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Abstract1

The translation of clinical and lifestyle con-2

cepts into computable phenotypes is a critical3

yet manually intensive bottleneck in leverag-4

ing large-scale biomedical datasets like the UK5

Biobank. This process is slow, requires deep do-6

main expertise, and suffers from a lack of scal-7

ability and reproducibility, especially for clin-8

icians unfamiliar with large-scale data analy-9

sis. We propose and develop an autonomous,10

dual-component agentic system designed to au-11

tomate the research workflow from hypothe-12

sis to report. The first component, the large13

language model (LLM)-based data preprocess-14

ing framework, systematically searches the UK15

Biobank’s public data dictionary, translating16

high-level clinical and lifestyle concepts into17

machine-readable rules. The second compo-18

nent, the Analysis Agent, autonomously exe-19

cutes the statistical analysis plan and synthe-20

sizes the findings. The framework is further21

validated by successfully phenotyping and an-22

alyzing several clinical and lifestyle screeners.23

This work demonstrates a viable end-to-end24

system that enhances scalability and democra-25

tizes complex data analysis with transparency,26

representing a foundational step toward a new27

paradigm of AI-driven scientific discovery.28
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Data and Code Availability The UK Biobank 31

data underlying this study cannot be shared publicly 32

due to participant privacy and ethical restrictions. A 33

source code is publicly available at https://github. 34

com/ukjung21/ukb-agent. 35

Institutional Review Board (IRB) This study 36

does not require IRB approval. 37

1. Introduction 38

The advent of large-scale biomedical repositories, 39

such as the UK Biobank (UKB) (Bycroft et al., 2018), 40

has provided unprecedented opportunities for popu- 41

lation health research. These resources contain deep 42

genetic, imaging, and clinical data for hundreds of 43

thousands of individuals, enabling the study of com- 44

plex interactions between lifestyle, environment, and 45

disease. A critical component of leveraging these 46

datasets is phenotyping: the process of translating 47

abstract health concepts or clinical instrument scores 48

into precise, computable definitions using the avail- 49

able data fields. 50

However, the traditional process of phenotyping 51

is a significant bottleneck (Li et al., 2024). First, 52

it is a manual, resource-intensive endeavor. For in- 53

stance, when attempting to define a lifestyle with a 54
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Figure 1: An overview of UKB Agent. The system is composed of two main components. (A) The LLM-based
data preprocessing workflow translates a high-level user hypothesis into a curated, analysis-ready
dataset by automatically generating phenotyping rules from the UK Biobank data dictionary. (B)
The Analysis Agent takes the curated data and autonomously executes a statistical analysis plan to
test the hypothesis, producing a final conclusion. It operates in a Human-in-the-loop collaboration
mode, where the user confirms specific analysis details such as how to handle missing data or which
statistical models to apply before the analysis is performed.

medical questionnaire or screening system using avail-55

able UK Biobank fields, a researcher must manually56

search for suitable fields that can serve as proxies57

for each item in the questionnaire. This process is58

not only susceptible to inconsistencies but can also59

lead to the omission of crucial data fields. Further-60

more, phenotyping algorithms for the same condition61

often vary significantly between studies, which com-62

plicates meta-analyses (Patel et al., 2022; Torralbo63

et al., 2025; Kong et al., 2022; Wei et al., 2024). To64

address these issues, several computational tools have65

been developed (Hanscombe et al., 2019; Kiral et al.,66

2020; Yeung et al., 2022). While these tools have been67

developed to do either data processing or analysis in68

UK Biobank data, they still depend on a manually69

defined and curated phenotype and are not entirely70

automated.71

Recently, the paradigm of autonomous AI agents72

has emerged as a powerful tool for complex problem-73

solving in scientific domains (Gottweis et al., 2025; Lu74

et al., 2024; Gridach et al., 2025). These agents, of-75

ten powered by Large Language Models (LLMs), can76

devise plans, use tools, and iteratively work towards77

a goal with minimal human intervention. Ground-78

breaking research such as Biomni has demonstrated79

the potential of multi-agent systems to perform com-80

plex bioinformatics tasks by planning and execut-81

ing code in a self-correcting manner (Huang et al., 82

2025). Similarly, other studies have shown agents 83

capable of designing experiments and searching lit- 84

erature, heralding a new era of automated scientific 85

discovery (Boiko et al., 2023; Swanson et al., 2025; 86

Gao et al., 2024). 87

To address the challenges in phenotyping and 88

analysis, we propose an agentic framework for au- 89

tomated data curation and analysis in large-scale 90

biobanks. While the core agentic logic—including 91

relevant field refinement, coding rule generation, au- 92

tomated analysis—is designed to be portable across 93

biobank infrastructures, we present the UK Biobank 94

as the first validation case study for this framework. 95

This system, referred to as the UKB Agent in this 96

context, is designed to automate the research lifecycle 97

from hypothesis to validation, aiding clinicians and 98

researchers who may be unfamiliar with the intrica- 99

cies of large-scale biobank data architectures. By pre- 100

senting a scenario analyzing the association between 101

a lifestyle factor and a disease outcome, this study 102

introduces a more scalable, transparent, and accessi- 103

ble approach to biomedical data science. We believe 104

this agent-based methodology is a promising step to- 105

ward accelerating the pace of discovery and uncover- 106

ing novel insights into the determinants of health and 107

disease. 108
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2. Method109

Our framework is designed to automate the research110

lifecycle, from the formulation of a structured hy-111

pothesis to the final analytical report. The entire112

process is initiated by the user, who must provide a113

hypothesis structured with three key components:114

• Exposure: A high-level concept for the expo-115

sure of interest, typically the name of a clini-116

cal or lifestyle screening instrument (e.g., ’MED’,117

’PHQ-9’, ’Alcohol consumption’).118

• Outcome: A list of ICD-9 and ICD-10 codes119

to define disease outcome (e.g., [585.9, N18.0,120

N18.5] for Chronic Kidney Disease).121

• Covariates: A list of confounding factors for122

statistical adjustment (e.g., ’age’, ’sex’, ’BMI’).123

For instance, a user hypothesizes an ”association124

between CKD (defined by specific ICD codes) and125

Mediterranean diet (as measured by MED), with co-126

variates age, sex, and BMI.”127

To automate the full research lifecycle from hy-128

pothesis to conclusion, we designed and implemented129

a dual-component framework. The first component,130

the LLM-based data preprocessing workflow, is en-131

gineered to translate abstract variables from a re-132

search hypothesis into computable definitions using133

the UKB data dictionary. The second component,134

the Analysis Agent, receives the curated, analysis-135

ready dataset from the Phenotyping Framework. It136

then autonomously performs the statistical analyses137

required to test the user’s initial hypothesis.138

2.1. LLM-based Data Preprocessing139

Workflow140

The primary objective of the data preprocess-141

ing workflow is to find relevant fields in the UK142

Biobank for each variable within a given hypoth-143

esis and to generate rational rules for their cod-144

ing using LLMs. We used the proprietary LLM,145

gpt-5-mini-2025-08-07 model, in this stage. For146

each variable, the framework iteratively executes the147

following phases to produce a set of variable coding148

rules. These rules are subsequently applied to the149

Biobank to generate the final curated data for anal-150

ysis (Figure 1A).151

2.1.1. Description of the UK Biobank Data 152

Showcase 153

All data processing and mapping operations 154

in our workflow are performed using the pub- 155

licly available UK Biobank Data Showcase 156

(https://biobank.ndph.ox.ac.uk/showcase/). This 157

showcase serves as a comprehensive data dictionary 158

that details the thousands of variables available to 159

researchers. 160

The showcase is organized hierarchically. At the 161

highest level are Category, which group related infor- 162

mation into broad domains such as ”Biological sam- 163

ples” or ”Genomics”. Within each Category are nu- 164

merous Data Field, which represent the individual 165

variables. Each Data Field is annotated with its 166

descriptive Notes, and for categorical variables, its 167

Coding information. The Coding provides a direct 168

mapping between numerical codes and their human- 169

readable meanings. 170

2.1.2. Phase 1: Variable Conceptualization 171

The data preprocessing workflow begins with the au- 172

tomated comprehension of each variable. The goal is 173

to deconstruct such a concept into a structured spec- 174

ification. Lifestyle phenotypes, such as the Mediter- 175

ranean Diet (MED) score, are composite scores de- 176

rived from multiple pieces of information, requiring 177

detailed deconstruction. To address this, we employ 178

LLMs augmented with web search capabilities. The 179

system obtains the full name, description, a complete 180

list of questionnaire items, and the precise encoding 181

logic for each item via web search. Simple phenotypes 182

like age or sex are identified as single, direct measure- 183

ments and bypass this intensive deconstruction. 184

2.1.3. Phase 2: Semantic UKB Field Mapping 185

The core of the workflow is the accurate mapping 186

of each variable to its proxies within the UKB data. 187

With a structured definition for each variable compo- 188

nent, the workflow maps them to the relevant UKB 189

data fields using a Breadth-First Search-LLM (BFS- 190

LLM) algorithm. The process begins with a BFS 191

traversal of the UKB Category hierarchy to ensure 192

a comprehensive search. For every Category, both it 193

and its sub-categories are gathered as a branch. The 194

model is provided with complete context, which in- 195

cludes the names, descriptions, and field lists of all 196

categories within the branch, to assess if the entire 197

branch is relevant to the target variable. If a Cate- 198
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gory and its sub-categories are considered to be irrel-199

evant, the entire branch is pruned from the search,200

significantly reducing the search space.201

Upon reaching a relevant, Field -bearing Category202

after BFS traversal, the system performs a final203

Field -level Evaluation. For each relevant Category,204

the system examines its Fields. It enriches each Field205

by scraping its detailed Notes and Coding informa-206

tion from the UKB showcase. This enriched context207

is fed back to gpt-4.1-mini for high-speed, large-208

volume initial field relevance screening. After this ini-209

tial pass, gpt-5-mini, employing advanced reasoning210

for final validation and selection, reviews all poten-211

tially relevant fields for a single item and selects only212

the most suitable ones that serve as proxies.213

To further enhance efficiency, we have also imple-214

mented an embedding-based search method as an215

optional alternative to the initial Fields relevance216

screening with BFS-LLM approach. This method217

uses the abhinand/MedEmbed-base-v0.1 model to218

compute semantic embeddings of Fields descriptions219

and performs rapid similarity-based retrieval. This220

option significantly reduces search time while main-221

taining reasonable accuracy, providing users with a222

flexible trade-off between speed and comprehensive-223

ness.224

2.1.4. Phase 3: Field Coding Rule225

Generation226

In this phase, the verified mappings are translated227

into executable JSON-based rules. For each item-228

to-field mapping, an LLM is prompted with the229

item’s encoding criteria and the coding details of the230

mapped UKB Field. The LLM’s task is to generate231

a precise rule that connects each field’s specific232

value to a numeric score. For example, it translates233

”Score 1 for consuming 4 or more tablespoons234

of olive oil daily” into a machine-readable condi-235

tion like {"field_id": "26110", "conditions":236

{"operator": ">=", "value": 4}, "score": 1}.237

Then LLM ensures that all relevant fields are logi-238

cally combined to produce a single value based on239

the encoding criteria.240

2.1.5. Phase 4: Cohort Table Construction241

Once the rule sets for all variables in the hypothe-242

sis are generated, they are systematically applied to243

the raw UK Biobank dataset. This computational244

phase executes the JSON rules against the large-scale245

data table. For each participant, the workflow calcu- 246

lates the necessary variables, determines the outcome 247

status based on ICD codes, and extracts the values 248

for all specified covariates. The final output is an 249

analysis-ready cohort table where each row represents 250

a unique participant and each column represents a 251

fully processed and curated variable. 252

2.2. The Analysis Agent 253

Once the dataset is curated by the preprocessing 254

workflow, it is passed to the Analysis Agent, which is 255

responsible for conducting the scientific inquiry from 256

statistical analysis to final reporting. Instead of a 257

simple reactive loop, the agent is built upon a so- 258

phisticated, stateful, graph-based architecture that 259

ensures a structured and transparent, and secure an- 260

alytical framework. 261

To facilitate user interaction with the system, we 262

developed an intuitive web-based interface using the 263

Streamlit framework. The analytical workflow is 264

initiated when a user provides an initial request, such 265

as a research hypothesis and the path to their dataset, 266

through an interactive chat prompt. 267

2.2.1. Core Architecture: A Stateful 268

Graph-Based Approach 269

The agent’s core is implemented as a state graph us- 270

ing the LangGraph library, functioning as a state ma- 271

chine that transitions between two primary states: 272

generation and execution. The generation state 273

serves as the reasoning engine, where the agent plans 274

its next move, interprets results, or synthesizes find- 275

ings. The execution state is the action engine, where 276

the agent interacts with its tools, primarily a Python 277

interpreter. 278

Crucially, to uphold the strict data privacy re- 279

quirements of the UK Biobank, all analytical tasks 280

are performed by a locally-hosted, open-source 281

LLM (ChatOllama with the gpt-oss:120b and 282

gemma3:27b model). This design ensures that no sen- 283

sitive, participant-level data is ever transmitted out- 284

side the researcher’s secure computational environ- 285

ment, guaranteeing data integrity and confidentiality. 286

2.2.2. The Structured Reasoning and 287

Action Cycle 288

As shown in Figure 1B, the agent operates on a struc- 289

tured reasoning and action cycle, which is more rig- 290

orous than a generic plan-act-observe paradigm (Yao 291
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Figure 2: Detailed outputs of the automated phenotyping process for the Mediterranean Diet (MED) score.
(A) A summary of the concordance between UKB fields identified by the UKB Agent and those
from a prior expert-curated study (B) A summary of the concordance for each of the 13 MED items.
(C) Examples of the machine-readable rules and the corresponding natural language rationale
generated by the agent.

et al., 2023). Every action is preceded by an ex-292

plicit reasoning step, enclosed in <think> tags, where293

the agent articulates its rationale. This process,294

analogous to Chain-of-Thought prompting, makes295

the agent’s decision-making process fully transpar-296

ent. Following this, the agent must choose one of297

four predefined actions, each denoted by a specific298

tag:299

1. Planning (<plan>): The agent first establishes300

a step-by-step analytical strategy in a checklist301

format. This plan is revisited and updated dy-302

namically as the analysis progresses.303

2. Code Execution (<execute>): To perform304

data analysis, the agent writes and runs Python305

code within a secure interpreter.306

3. Result Interpretation (<summary>): After307

executing code, the agent receives the output as308

an <observation>, which can be text, a table,309

or a plot. The agent then uses the <summary>310

action to perform self-reflection, interpreting the311

results from both a detailed visual or statistical312

perspective and a broader biological or clinical313

context.314

4. Final Hypothesis validation (<solution>):315

Once all steps in the plan are marked as com-316

plete, the agent invokes the <solution> action 317

to synthesize all findings, interpretations, and re- 318

sults into a cohesive final report that addresses 319

the user’s initial hypothesis. 320

2.2.3. Human-in-the-Loop for Analytical 321

Consistency 322

To enhance analytical utility and ensure run-to-run 323

consistency, the agent integrates a critical Human- 324

in-the-loop checkpoint. This is particularly crucial 325

for large-scale biobank analysis, where common ana- 326

lytical decisions—such as the strategy for handling 327

missing data or the selection of specific statistical 328

models—are highly consequential and often guided 329

by researcher preference. Without this user-guided 330

step, the agent’s autonomous choices might vary be- 331

tween sessions, leading to inconsistent results when 332

comparing different analytical runs. 333

Operationally, this checkpoint is triggered after the 334

agent performs an initial Exploratory Data Analy- 335

sis (EDA). The agent then pauses its operation and, 336

via the web interface, presents the user with explicit 337

proposals for the subsequent data handling and sta- 338

tistical modeling steps. The user must then con- 339

firm or modify these choices. Once the user provides 340

this confirmation, the agent locks in these decisions 341
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and proceeds with the analysis, guaranteeing that342

the workflow aligns perfectly with the researcher’s in-343

tended methodology.344

2.2.4. Iterative Refinement and Visual345

Analysis346

The state-graph architecture facilitates a robust pro-347

cess of iterative refinement and self-correction. If a348

code execution step results in an error, the agent349

observes the error message, re-enters the generation350

state to diagnose the problem, and attempts to fix351

the code in a subsequent <execute> action.352

A key capability of the agent is its capacity for mul-353

timodal visual analysis. It is designed to automati-354

cally capture any plots, encode them as base64 im-355

ages, and append them to the message history. This356

allows the LLM to see the visualizations it creates.357

The agent can then analyze patterns, trends, and dis-358

tributions directly from the plots such as interpret-359

ing an odds ratio plot or a histogram and integrate360

these visual insights into its scientific reasoning and361

reporting within the <summary> step, leading to a362

more profound and human-like analytical process.363

3. Results364

To evaluate the efficacy of our framework, we tasked365

the agent with real-world exposure phenotyping chal-366

lenges, such as Mediterranean diet adherence (MED),367

Generalized Anxiety Disorder-7 (GAD-7), and Re-368

cent Depressive Symptoms-4 (RSD-4) using the UK369

Biobank (UKB) dataset. We then compared our sys-370

tem’s output against a manually curated definition371

from a peer-reviewed study. Subsequently, to assess372

the autonomous analysis capabilities of our analysis373

agent, we compared the agent’s analysis result on the374

curated data with an analysis conducted by a human375

expert.376

3.1. Successful Variable Conceptualization377

We evaluated the agent’s ability to autonomously378

discover relevant clinical constructs from high-level379

terminology. When provided with general concepts380

such as ”anxiety screening” or ”Mediterranean diet381

adherence”, the system successfully performed web-382

based searches to identify standardized assessment in-383

struments. Specifically, the agent autonomously dis-384

covered the Generalized Anxiety Disorder-7 (GAD-385

7) scale for anxiety assessment and the MEDAS-14386

(Mediterranean Diet Adherence Screener) for diet 387

evaluation. 388

3.2. Case Study: Automated Phenotyping of 389

the Mediterranean Diet (MED) 390

3.2.1. Validation of UKB Field Mapping 391

Our system’s primary task was to identify relevant 392

UKB data fields that could serve as proxies for each 393

of the 13 items in the MED score. To ensure a fair 394

comparison, we bypassed the web-based information 395

extraction. Instead, the MED score information from 396

Zhu et al. (2025) was directly provided to our system. 397

The results, summarized in Figure 2A, demonstrate a 398

remarkable concordance between the fields identified 399

by our analysis agent and those selected by human 400

experts in Zhu et al. (2025). 401

As shown in Figure 2B, for most MED compo- 402

nents, the agent successfully identified most of the 403

UKB fields used in Zhu et al. (2025) or their alterna- 404

tives: 405

• 100% coverage: In 9 out of 13 categories, the 406

agent utilized all the fields from Zhu et al. (2025) 407

and, in addition, used additional fields that were 408

also manually confirmed to be related to each 409

item. 410

• Majority coverage: In Butter and mar- 411

garine, Legumes, and Sweets and Desserts, 412

the agent utilized a majority of the fields chosen 413

by human experts and, in addition, used other 414

related fields. 415

• Alternative fields extracted: While Zhu 416

et al. (2025) did not map any fields for sofrito, 417

the agent reasonably checked for the use of 418

’tomato-based sauce’ in ’Field 20088: Types 419

of spreads/sauces consumed’ and ’Field 10430: 420

Tinned tomato intake’ as a proxy for sofrito. 421

Notably, for several items like Vegetables and 422

Sweets and Desserts, our agent not only success- 423

fully identified the fields from prior work Zhu et al. 424

(2025) but also proposed a substantially larger set of 425

novel fields. We manually verified the relevance of 426

these additional fields. A comprehensive list of all 427

identified fields is provided in Appendix A. This sug- 428

gests that the agent may offer a more comprehensive 429

search than manual methods, potentially increasing 430

the robustness of the resulting phenotype. The ex- 431

tensive list of food codes for ’Sweets and desserts’ 432
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showcases the agent’s ability to navigate the granu-433

lar detail of the UKB data dictionary effectively.434

3.2.2. Validation of Automated Rule435

Generation and Rationale436

Beyond simply identifying the correct fields, the437

agent was tasked with generating the encoding logic438

required to translate raw data into a MED score. Fig-439

ure 2C provides examples of these generated rules and440

the agent’s rationale. The evaluation confirms that441

the agent’s logic is not only correct but also demon-442

strates a sophisticated ability to handle the nuances443

of phenotyping.444

The agent consistently formulated valid rules based445

on sound reasoning:446

• Direct Mapping: For simple cases like veg-447

etable consumption (Field 104050), the agent448

correctly interpreted the categorical codes and449

generated a logical rule (∈ {300, 2} → 1) to450

award a point for consuming two or more serv-451

ings.452

• Handling Unit and Frequency Discrepan-453

cies: The agent demonstrated its ability to454

bridge gaps between the MED score’s require-455

ments and the UKB data’s structure.456

– For red meat, the MED item is based on457

”servings,” while the UKB field (26065) is458

in grams. The agent rationally inferred a459

standard serving size of 100g to create the460

rule (< 100 → 1).461

– For wine, the agent correctly converted the462

weekly serving requirement to a monthly463

value to match the UKB field’s frequency,464

resulting in a sound threshold of ≥ 9 glasses465

per month.466

In summary, these results show that our agent can467

successfully replicate and even potentially enhance468

the manual process of phenotyping. The generated469

rules are not arbitrary but are founded on logical con-470

versions, validating the agent’s capability as a reliable471

tool for complex biomedical data analysis.472

To evaluate the capabilities of our Analysis Agent,473

we tasked it with a representative biomedical re-474

search hypothesis: investigating the association be-475

tween Mediterranean diet (measured by the gen-476

erated MED score) and Chronic Kidney Disease477

(CKD), using the curated dataset derived from our478

Phenotyping Framework. The agent operated en- 479

tirely autonomously, starting from the initial data 480

exploration to the final synthesis of results, with its 481

process and findings detailed below. 482

3.3. Phenotyping of Other Exposures 483

We systematically replicated more exposure pheno- 484

types from peer-reviewed studies that publicly doc- 485

umented their UK Biobank field codes. Specif- 486

ically, we also replicated multiple definitions of 487

lifestyle variables, such as alcohol consumption, as 488

documented by Kim et al. (2024). We replicated 489

two widely-used screening systems—the Generalized 490

Anxiety Disorder-7 (GAD-7) and the Recent Depres- 491

sive Symptoms-4 (RSD-4)—following the methodol- 492

ogy described by Dutt et al. (2022). 493

This expanded analysis demonstrates that our 494

automated phenotyping framework can successfully 495

handle diverse variable types, lifestyle factors such as 496

alcohol consumption and sedentary behavior, and val- 497

idated screening instruments (GAD-7, RSD-4). Our 498

system achieved perfect replication accuracy in field 499

mapping and reasonably captured extra supplemen- 500

tary fields as well. The detailed results are summa- 501

rized in Appendix B 502

3.4. Agent-Driven Analysis of the User’s 503

Hypothesis with Human-in-the-loop 504

We tasked the Analysis Agent with the user’s hy- 505

pothesis, investigating the association between the 506

Mediterranean diet (MED) score and Chronic Kid- 507

ney Disease (CKD) using the curated dataset. A 508

critical component of our framework is the Human- 509

in-the-Loop checkpoint, which ensures analytical con- 510

sistency and reproducibility. We experimentally con- 511

firmed that without this step, the agent might make 512

different autonomous decisions (e.g., choosing data 513

imputation instead of row deletion for missing val- 514

ues), leading to variations in the final analysis results. 515

In this analysis, the agent’s initial EDA identified 516

that 90% of MED score records were missing. The 517

agent paused and presented this to the user, who 518

provided the explicit instruction: ”drop rows with 519

any missing value. Proceed with logistic regression.” 520

The agent then autonomously executed this user- 521

defined plan. The resulting multivariable logistic re- 522

gression model was highly significant (LLR p-value: 523

3.01× 10−245, Pseudo R-squared: 0.089). The analy- 524

sis found a statistically significant protective associa- 525

tion for the MED score (OR = 0.859, 95% CI [0.822, 526
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(A)

Analysis Plan
[  ] Drop rows with any missing values from the dataframe.
[  ] Show the shape of the cleaned dataset and confirm no missing values remain.
[  ] Fit a logistic regression model ( Chronic_kidney_disease ~ MED_Score + age +
 sex + bmi) using statsmodels.api.Logit . 
[  ] Print the model summary (coefficients, standard errors, p-values).
[  ] Compute odds ratios and 95 % confidence intervals and display them.
[  ] Generate a ROC curve and calculate the AUC to assess model discrimination.
[  ] Summarize the preprocessing steps, model findings, and visualizations in a 
concise report.

Agent's Thought Process...
I will load the CSV file “MED_Score_data.csv” using pandas
…

Code Execution
import pandas as pd 
# Load the dataset 
df = pd.read_csv("MED_Score_data.csv") 
…

Observation Result
First 5 rows: 
eid MED_Score age sex bmi Chronic_kidney_disease 
0 1000019 NaN 62.0 1.0 20.1468 0 
1 1000022 NaN 43.0 1.0 34.8255 0 
2 1000035 3.0 48.0 1.0 28.2800 0 

(B)

The initial exploratory analysis is complete. Here are the key findings:
- Dataset size: 502,490 rows × 6 columns.
- Missing values:
    - MED_Score: 451,993 missing (≈ 90% missing)
    - age: 1 missing
    - sex: 1 missing
    - bmi: 3,105 missing (≈ 0.6% missing)

Next steps require decisions on:
1. Handling missing data
- MED_Score (very sparse): 
    - Drop the column entirely?
    - Keep only rows where it is present (sub-sample)?
    - Impute with a constant (e.g., 0) or with the mean/median of the observed 
values?
- age, sex, bmi (few missing):
    - Impute with mean (numeric) or median (robust to outliers).
    - For sex (binary), impute with the mode or treat as a separate “missing” 
category.

2. Modeling approach
- Build a logistic regression with Chronic_kidney_disease as the dependent 
variable and MED_Score, age, sex, bmi as predictors.
- Do you want any additional preprocessing (e.g., scaling, interaction terms) 

before fitting the model?
…

Agent is waiting for your feedback. Please provide instruction on how to handle missing values

Your response:

Drop rows with any missing values. Proceed with logistic regression.

Submit Response

Agent's Thought Process...
I will update the plan to reflect the next steps: 
…

Agent's Thought Process...
I will drop all rows containing any missing values, verify the cleaned data shape
and missingness, then fit a logistic regression using statsmodels (Logit) …

Code Execution
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# Load the data (already loaded previously, but reload to ensur
df = pd.read_csv("MED_Score_data.csv")
# 1. Drop rows with any missing values
df_clean = df.dropna()
…

Final Analysis Report

Figure 3: (A) The user interface displaying the agent’s transparent, step-by-step analysis (B) Plots and final
report created by the Analysis Agent.
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Table 1: A result comparison between a human expert and the UKB Agent for CKD

Variable Source Estimate Odds Ratio (OR) 95% CI for OR p-value

MED Score
Expert -0.1515 0.859 (0.822, 0.898) 1.83e-11
UKB Agent -0.1515 0.859 (0.822, 0.898) <0.001

Age
Expert 0.1158 1.123 (1.113, 1.133) <2e-16
UKB Agent 0.1158 1.123 (1.113, 1.133) <0.001

Sex (male=1)
Expert 0.2386 1.269 (1.138, 1.416) 8.71e-05
UKB Agent 0.2386 1.269 (1.138, 1.416) <0.001

BMI
Expert 0.0891 1.093 (1.082, 1.104) <2e-16
UKB Agent 0.0891 1.093 (1.082, 1.104) <0.001

0.898]), with all covariates being significant predic-527

tors (p < 0.001). The complete, step-by-step agentic528

analysis, including all generated code and intermedi-529

ate observations, is available in the Supplementary530

file.531

Crucially, the results produced by the agent follow-532

ing this Human-in-the-loop directive were bit-for-bit533

identical to an independent analysis conducted by a534

human expert following the same protocol (Table 1).535

This validates the agent’s ability to perfectly repli-536

cate expert-level analysis when precisely guided by537

the researcher, guaranteeing both scientific validity538

and run-to-run consistency.539

4. Discussion540

A cornerstone of our framework is the systematic541

workflow for phenotyping, designed to ensure com-542

prehensive field discovery. The manual curation of543

phenotypes is not only labor-intensive but also sus-544

ceptible to inconsistencies that can compromise scien-545

tific validity. As highlighted in (Huang et al., 2021),546

minor variations in cohort definitions can lead to sta-547

tistically significant shifts in study outcomes. Our548

Hybrid BFS-LLM algorithm mitigates this risk. By549

combining the exhaustive nature of BFS with the se-550

mantic pruning of LLM, our method ensures that551

no relevant data fields are overlooked. However, the552

choice of model and search strategy presents signifi-553

cant trade-offs, as shown in Table A1. For the ’Fruit’554

item, using the BFS-LLM approach, the advanced555

gpt-5-mini-2025-08-07 model took over 14 min-556

utes but comprehensively identified 26 fields. In con-557

trast, the faster gpt-4.1-mini-2025-04-14 model558

completed in under 4 minutes but found only 2 fields.559

Our alternative embedding-based search method re-560

solves this trade-off, offering both high speed (1-2561

minutes) and high comprehensiveness (27-28 fields) 562

regardless of the model used. 563

Despite its promise, our framework has limitations. 564

The agent’s analytical sophistication, while compe- 565

tent, may not yet match the nuanced judgment of 566

a human expert in selecting optimal statistical mod- 567

els for complex scenarios. Moreover, the validity of 568

the output fundamentally depends on the quality of 569

the initial user-provided hypothesis. The system au- 570

tomates the process but cannot correct for a scien- 571

tifically flawed premise. Finally, its performance re- 572

lies on the accuracy of the LLM and the clarity of 573

the public documentation for the biobank data fields. 574

Human oversight, therefore, remains essential for val- 575

idating the final results. 576

Looking forward, we envision this framework as 577

a foundational step toward the paradigm of an AI 578

co-scientist (Swanson et al., 2025; Gottweis et al., 579

2025). Our next plans involve extending the frame- 580

work’s capabilities. First, we will adapt the system to 581

other large-scale biobanks, such as the All of Us Re- 582

search Program (Investigators, 2019), by developing 583

new data-parsing modules. Second, we aim to incor- 584

porate multi-modal data types, including genomics 585

and medical imaging, to enable more complex, in- 586

tegrative analyses. The long-term vision, inspired 587

by the agentic science movement (Wei et al., 2025), 588

is to evolve the agent from a hypothesis-tester to a 589

hypothesis-generator. In conclusion, we have devel- 590

oped and demonstrated an autonomous agentic sys- 591

tem that successfully automates the end-to-end re- 592

search lifecycle, from computable phenotype genera- 593

tion in large-scale biobanks to final statistical analysis 594

and reporting. This work represents a foundational 595

step toward a new paradigm of biomedical research, 596

positioning AI agents as powerful co-scientists capa- 597

ble of accelerating our understanding of the determi- 598

nants of human health and disease. 599
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Appendix A. Figure and Table

Figure A1: Fields comparison between Zhu et al. (2025) and our systems for each component in MED score

Table A1: Comparison of methods and models in terms of the time and performance.
Method Model Time Count Items

BFS-LLM
gpt-5-mini-2025-08-07 14’16” 26 26089(Apples and pears), 26090(Berries), 26091(Citrus), 26092(Dried fruit),

26095(Fruit juice), 26093(Other fruit), 26094(Stewed fruit), 100190(Orange juice
intake), 100200(Grapefruit juice intake), 100210(Pure fruit/vegetable juice intake),
100220(Fruit smoothie intake), 104410(Stewed fruit intake), 104430(Dried fruit in-
take), 104440(Mixed fruit intake), 104450(Apple intake), 104460(Banana intake),
104470(Berry intake), 104520(Melon intake), 104530(Orange intake), 104540(Sat-
suma intake), 104560(Pear intake), 104570(Pineapple intake), 104580(Plum in-
take), 104590(Other fruit intake), 1309(Fresh fruit intake), 1319(Dried fruit intake)

gpt-4.1-mini-2025-04-14 3’58” 2 1309(Fresh fruit intake), 1319(Dried fruit intake)

Embedding-based
gpt-5-mini-2025-08-07 2’24” 28 1309(Fresh fruit intake), 1319(Dried fruit intake), 100026(Daily dietary data not

credible), 104400(Fruit consumers), 104450(Apple intake), 104460(Banana intake),
104470(Berry intake), 104440(Mixed fruit intake), 104430(Dried fruit intake),
104520(Melon intake), 104540(Satsuma intake), 104560(Pear intake), 104500(Grape
intake), 104510(Mango intake), 104550(Peach/nectarine intake), 104570(Pineap-
ple intake), 104480(Cherry intake), 104420(Prune intake), 104580(Plum in-
take), 104410(Stewed fruit intake), 100210(Pure fruit/vegetable juice in-
take), 100220(Fruit smoothie intake), 26089(Apples and pears), 26090(Berries),
26092(Dried fruit), 26093(Other fruit), 26094(Stewed fruit), 26095(Fruit juice)

gpt-4.1-mini-2025-04-14 1’03” 27 1309(Fresh fruit intake), 1319(Dried fruit intake), 104450(Apple intake),
104460(Banana intake), 104540(Satsuma intake), 104560(Pear intake),
104550(Peach/nectarine intake), 104570(Pineapple intake), 104480(Cherry in-
take), 104420(Prune intake), 104580(Plum intake), 104440(Mixed fruit intake),
104470(Berry intake), 104430(Dried fruit intake), 104490(Grapefruit intake),
104500(Grape intake), 104410(Stewed fruit intake), 104400(Fruit consumers),
100220(Fruit smoothie intake), 100210(Pure fruit/vegetable juice intake),
104590(Other fruit intake), 26093(Other fruit), 26092(Dried fruit), 26094(Stewed
fruit), 26089(Apples and pears), 26090(Berries), 26091(Citrus)
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Appendix B. More phenotypes varing770

complexity771

B.1. Alcohol Consumption Replication772

Query: Consumption of wine ≤ 150ml per773

day774

• Reference Fields: 1568 (Average weekly red775

wine intake), 1578 (Average weekly champagne776

plus white wine intake), 4407 (Average monthly777

red wine intake), 4418 (Average monthly cham-778

pagne plus white wine intake)779

• Selected Fields: 100590 (Red wine intake),780

100630 (Rose wine intake), 100670 (White wine781

intake), 100720 (Fortified wine intake), 20096782

(Size of red wine glass drunk), 20097 (Size of783

rose wine glass drunk), 20095 (Size of white wine784

glass drunk), 1568 (Average weekly red wine785

intake), 1578 (Average weekly champagne plus786

white wine intake), 1608 (Average weekly for-787

tified wine intake), 4407 (Average monthly red788

wine intake), 4418 (Average monthly champagne789

plus white wine intake), 4451 (Average monthly790

fortified wine intake), 1558 (Alcohol intake fre-791

quency.), 100560 (Other drink intake)792

• Rule Rationale: Return 1 when the rule es-793

tablishes that typical daily wine consumption is794

≤ 150 ml based on prioritized sources: (1) yes-795

terday counts with size checks, (2) weekly aver-796

ages scaled to daily with size checks, (3) monthly797

averages scaled to daily with size checks, (4)798

direct ’no alcohol yesterday’ or ’never drinks’799

indicators. If none of the conditions indicat-800

ing ≤ 150 ml/day are met or data are miss-801

ing/uninterpretable, the rule returns 0.802

Query: Consumption of 4% ABV pint beer ≤803

1 per day804

• Reference Fields: 1588 (Average weekly beer805

plus cider intake)806

• Selected Fields: 1588 (Average weekly beer807

plus cider intake), 4429 (Average monthly beer808

plus cider intake), 100710 (Beer/cider intake),809

26067 (Beer and cider), 100580 (Alcohol con-810

sumed), 1558 (Alcohol intake frequency.)811

• Rule Rationale: If any of the available, trans-812

formed sources indicate beer/cider consumption813

≤ 1 pint per day (or an explicit non-drinker flag814

yields 0), classify as 1 (≤ 1 pint/day). Other- 815

wise classify as 0. Missing/unavailable sources 816

simply fail their respective conditions; the OR 817

logic ensures classification if any reliable indica- 818

tor supports ≤ 1 pint/day. 819

Query: Consumption of spirits ≤ 45ml per 820

day 821

• Reference Fields: 1598 (Average weekly spir- 822

its intake), 4440 (Average monthly spirits intake) 823

• Selected Fields: 1598 (Average weekly spirits 824

intake), 4440 (Average monthly spirits intake), 825

100730 (Spirits intake), 26138 (Spirits), 100580 826

(Alcohol consumed) 827

• Rule Rationale: Evaluate whether any avail- 828

able, non-missing source yields an estimated 829

daily spirits volume ≤ 45 ml. Order/structure 830

rationale: each source is checked only if it carries 831

a usable numeric signal (we exclude known neg- 832

ative/missing codes using explicit checks). For 833

weekly/monthly measures we convert measures 834

→ ml and normalize to daily; for categorical yes- 835

terday responses we map codes to numeric mea- 836

sures then to ml; for 24h grams we convert to 837

ml via 1 g ≈ 1 ml. An explicit ’No’ to ’Alcohol 838

consumed yesterday’ (100580 == 0) is treated 839

as 0 ml and thus satisfies ≤ 45 ml. If none of 840

these conditions are true (no quantitative evi- 841

dence of ≤ 45 ml), the rule returns 0 (not ≤ 842

45 ml). This is intentionally conservative: only 843

explicit quantitative evidence or an explicit ’No’ 844

leads to classification as ≤ 45 ml/day. 845

Query: Consumption of fortified wine ≤ 846

90ml per day 847

• Reference Fields: 1608 (Average weekly forti- 848

fied wine intake), 4451 (Average monthly forti- 849

fied wine intake) 850

• Selected Fields: 26151 (Fortified wine), 851

100720 (Fortified wine intake), 1608 (Average 852

weekly fortified wine intake), 4451 (Average 853

monthly fortified wine intake), 20414 (Frequency 854

of drinking alcohol) 855

• Rule Rationale: Priority-based evaluation: (1) 856

If a 24-hour fortified-wine ml estimate exists, 857

classify based on that (≤ 90 ml ⇒ 1). (2) Else if 858

yesterday’s glass count exists, convert to ml and 859
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classify. (3) Else if weekly average exists, convert860

to ml/day and classify. (4) Else if monthly aver-861

age exists, convert and classify. (5) Else if par-862

ticipant reports ’Never’ drinking, infer 0 ml/day863

and classify as ≤ 90. If none of the sources864

provide usable information, the overall rule re-865

turns 0 (value if false) to avoid falsely labeling866

as low consumption; alternatively users may set867

such cases to missing during downstream anal-868

yses. Missing-code handling: in preprocessing,869

UKB missing codes (-1, -3, -10, -818) must be870

converted to null so that the equality checks to871

‘*’ reflect missingness.872

B.2. Sedentary Behavior Replication873

Query: Sum of time spent watching TV or874

using computer less than 2 hours per day875

• Reference Fields: 1070 (Time spent watching876

television (TV)), 1080 (Time spent using com-877

puter)878

• Selected Fields: 1070 (Time spent watching879

television (TV)), 1080 (Time spent using com-880

puter), 40031 (Sedentary - Day hour average),881

40043 (Sedentary - Day average), 1120 (Weekly882

usage of mobile phone in last 3 months)883

• Rule Rationale: The rule returns 1 (true)884

when any available data source indicates885

combined TV+computer time is less than886

2 hours/day by the prioritized hierar-887

chy: (A) direct combined self-report (to-888

tal tv computer hours) ¡ 2; (B) single self-report889

(TV or computer) ¡ 2 when the other is890

missing; (C) accelerometer-derived evening891

sedentary hours (from 40031) ¡ 2 as an ob-892

jective evening-window proxy; (D) derived893

total sedentary hours/day from 40043 ¡ 2 as894

a broader objective fallback; (E) conservative895

mobile-phone-hours/day from 1120 ¡ 2 as final896

fallback. Missing special codes (-1,-3,-10) are897

treated as NULL and do not count toward898

numeric comparisons. If none of the conditions899

can be evaluated as true (including the case900

that no data are available), the rule resolves to901

0 to provide a defined output for downstream902

analyses. For transparency, analysts may wish903

to additionally record which source produced904

the classification (primary vs fallback) and905

to perform sensitivity analyses excluding the906

weakest proxies (accelerometry and phone 907

proxies). 908

B.3. GAD-7 Replication 909

Item 1. Query: Feeling nervous, anxious, or 910

on edge 911

• Reference Fields: 20506 (Recent feelings or 912

nervousness or anxiety) 913

• Selected Fields: 28735 (Feeling anxious, ner- 914

vous or on edge over the last 2 weeks), 30484 915

(Frequency of feeling nervous, anxious or on edge 916

in last 2 weeks), 29058 (Recent feelings or ner- 917

vousness or anxiety), 20506 (Recent feelings or 918

nervousness or anxiety), 23045 (Very nervous 919

mood over last week), 2070 (Frequency of tense- 920

ness / restlessness in last 2 weeks), 1970 (Ner- 921

vous feelings) 922

• Rule Rationale: Selected fields (ordered by 923

priority and reason): 924

1) 28735 — ”Feeling anxious, nervous or on edge 925

over the last 2 weeks” (n=195,605). Chosen as 926

primary because it directly matches the wording, 927

timeframe (last 2 weeks, same as GAD-7), and 928

has the largest respondent count among exact 929

matches. 930

2) 30484 — ”Frequency of feeling nervous, anx- 931

ious or on edge in last 2 weeks” (n=179,118). 932

Direct match of wording/timeframe from a dif- 933

ferent online module; used as the first fallback 934

when 28735 is missing. 935

3) 29058 — ”Recent feelings or nervousness or 936

anxiety” (n=170,619). Direct mental well-being 937

item matching wording/timeframe; used as the 938

next fallback. 939

4) 20506 — ”Recent feelings or nervousness or 940

anxiety” (n=157,235). Same content but differ- 941

ent encoding (1-4). Included as another fallback; 942

will be remapped to 0-3. 943

5) 23045 — ”Very nervous mood over last week” 944

(n=211,849). Different timeframe (last week vs 945

last 2 weeks) and different response scale (1-5), 946

but semantically highly related. Included as a 947

tertiary fallback when all exact 2-week items are 948

missing. 949

6) 2070 — ”Frequency of tenseness / restlessness 950

in last 2 weeks” (n=501,274). This asks about 951

tenseness/restlessness (closely related symptom 952
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domain and same 2-week timeframe). Included953

as a lower-priority fallback because wording is954

not identical but clinically relevant and high cov-955

erage.956

7) 1970 — ”Nervous feelings” (binary life-957

time/trait on touchscreen; n=501,278). This is a958

trait / lifetime question (not 2-week frequency)959

but directly asks about being a ’nervous person’.960

Included only as the last-resort fallback to max-961

imize coverage; mapped conservatively to indi-962

cate presence vs absence.963

Create a single numeric value per participant964

equal to (priority weight + mapped item score)965

for each candidate field; take the max across966

fields so that (because weights are set in de-967

creasing priority) the highest-priority available968

response is selected even when lower-priority re-969

sponses have higher raw scores.970

Item 2. Query: Not being able to stop or971

control worrying972

• Reference Fields: 20509 (Recent inability to973

stop or control worrying)974

• Selected Fields: 28736 (Not being able to stop975

or control worrying over the last 2 weeks), 29059976

(Recent inability to stop or control worrying),977

30485 (Frequency of not being able to stop or978

control worrying in last 2 weeks), 20509 (Re-979

cent inability to stop or control worrying), 20537980

(Frequency of difficulty controlling worry during981

worst period of anxiety), 20539 (Frequency of in-982

ability to stop worrying during worst period of983

anxiety)984

• Rule Rationale: Harmonise each field to the985

canonical 0-3 GAD-7 item scale, map all known986

UKB missing codes and ’prefer not to an-987

swer’/’do not know’ variants to null, then com-988

pute the maximum non-null value across the har-989

monised item instances. Max is chosen because990

(a) it returns a single interpretable 0-3 score, (b)991

it is robust to missingness (any available instance992

yields a value), and (c) it is conservative in cap-993

turing the highest reported symptom frequency994

across assessments/timeframes—useful for anal-995

yses where presence/severity matters. The ag-996

gregation uses only the selected fields to avoid997

dilution by non-equivalent items.998

Item 3. Query: Worrying too much about 999

different things 1000

• Reference Fields: 20520 (Recent worrying too 1001

much about different things) 1002

• Selected Fields: 29060 (Recent worrying too 1003

much about different things), 20520 (Recent wor- 1004

rying too much about different things), 28737 1005

(Little interest or pleasure in doing things over 1006

the last 2 weeks), 29058 (Recent feelings or ner- 1007

vousness or anxiety), 20506 (Recent feelings or 1008

nervousness or anxiety), 30484 (Frequency of 1009

feeling nervous, anxious or on edge in last 2 1010

weeks) 1011

• Rule Rationale: Compute the (weighted) av- 1012

erage of all available harmonised sources mapped 1013

to the 0-3 scale. Primary exact-match field 1014

(29060) is duplicated to weight it more heavily: 1015

when present it dominates the average. The fi- 1016

nal aggregated numeric value is mapped to the 1017

integer 0-3 via thresholds: ≥ 2.5 → 3, ≥ 1.5 1018

→ 2, ≥ 0.5 → 1, else 0. This yields a single 1019

item score consistent with the original 0-3 scor- 1020

ing, while maximising data coverage through in- 1021

clusion of equivalent items and alternate codings 1022

(which are harmonised to 0-3). Missing/opt-out 1023

codes are mapped to null so they are ignored in 1024

the averaging. If no selected fields are available, 1025

the aggregation yields null (no data). 1026

Item 4. Query: Trouble relaxing 1027

• Reference Fields: 20515 (Recent trouble re- 1028

laxing) 1029

• Selected Fields: 29061 (Recent trouble relax- 1030

ing), 20515 (Recent trouble relaxing), 29062 (Re- 1031

cent restlessness), 20516 (Recent restlessness), 1032

2070 (Frequency of tenseness / restlessness in 1033

last 2 weeks), 29058 (Recent feelings or nervous- 1034

ness or anxiety) 1035

• Rule Rationale: All selected fields are trans- 1036

formed to the same 0-3 scale and missing/opt- 1037

out codes are mapped to null (so they are ig- 1038

nored by aggregation). The aggregation ’max’ 1039

then returns the highest non-null value among 1040

these harmonized inputs. This implements a pri- 1041

oritized fallback implicitly (direct item responses 1042

are identical or aligned to the scale; related 1043

items will only influence the result when the di- 1044

rect item is absent). Using ’max’ minimizes the 1045
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chance of returning an artificially low score when1046

one instrument captured higher symptom sever-1047

ity; it favors capturing present symptom severity1048

across instruments when direct item is missing.1049

Item 5. Query: Being so restless that it is1050

hard to sit still1051

• Reference Fields: 20516 (Recent restlessness)1052

• Selected Fields: 29062 (Recent restless-1053

ness), 20516 (Recent restlessness), 29009 (Recent1054

changes in speed/amount of moving or speak-1055

ing), 20518 (Recent changes in speed/amount of1056

moving or speaking), 2070 (Frequency of tense-1057

ness / restlessness in last 2 weeks), 120111 (Mov-1058

ing or speaking slower or faster than usual over1059

the last two weeks)1060

• Rule Rationale: Compute the average of all1061

non-missing standardized 0-3 item scores from1062

multiple questionnaire instances and wordings1063

that capture ’restlessness’ or closely overlapping1064

fidgety/movement symptoms. Mapping rules1065

convert each instrument’s coding to the com-1066

mon 0-3 scale; missing/prefer-not-to-answer/do-1067

not-know codes are mapped to null and thus ex-1068

cluded from the average. Using the average (ig-1069

noring nulls) provides an integrated single score1070

between 0 and 3 that maximizes participant in-1071

clusion when some questionnaire versions are1072

missing.1073

Item 6. Query: Becoming easily annoyed or1074

irritable1075

• Reference Fields: 20505 (Recent easy annoy-1076

ance or irritability)1077

• Selected Fields: 29063 (Recent easy annoy-1078

ance or irritability), 20505 (Recent easy annoy-1079

ance or irritability), 20494 (Felt irritable or had1080

angry outbursts in past month), 20422 (More ir-1081

ritable than usual during worst period of anxi-1082

ety), 4653 (Ever highly irritable/argumentative1083

for 2 days), 29050 (Ever had period extreme ir-1084

ritability), 20502 (Ever had period extreme ir-1085

ritability), 1940 (Irritability), 28726 (Currently1086

suffering from problems relating to mood, anx-1087

iety and emotions), 29049 (Ever had period of1088

mania / excitability), 29057 (Problems caused by1089

manic or irritable periods - aspects of life were1090

affected), 29056 (Problems caused by manic or 1091

irritable periods - treatment was required) 1092

• Rule Rationale: If encoded priority max ex- 1093

ists (≥ 0) we derive the integrated 0-3 score 1094

by taking encoded priority max modulo 10 (be- 1095

cause each transformed field was encoded as off- 1096

set + base score with offsets being multiples of 1097

10). This implements the fallback: the highest- 1098

priority available field determines the encoded 1099

value (via offset), and modulo extracts the orig- 1100

inal 0-3 score. If encoded priority max is miss- 1101

ing (no relevant field available or all mapped to 1102

null), the rule returns NULL. All UKB missing 1103

codes (e.g., -3, -818, -1, -121, -4) were explic- 1104

itly mapped to null in the categorical mappings 1105

above so they are treated as missing and will not 1106

contribute to encoded priority max. 1107

Item 7. Query: Feeling afraid as if 1108

something awful might happen 1109

• Reference Fields: 20512 (Recent feelings of 1110

foreboding) 1111

• Selected Fields: 29064 (Recent feelings of fore- 1112

boding), 20512 (Recent feelings of foreboding), 1113

29058 (Recent feelings or nervousness or anxi- 1114

ety), 20506 (Recent feelings or nervousness or 1115

anxiety), 28735 (Feeling anxious, nervous or on 1116

edge over the last 2 weeks), 30484 (Frequency 1117

of feeling nervous, anxious or on edge in last 2 1118

weeks), 29060 (Recent worrying too much about 1119

different things), 20520 (Recent worrying too 1120

much about different things), 29059 (Recent in- 1121

ability to stop or control worrying), 20509 (Re- 1122

cent inability to stop or control worrying) 1123

• Rule Rationale: Aggregate (max) across 1124

harmonised 0-3 values drawn from the direct 1125

item, its assessment-centre equivalent (trans- 1126

formed), and conceptually-close anxiety items 1127

(and their assessment-centre equivalents, trans- 1128

formed). Max is chosen to capture the high- 1129

est reported severity across available sources 1130

(conservative approach) and to provide a sin- 1131

gle numeric value when any source is present. 1132

Missing/opt-out codes are mapped to null before 1133

aggregate so they do not affect the result. 1134
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B.4. RSD-4 Replication1135

Item 1. Query: Frequency of depressed1136

mood in last 2 weeks1137

• Reference Fields: 2050 (Frequency of de-1138

pressed mood in last 2 weeks)1139

• Selected Fields: 2050 (Frequency of depressed1140

mood in last 2 weeks), 28738 (Feeling down, de-1141

pressed or hopeless over the last 2 weeks), 304871142

(Frequency of feeling down, depressed or hope-1143

less in last 2 weeks), 29003 (Recent feelings of1144

depression), 120105 (Feeling down, depressed, or1145

hopeless over the last two weeks), 20510 (Recent1146

feelings of depression)1147

• Rule Rationale: Compute the maximum har-1148

monized item value across equivalent ’feeling1149

down/depressed/hopeless in last 2 weeks’ ques-1150

tions. Each field has been transformed to the1151

canonical 1-4 scale (1=Not at all, 4=Nearly ev-1152

ery day) with explicit mapping of UKB miss-1153

ing codes to null. ’Max’ was chosen to capture1154

the highest reported recent frequency across dif-1155

ferent instruments (a conservative approach to-1156

wards identifying recent depressed mood when1157

multiple assessments exist).1158

Item 2. Query: Frequency of1159

unenthusiasm/disinterest in last 2 weeks1160

• Reference Fields: 2060 (Frequency of unen-1161

thusiasm / disinterest in last 2 weeks)1162

• Selected Fields: 2060 (Frequency of unenthu-1163

siasm / disinterest in last 2 weeks), 20514 (Re-1164

cent lack of interest or pleasure in doing things),1165

28737 (Little interest or pleasure in doing things1166

over the last 2 weeks), 30486 (Frequency of hav-1167

ing little interest or pleasure in doing things in1168

last 2 weeks), 120104 (Little interest or plea-1169

sure in doing things over the last two weeks),1170

29002 (Recent lack of interest or pleasure in do-1171

ing things)1172

• Rule Rationale: If the aggregated ’rds4 value’1173

(the max of transformed equivalent items) is1174

within the valid 1-4 range then return that value1175

as the integrated Item 2 score. If no selected1176

source provides a valid response (all are NULL1177

/ missing / prefer-not-to-answer), return NULL.1178

Returning the maximum across available equiv-1179

alent items preserves severity information and1180

maximizes coverage because it accepts any valid 1181

contribution from the prioritized set of fields. 1182

Item 3. Query: Frequency of 1183

tenseness/restlessness in last 2 weeks 1184

• Reference Fields: 2070 (Frequency of tense- 1185

ness / restlessness in last 2 weeks) 1186

• Selected Fields: 2070 (Frequency of tenseness 1187

/ restlessness in last 2 weeks), 30484 (Frequency 1188

of feeling nervous, anxious or on edge in last 2 1189

weeks), 29062 (Recent restlessness), 20516 (Re- 1190

cent restlessness), 20506 (Recent feelings or ner- 1191

vousness or anxiety), 28735 (Feeling anxious, 1192

nervous or on edge over the last 2 weeks), 29061 1193

(Recent trouble relaxing), 20515 (Recent trou- 1194

ble relaxing), 20505 (Recent easy annoyance or 1195

irritability) 1196

• Rule Rationale: Map each selected source to 1197

a common 1-4 scale representing frequency in 1198

the past 2 weeks (1=Not at all ... 4=Nearly ev- 1199

ery day). Use aggregation type ’max’ to select 1200

the highest available mapped frequency across 1201

sources for each participant. This preserves the 1202

construct (frequency of tenseness/restlessness) 1203

while maximizing data coverage across assess- 1204

ment branches and questionnaires; it treats mul- 1205

tiple parallel items as fallbacks and prioritizes 1206

the strongest recent report. 1207

Item 4. Query: Frequency of 1208

tiredness/lethargy in last 2 weeks 1209

• Reference Fields: 2080 (Frequency of tired- 1210

ness / lethargy in last 2 weeks) 1211

• Selected Fields: 2080 (Frequency of tiredness 1212

/ lethargy in last 2 weeks), 20519 (Recent feel- 1213

ings of tiredness or low energy), 29005 (Recent 1214

feelings of tiredness or low energy), 120107 (Feel- 1215

ing tired or having little energy over the last two 1216

weeks), 30575 (Frequency of fatigue over the last 1217

two weeks), 30568 (Feelings of tiredness during 1218

waking time) 1219

• Rule Rationale: After mapping each field to 1220

a common 1-4 scale, ’max’ captures the highest 1221

reported frequency/severity of tiredness across 1222

sources. The post-aggregation conditions simply 1223

return the aggregated numeric severity when it 1224

equals 1-4, and null otherwise (catch-all). This 1225
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approach increases the number of participants1226

with a usable score while remaining transpar-1227

ent about transformations and handling of miss-1228

ing/special codes.1229
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