)  C1r · 4
r

10n0

n1

with probability (over A1) at least 1� e
�10n0 .

Therefore under assumption A3 (with C0 � 160 · 722C2
1 ), we have

d�1X

i=0

2i+1 sup
u2Sn0�1

Zi+1

⇣
Ãiu, x

k
i

⌘
 r

72
+

d�1X

i=1

2i+1 · r
2

r
2

160 · 5i+1
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=
r

72
+

r

2
· 1

10

d�1X

i=1

✓
2p
5

◆i

<
r

2
· 1

10

1X

i=0

✓
2p
5

◆i

<
r

2

with probability at least 1� P(E2)� e
�10n0 �

Pd�1
i=1 e

� log�i .

The result follows by noting that (assume C0 � 160 · 722)

log�i = n0

iX

j=1

log

✓
enj

n0

◆
� n0i log(eC0) > 11n0i,

so
P

i�1 e
� log�i  e�11n0

1�e�11n0
< e

�10n0 . Also note that on Ec
1 ,

2dkÃ|
d✏k  15 · 2d

p
n0/ndk✏k.

Lemma 6. Under assumptions A2-A4, we have

P
✓
kA|

1A
|
2 · · ·A

|
d✏k � 15

r
n0

nd
k✏k
◆

 3e�10n0 .

Proof. Denote si := A
|
i+1 · · ·A

|
d✏ for i 2 [d� 1] and sd := ✏.

For i 2 [d], by Lemma 3(a) we have

PAi

�p
nikA|

i sik  p
ni�1ksik+

p
tiksik

�
� 1� e

�ti/2, 8ti > 0.

Choose t1 = 20n0 and tj = nj�1/4j�1 for j > 1, we get

PA1

✓
kA|

1s1k  (1 +
p
20)

r
n0

n1
ks1k

◆
� 1� e

�10n0 ,

PAi

✓
kA|

i sik  (1 + 2�i+1)

r
ni�1

ni
ksik

◆
� 1� e

�ni�1/4
i

, i > 1.

Thus with probability at least 1� e
�10n0 �

Pd
i=2 e

�ni�1/4
i

,

kA|
1A

|
2 · · ·A

|
d✏k 

⇣
1 +

p
20
⌘r

n0

n1
·

dY

i=2

✓
1 +

1

2i�1

◆r
ni�1

ni


⇣
1 +

p
20
⌘r

n0

nd
·

1Y

i=1

✓
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n0/nd

where the last inequality uses estimate6 Q1
i=1

�
1 + 1

2i

�
 e and (1 +

p
20)e < 15.

It remains to show
Pd

i=2 e
�ni�1/4

i  2e�10n0 for the desired probability bound. Note that by
assumption A3 (assume C0 � 40),

ni

4i+1
� 1

4
C0n0

i�1X

j=0

log

✓
enj

n0

◆
� 10n0 i.

Hence
dX

i=2

e
�ni�1/4

i


dX

i=2

e
�10n0(i�1)

<

1X

i=1

e
�10n0i =

e
�10n0

1� e�10n0
< 2e�10n0 .

6For ↵ > 0, estimate
P1

j=1 log
�
1 + ↵2�j

�


P1
j=1 ↵2

�j = ↵ holds, thus
Q1

j=1

�
1 + ↵

2j

�
 e↵.
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With ReLU (or positively homogeneous) activation functions, the range of neural network (in each
layer) is contained in a union of affine subspaces. The following lemma, which is based on ideas and
results in [11], gives a precise statement of this.
Lemma 7. Assume A1 and minj2[d]{nj} � n0, then for i 2 [d], range(Gi) is contained in a union

of affine subspaces. Precisely,

range(Gi) ✓ [j2[NGi ]
Si,j where NGi 

iY

j=1

✓
enj

n0

◆n0

.

Here each Si,j is some n0-dimensional affine subspace (which depends on {Al}l2[i]) in Rni .

Proof. The theory on hyperplane arrangements [25, Chapter 6.1] tells us that n hyperplanes in Rk

(assume n � k) partition the space Rk into at most
Pk

j=0

�n
j

�
regions7.

Also for k 2 [n],
kX

j=0

✓
n

j

◆


kX

j=0

n
j

j!


kX

j=0

k
j

j!

⇣
n

k

⌘j

⇣
n

k

⌘k 1X

j=0

k
j

j!
=
⇣
en

k

⌘k
.

So consider range(G1) = {�(A1x) : x 2 Rn0}. Denote by a
1
j (j 2 [n1]) the rows of A1 and let

H be the set of hyperplanes H := [j2[n1]{x :
⌦
a
1
j , x
↵
= 0}. Then H partitions Rn0 into at most

(en1/n0)n0 regions. Note that � is linear in each of these regions (thus the mapping G1 is linear
in each region), so range(G1) is contained in at most (en1/n0)n0 many n0-dimensional (affine)
subspace.

The result then follows by induction.

The following lemma shows that the network G in our model is Lipschitz with high probability. This
may be an interesting result on its own.
Lemma 8. For mappings Gi, Ãi : Rn0 ! Rni , let LGi and LÃi

be their Lipschitz constants

respectively. Under assumptions A1-A3, we have

P
�
max{LÃi

, LGi}  3 for all i 2 [d]
�
� 1� 3e�10n0 .

Proof. Denote R̃0 = R0 = Rn0 and

Rj = range(Gj)� range(Gj), R̃j = Rj [ range(Ãj), j 2 [d].

Note that Ãj is linear, so range(Ãj) is a subspace in Rni with dimension at most n0.

Since � is 1-Lipschitz, we have

kGi(x)� Gi(x
0)k = k�(AiGi�1(x))� �(AiGi�1(x

0))k
 kAi (Gi�1(x)� Gi�1(x

0)) k
 kAikRi�1kGi�1(x)� Gi�1(x

0)k.
Hence

kGi(x)� Gi(x
0)k 

 
iY
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kAlkR̃l�1

!
kx� x

0k, 8i 2 [d].

Similarly,

kÃix� Ãix
0k 

 
iY

l=1

kAlkR̃l�1

!
kx� x

0k, 8i 2 [d].

By Lemma 7, range(Gi) is contained in a union of NGi many n0-dimensional affine subspaces, so
Ri is contained in a union of at most N2

Gi
many 2n0-dimensional affine subspaces. Since every

7Such regions are also called k-faces or k-cells. Relative to each of the n hyperplanes, all points inside a
region are on the same side.
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2n0-dimensional affine subspaces in Rni is also contained in a (2n0 + 1)-dimensional subspace, we
can further write this as

R̃i = Ri [ range(Ãi) ✓ [j2[N2
Gi

+1]Si,j where NGi  �i :=
iY

j=1

✓
enj

n0

◆n0

,

and each Si,j is a (2n0 + 1)-dimensional subspace in Rni .

Thus by Lemma 3(b) and union bound we have, for i 2 [d� 1],
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Choose ti = 26 log�i = 26n0
Pi
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) > 2n0 + 1 we get
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 e
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Under assumption A3 (with C0 � 22 · 26), this implies
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✓
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� 1 +
1
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◆
 e

�10 log�i , i 2 [d� 1].

Also by Lemma 3(b) with t = 20n0 and assumption A3 (assume C0 � 22 · 26), we have
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✓
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Therefore with probability at least 1� e
�10n0 �
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1
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Finally, note that log�i � in0, so we have
Pd�1

i=1 e
�10 log�i 

P1
i=1 e

�10n0i < 2e�10n0 . This
completes the proof.

D An Example of ni

Here we show if ni = �C05dn0d(2d � i) where � is any fixed number such that �C0 2 N and
� � 4 + logC0, then ni satisfy (6).

In fact, note that 2 log d < d and log(2�) < �, we have

log

0

@
i�1Y

j=0

enj

n0

1

A = 1 +
i�1X

j=1

log

✓
enj

n0

◆

 1 + (d� 1) log
�
e�C05

d · 2d2
�

= 1 + (d� 1)[d log 5 + 2 log d+ log(eC0)] + (d� 1) log(2�)

< 1 + d(d� 1)[log 5 + 1 + log(eC0)] + (d� 1)�

 � + d(d� 1)� + (d� 1)�

= �d
2
.

Since ni � C05dn0(�d2), it is easy to see that ni satisfy (6).

Remark: A similar argument as above can also show that ni = �C05in0i
2

satisfy (6).

E Code Link

Codes for numerical experiments are available at https://github.com/babhrujoshi/PLUGIn.

20



F NeurIPS Paper Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We are

not aware of such impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Proofs are included in

appendices.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
E.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We used Google Colaboratory to
conduct the experiments included the paper, see Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used MNIST

dataset [29], which is cited in the paper.
(b) Did you mention the license of the assets? [N/A] MNIST dataset is made available

under the terms of the Creative Commons Attribution-Share Alike 3.0 license.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] MNIST dataset is made available under the terms of the Creative
Commons Attribution-Share Alike 3.0 license.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

21


