Appendices for PLUGIn: A simple algorithm for inverting generative
models with recovery guarantees

A Some Results on Gaussian Matrices

Here we state some results on Gaussian Matrices, which will be used in the proofs later.

Lemma 2 ([21} 22]). Let ¢ : R — R be a positively homogeneous activation function. Let
A € R™*" have i.i.d. N (0, L ) entries. Then for any x € R",

m
EATo(Az) = Az,
where X :=E g - o(g) with g ~ N(0,1). In particular; \ = 1 when o is ReLU.

Proof. Since o is positively homogeneous, we can assume (without loss of generality) x € S*~1.
Denote by a] the j-th row of A. Then

EATo(Az) =E Z o(ajr)a; = mEo(ajz)a; = Eo(a™x)a

Jj=1

where a := \/may ~ N(0,I,,). Take an orthogonal matrix U such that Uz = ||z||e; = e; where
e1 = (1,0,...,0)T. Note that by rotation invariance for standard Gaussian, Ua and a have the same
distribution A/(0, I,,), thus

Eo(aTz)a =Eo(aTUTe1)UTUa = Eo(aTe1)UTa = UTEo(aTer)a = \UTe; = Ax.
O

The following theorem is the concentration of (Gaussian) measure inequality for Lipschitz functions.
Here we only state a one-sided version, though it is more commonly stated with a two-sided one, i.e.,

P(If(9) ~ Ef(9)] = 1) < 2exp (—2/(2L3)).

Theorem 2. Let f : R™ — R be a Lipschitz function with Lipschitz constant Ly. Let g € R" be a
random vector with independent N'(0, 1) entries. Then, for all t > 0,

P(f(g) —Ef(g) = t) <exp <_;Lf«> :

A proof of Theorem 2 can be found in [30| Chap. 8]. Based on this theorem, it is easy to prove the
following results.

Lemma 3. Let A € R™*™ have i.i.d. N'(0,1) entries.
(a) For any fixed point s € R", we have

P ([l 4sl| = Vimllsl| + VE[s]) < e/, vt >o.

(b) For any fixed k-dimensional subspace S C R", we have

P (I Alls = vim+ VE+ Vi) <72 >0,

Proof. (a) Without loss of generality, assume ||s|| = 1. Then As ~ N(0, I,,) and by Jensen’s
inequality, E||As|| < /E||As||? = v/m. The result follows immediately from Theorem E (with
f(9) = llgll and g = As).

(b) Let U be an orthogonal matrix such that UTS = span{ey, ..., ex} =: Sp, then ||A]|s = || AU||s,-
Also, since AU has the same distribution as A (by rotation invariance), we get

P (JlAlls = vim + VE+ Vi) =P (|Alls, = Vi + VE+ Vi)
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Notice that || A||s, is the operator norm for a particular sub-matrix (obtained by taking first k-columns)
of A, so without loss of generality, we can assume k = n.

Let f(A) = ||A]]. Since | f(A) — f(A")] < ||A — A’||p, f is 1-Lipschitz when viewed as a mapping
from R™" to R. By Theorem 2|

P (f(A) > Ef(A) + \/i) <e U2, W0

The result follows since E||A|| < /m + /n (see, e.g., [31] Section 7.3]). O

B Preliminaries and Proof for Lemmal /(1]

Preliminaries

For o > 1, the 1 -norm of a random variable X is defined as
| X ||, :=inf{t > 0: Eexp(|X|*/t¥) < 2}.

We say X is sub-Gaussian if || X |4, < oo and sub-exponential if || X||,, < oo. The 1) and 9,
norms are also called sub-Gaussian and sub-exponential norms respectively. Loosely speaking, a
sub-Gaussian (or a sub-exponential) random variable has tail dominated by the tail of a Gaussian (or
an exponential) random variable.

For independent, mean zero, sub-exponential random variables X1, ..., X,,, their sum concentrates
around zero. In particular, the following Bernstein’s Inequality |31, Section 2.8] holds:

m 2
t t
P ’ X;| >t] <2exp |—cmin 7 , .
(Zi_l ) l (zi_l B maxixmﬂ

The above inequality also suggests that > .~ X, has a mixed tail, i.e., a tail consisting of both a
sub-Gaussian part and a sub-exponential part. In our proof, we will use the following result from
generic chaining for mixed tail processes.

Theorem 3 (Theorem 3.5 [24]). If (X¢)ier has a mixed tail with respect to metric pair (dy,ds), i.e.
P (| Xy — X,| > Vuda(t,s) + udi(t,s)) <2e7 %, Vu>0.
Then there are constants ¢, C > 0 such that for any u > 1,
P (suIT) | X — Xio| > C(v2(T, d2) +71(T,d1)) + c(vVula, (T) + ulg, (T))) <e ™
te

Here tg is any fixed point in T, v,(T,d) is the yo-functional and Ay, is the diameter given by
Ag, (T) = SUPg teT di(s,t).

The ~,-functional of (T, d) is defined as

oo

o(T,d) := inf sup > 2"/°d(t,T,), (10)
7 ( ) (Tn) tGT; ( )

where the infimum is taken with respect to all admissible sequences. A sequence (T},),>0 of subsets
of T'is called admissible if |Ty| = 1 and |T},| < 22" for all n. > 1.

For our proof, we will use the following estimate on 7, (7, d), which involves the generalized
Dudley’s integral [32, [24].
Aa(T) 1
Yo (T, d) < C(Q)/ (log N (T, d,e))"* de, (11)
0

where C',) is a constant depending only on o and N (7, d, €) is the covering number, i.e., the smallest
number of balls (in metric d and with radius ) needed to cover set T'.
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Proof for Lemma/l]

We recall the statement of Lemma[Il below.
Lemma Let 0 = ReLU. Fixw € R" and let A € R™*" have i.i.d. N (0

Z(u,v;w) = (Au,0(Av) — o (Aw))

i) entries. Define

'm
— 2 (u,v—w).
Suppose T1, T3 are sets (not depending on A) such that

Ti=&NB"0,a) and To=S8NB(w,ar)

for some q-dimensional (affine) subspaces S1,S2 C R™ and real numbers o, v > 0. Then for any

t>1,
sup |Z(u,v;w)| < Cra’r 1/ +— \/
u€T1

vET2
with probability at least 1 — e~t. Here Cy > 0 is an absolute constant.

Proof. First, we establish that Z(u, v; w) has a mixed tail.

Let a] be the i-th row of A, then a; ~ N (0, I,,/m). For u € B"(0, ) and v € B(w, ar), define
random variables

Z30 = ai,u) [0 ({ai, v) — o ({ai, w)] = g (w0 —w), i€ [m].
We have EZ}, , = 0 by Lemma and

Z (Au,0(Av) — o(Aw)) — L (u,v — w) = Z(u, v;w).
For the increments of Zu »» we have
ZZ’U — Zf,’v, = (a;,u) o(a]v) — ﬁ (u,v) — {a;,u'yo(alv') + ﬁ (u', v
—(ai,u —u') o(a]w) + %m (u— ', w)

= (a;,u) o(a]v) — ﬁ (u,v) — [(ai,u> o(ajv') — 5~ (u, v’ ]

+ [{ai, u) o(alv') — 5 (u,0)] = {ai,u') o (afv') + 5 (W', 0)

—{as,u —u')o(a]

= (a1, u) [o(a]v) — 0(a]0')] — 5= (w0 — o)
+ {as,u — o) [o(alv') — o(alw)] — 5 (u— o', 0/ — w)

We can estimate its sub-exponential norm from Lemma] which gives
1Z3 0 = Ziy gy < Com™ (Jfullflo =o' + [Ju — &/ []v" — w]))
< Coam™ (rllu —u'|| + [lo = o']))..

By Bernstein’s inequality,

2t
P(|Zyy — Zu | > t) < 2exp (—cmin (d%’ dl))

where the metrics d; are given by

a? 2
di=— — — d d — —
2= (rllu—wll+]lv=2v1)" and di= m( rllu =l + v =2').

Therefore (Z,,) (u,v)e7 has a mixed tail with respect to the metric pair (C'dy, Cdz) for some absolute
constant C.

Next, we bound the supremum of Z (u, v; w). Without loss of generality, we will assume that g > 1.
(In fact, if ¢ = 0, then 771, 72 are either empty set or singleton, in which case the result is trivial or
follows directly from Bernstein’s inequality).
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Denote T := T; x T2 and define a metric d on 7 as
d((u,v), (u',0) = rllu—u|| + [lo =]

It is easy to see that ds = \/%d and d; = 2d. Also note that +; (7, td) = t;(T, d) from definition
(10). We can assume that S is a subspac then Z; , = 0 for v € 7. Thus by Theorem we have

4oy 40y

sup | Zun| S —=72(T,d) + ’Y1(T d) +Vit——= +t
(u,v)eT o \F vm m
with probability at least 1 — e~*. It remains to estimate v;(7, d).
From we have

Aq(T) 1/i
(T, d) < Cg/ (log N(T,d,e))"/" de, i=1,2.
0

Let dy, be the Euclidean metric. Note that one can always obtain a e-covering on 7 (with metric d)
from the product set of a € /2-covering on 77 (with metric rdy,) and a £ /2-covering on 73 (with metric
dy,). Moreover, note that 7 is contained in a g-dimensional ball of radius « and 75 is contained in a
g-dimensional ball of radius ar. Hence

N(T,d,e) < N(T1, rde,, €/2) - N (T2, dy,, €/2)
< N (aB?, rdy,, £/2) - N (arB4, dy,, £/2)

13 g
:N(Bq,d ,—)N(Bq,d —)
2 oar 2 Sar

4o\
<|(1+—) .
€
Here the last line uses estimate N (B?, dy,, ¢) < (1 + %)q for the covering number of unit balls (see
e.g., [31} Section 4.2]).

Note the estimat o log (22) dz = a(log2 + 1) < 2a, we get

dar doar
4dar 8
7 (T,d) < Cg/ 2q log <1 + ) de < 2C3q/ log <ZT> de < 16C3arq.
0

Also note the inequality \/log(1 + x) < v/2log(1 + x) for z > 1, we have

dar

4
Y (T,d) < Cjs \/2qlog% (1 + jr> de
0
4dar
4
< 203\/5/ log (1 + M> de

dar
< 2C'3f/ log (80”) de
< 16Csary/q.

Therefore with probability at least 1 — e,
t t
sup |Zy.l < Cya’r ,/i—l—g—i—\/——i—— .
(u,v)eT m m m m

*If S; is an affine subspace, let ¢ = ¢ + 1 and let S be the ¢'-dimensional subspace containing S; (and

O

origin). One can proceed with S{ and ¢’ for the proof. Finally, notice that f—ri + % <2 (ﬁ + %), so this
will give the same result with only a different absolute constant. (In fact, in our application of Lemmal|l|for the
multi-layer proof, Si is chosen as range(A; - - - A1), which is always a subspace.)

>This comes from the indefinite integral J log ( ) dx = xlog ( ) +az+C.

15



Lemma 4. Let 0 = ReLU. For u,x,y € R" and g ~ N (0, I,,), the (mean zero) random variable
2% = (g,u)[o(g72) — o(g7y)] = 3 (u,z — y)

has sub-exponential norm || Z9||y, < Cs||ull||z — y||, where Cs is an absolute constant.

Proof. It is easy to see that Z9 is mean zero from Lemma2] Also from the following two properties
of 1)1, ¥9-norms (see [31, Section 2.7]):

[X = EXly, S 1 X[y, and XY [y, < X, [[Y ][5

we have (note that o is 1-Lipschitz)

1291y S 119wl lo(gTa) = o (gTy)llws S 1{gs w) v ll (g5 2 = ) Nl
The result follows by noting that || (g, u) ||y, = [|g1y, ||u|] where g1 ~ N(0, 1). O

C Proof for Theorem [1]

Additional notations: We use P4, to denote that the probability is taken only with respect to
A;. In neural network G : R™ — R", let G; : R™ — R™ be the mapping that corresponds to

the first 7 layers, ie. G;(x) = o(A4;...0(A12)...). For its weight matrices, let Ag = I, and
A; =A;A;_q--- A fori e [d]
Proof of Theorem[I] First we write

Ry (xk — 2" — 29 AT[G(2*) — y]) +(1—-0)(a* — ).

For any fixed r > 0, using triangle inequality and Lemma [5] (with events &; defined as in Lemma
we can conclude that if || z* — z*|| < r, then with probability at least 1 — P(E;) — P(&;) — 2e 71070,

2"+ — 2% < g <7~ +30- Zd\/ZT|e||> +[1=0r = a(r + Be) (12)
d
where 9 6/2
AT =" =302 :
a=g+1l-6 f=mg—pam =30 Vno/nale|

Now define a sequence {ry }ren such that 11 = a(ry + Be) and 7o = R. We can find its general
formula as follow:

7“k+1—71a6 5=a<7“k— of 5) = rkzak<R— of 5)+1a65
—

1—« 11—« —a
Next, by induction on k (i.e., apply withr =rp fork =0,1,2,...) we get
o

1—«a

|2k — 2*|| < rp < "R+ e, keN. (13)

Notice that the events &1, £ remain unchanged throughout iterations, so holds with probability
atleast 1 — P(&;) — P(&) — 2ke10m0,

Lastly, from Lemma[6]and Lemmal§|we know P(&;) < 3¢=10" and ||G(z*) — G(z*)|| < 3||2* —a*|
on &£5. This completes the proof. O

Lemma 5. Fixr > 0 and assume assumptions Al1-A4 hold. If |x* — x*|| < r, then after one iteration
according to (3) with step size n = 2¢, we have

1
Jh o) < 3 <r+3o g "°||e||)
2 ng

with probability at least 1 — P(£1) — P(&;) — 2e~10m0,
Here £1, & are the events

& = {||ATe| > 15v/no/nallel|} and & = {max(Ly , Lg,) > 3 foralli € [d]}

where Lg, and L 5 denote the Lipschitz constants of G;, A; i R™ — R™ respectively.
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Proof. For x € R, denote zo = « and x; = G;(z) for ¢ € [d]. Then
l‘k+1 . - l‘k . QdAZ[g(JZk) _ g(]}*) _ 6]
= (a5 — ;) — 2A] (¢} — 27)

+ 2AT [(xl —x7) — 2A;(x’§ — xﬁ)]

+...
2 AY | (b, — ) — 247(eh — 23]
+ 2d/~126
thus we can write
lo*4t =2l = sup 2 ((Avu,af = af) = 3w of — 25))
uesno—l
+ 22 (<A2/11u,x§ - :17§> -1 </~11u, xh — xi>)
+...
+ 24 (<Ad;1d,1u, at’fl — x2> — % <1‘~1d71U, 37571 - 332—1>)
—2d <U,A~£€>
d—1
< 24| ATe|| + 22”'1 sup  Zit1 (A u, T )
=0 uesro—!

where
Zj(u,v) := (Aju,0(Ajv) —o(Ajx; 1)) — 5 (wv—xj_y), jeld.
On event £5, Vi € [d — 1] we have
A; 8™t C range(A;) NB™(0,3) =: T,
x¥ € range(G;) N B(x},3r) = T3
By Lemma(7] there are Ng, many no-dimensional affine subspaces {S;,;} such that
i i i * n; i en; \ "
T3 CUjeing T, where Tj ;=8 ;NB(x},3r) CR™ and Ng, < ®;:= [[ (=2 ) .
A2, : | o
j=1

For i € [d — 1], apply Lemmalon T, x T3 followed by a union bound over j € [Ng,], we get

[tiv1 1
sup Ziy1(u,v) < C1(9r) ( i+ bit )
'7’l ><7'7 n2+1 n7.+1 n7.+1 nz+1

with probability (over A;1; and conditioning on {A;},cf;)) at least 1 — ®;e~ 41,

Choose t;11 = 2log ®; = 2ng Z log( ) then we get

2log ®; . .
Py | sup Zigi(u,v) <9Cr -4 S8 >1—e 8% e [d—1].
Ti XT3 Mi+1

Also for i = 0, applying Lemmal[tjon B™(0,1) x B(z*,r), we get

10
sup  Zi(u,v) < Cir-4 1o
u€B™0(0,1) ni
vEB(z™*,T)

with probability (over A;) at least 1 — e =100,

Therefore under assumption A3 (with Cy > 160 - 722C%), we have

d—1
i+1 r i+1 T 2
22 sup_ Ziva (i, $)<72+;2 2\ 160511

u€eSm0 1
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<

<

N3 N3

with probability at least 1 — P(E,) — e~10m0 — 3471 o~ log @i,

i=

The result follows by noting that (assume Cy > 160 - 722)

log ®; = ng E log ( ) > noilog(eCp) > 11ngi,
no
Jj=1
—11ng

log @;
D D R

< e~ 100 Also note that on £,

2% ATe|| < 15 - 2%\/ng/nalle|.

Lemma 6. Under assumptions A2-A4, we have
P (14TAT - 43el > 15, 2] ) < 3e0m.
N
Proof. Denote s; := A, --- Alefori € [d—1] and sq := €.
For i € [d], by Lemma a) we have
Pa, (vl Alsill < vacillsill + Vallsill) > 1—e™%/2, vt > 0.

Choose t; = 20ng and t; = nj_1 /4971 for j > 1, we get

o, (147500 < (Va2 ) 2110,
1

<I|AT51||<<1+2’“> sy 1|I)>1 BN §
Mg

T

Thus with probability at least 1 — e~10m0 — Zj:z e~mi-1/4",

d
|ATAT - Ale] < (1+m)1/j£.£[2(1+2i
N i 1
s(1+m)1/nd[{1(l+?)

< 15+/ TL()/nd

where the last inequality uses estimateEI [12, (1+ %) <eand (1+v20)e < 15.

It remains to show 3¢, e=mi-1/4" < 2¢=10m0 for the desired probability bound. Note that by
assumption A3 (assume Cjy > 40),

4z+1 > 4C'On0210g ( ) > 10ng 1.

Hence
— 10”0

d ) d 0o e
§ :e—m,l/4 < § e—lOno(z—l) < § :e—lonoz — < 26_1()"0.
1 _ e*lono
=2 =1

=2

®For v > 0, estimate Z]Oil log (1 + oz2_j) < Z o, a2” J = @ holds, thus H (1 + %) < e,

18



With ReLU (or positively homogeneous) activation functions, the range of neural network (in each
layer) is contained in a union of affine subspaces. The following lemma, which is based on ideas and
results in [[L1], gives a precise statement of this.

Lemma 7. Assume Al and minjc(g{n;} > no, then for i € [d], range(G;) is contained in a union
of affine subspaces. Precisely,

i .\ "o
range(G;) € Uje[ng,1Si;  where  Ng, < H <€TZ)J) '
Jj=1

Here each S; ; is some no-dimensional affine subspace (which depends on {Al}le[i] ) in R™.

Proof. The theory on hyperplane arrangements [25, Chapter 6.1] tells us that n hyperplanes in R*

(assume n > k) partition the space R” into at most Z?:o () region

Also for k € [n],
X)X ex T @ <G EF- (9

So consider range(G1) = {o(A1z) : @ € R™}. Denote by aj (j € [n1]) the rows of A; and let
H be the set of hyperplanes H := Uj¢n, {7 : <a31», x> = 0}. Then H partitions R™ into at most
(en1/mo)™ regions. Note that o is linear in each of these regions (thus the mapping G; is linear
in each region), so range(G) is contained in at most (eny/no)™ many ng-dimensional (affine)
subspace.

The result then follows by induction. O
The following lemma shows that the network G in our model is Lipschitz with high probability. This
may be an interesting result on its own.

Lemma 8. For mappings G;, A; : R0 — R™ [et Lg, and L. be their Lipschitz constants
respectively. Under assumptions Al1-A3, we have

P (maX{LAi,Lgi} <3 foralli€ [d])) >1—3e ',

Proof. Denote 7@0 = TRo = R" and
R; = range(G;) — range(G;), R; = R;Urange(4;), j € [d].
Note that /ij is linear, so range(flj) is a subspace in R™¢ with dimension at most n.
Since o is 1-Lipschitz, we have
1Gi(z) — Gi(@)|| = lo(AiGi-1(2)) — o (AiGi—1(2"))]
< 1Ai (Gi1 (@) = Gia(a)) |l
< il 1Gi-1 () = Giea ()]

Hence

1Gi(x) = Gi(2)| < (H ||Al7él_1> lle =2/, Vield].
=1
Similarly,

Az — Aga'|| < <H ”AlH']iLl) |z — 2|, Vield]
=1

By Lemma E range(G;) is contained in a union of Ng, many ny-dimensional affine subspaces, so
‘R; is contained in a union of at most Néi many 2ng-dimensional affine subspaces. Since every

"Such regions are also called k-faces or k-cells. Relative to each of the n hyperplanes, all points inside a
region are on the same side.
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2no-dimensional affine subspaces in R™ is also contained in a (2ng + 1)-dimensional subspace, we
can further write this as

[ no
- ~ €en;
Ri = Rz U range(A,-) - UjE[NSi-‘rl]SiJ where Ngi < (I)i = 1_[1 (n0j> s
]:

and each S; ; is a (2ny + 1)-dimensional subspace in R™:.
Thus by Lemma b) and union bound we have, for i € [d — 1],

Pa,ys (VisilAicillg, > it + V2o + 1+ VE) < (@7 +1)e /2, Wt > 0.
Choose t; = 26 log ®; = 26mg Z;Zl log(£X) > 2ng + 1 we get

no

126 log ®; _ )
]P)Ai+1 <||Ai+1||7~31 >1+24 — 8 ) <e 1010g<1>1'
' Ti4+1

Under assumption A3 (with Cy > 22 . 26), this implies
1 _10log & .
Pa,ps (”Aiﬂﬁi >1+4 21+1> < e 10los®i e [d—1).
Also by Lemma b) with ¢t = 20n and assumption A3 (assume Cj > 22 - 26), we have
1
]P)Al <||A1||7~a0 >1+ 2) < e~ 10no

Therefore with probability at least 1 — ¢=10m0 — $39~1 o —10log®;

i=1

i

_ : 1 = 1
vicld, [[hle ., <IT(1+5)<II(1+5) <>
=1 =1

=1

Finally, note that log ®; > ing, so we have Zf;ll e 10log®i < pOya e~10n0t « 90=10n0  Thjg
completes the proof. O

D An Example of n;

Here we show if n; = Cy5%n0d(2d — i) where 3 is any fixed number such that 3Cy € N and
B > 4+ log Cy, then n; satisfy (6).

In fact, note that 2log d < d and log(2/) < 8, we have

i—1 i—1
enj _ 677,j
i=0 =1

<1+ (d—1)log (efCo5* - 2d?)
=1+ (d—1)[dlog5h + 2logd + log(eCp)] + (d — 1) log(28)
<1+d(d—1)[logh+ 1+ log(eCp)] + (d —1)3
<B+dd-1)B+(d-1)8
= Bd>.

Since n; > Co5%ng(Bd?), itis easy to see that n; satisfy (6).

Remark: A similar argument as above can also show that n; = SCo5'ngi? satisfy (6).

E Code Link

Codes for numerical experiments are available at https://github.com/babhrujoshi/PLUGIn.
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