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Abstract

The translation of clinical and lifestyle con-
cepts into computable phenotypes is a critical
yet manually intensive bottleneck in leverag-
ing large-scale biomedical datasets like the UK
Biobank. This process is slow, requires deep do-
main expertise, and suffers from a lack of scal-
ability and reproducibility, especially for clin-
icians unfamiliar with large-scale data analy-
sis. We propose and develop an autonomous,
dual-component agentic system designed to au-
tomate the research workflow from hypothe-
sis to report. The first component, the large
language model (LLM)-based data preprocess-
ing framework, systematically searches the UK
Biobank’s public data dictionary, translating
high-level clinical and lifestyle concepts into
machine-readable rules. The second compo-
nent, the Analysis Agent, autonomously exe-
cutes the statistical analysis plan and synthe-
sizes the findings. The framework is further
validated by successfully phenotyping and an-
alyzing several clinical and lifestyle screeners.
This work demonstrates a viable end-to-end
system that enhances scalability and democra-
tizes complex data analysis with transparency,
representing a foundational step toward a new
paradigm of Al-driven scientific discovery.
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1. Introduction

The advent of large-scale biomedical repositories,
such as the UK Biobank (UKB) (Bycroft et al., 2018),
has provided unprecedented opportunities for popu-
lation health research. These resources contain deep
genetic, imaging, and clinical data for hundreds of
thousands of individuals, enabling the study of com-
plex interactions between lifestyle, environment, and
disease. A critical component of leveraging these
datasets is phenotyping: the process of translating
abstract health concepts or clinical instrument scores
into precise, computable definitions using the avail-
able data fields.

However, the traditional process of phenotyping
is a significant bottleneck (Li et al., 2024). First,
it is a manual, resource-intensive endeavor. For in-
stance, when attempting to define a lifestyle with a
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(A) User Hypothesis:
Is Mediterranean diet associated with CKD?
“CKD ~ MED + Covariates(Age, Sex, BMI, ...)”

biobank’ — — —

Variable C:

UKB Field Mapping

Field Coding Rule Generation

Cohort Table Construction

ibiobank

Cov2 (Sex) Cova (BMI) Y(CKD)
1 5 a7 M 216 1
12 39 M 238

2 o
3 1 43 F NaN o
4 1

3 NaN ¥ 32.1

Processed Data Example

(B)

» Code Execution
<execute>

import pandas as pd

df = pd.read_csv("data.csv")

print(df.head())
</execute>
Plan Analysis Agent [ Observation Result

<observation>

Coding

eid MEDAS age sex bmi CKD
0547M21.61
</observation>

“| Analysis Plan
<plan>
1.[V]plan1

2./ plan2 Summary
3.[ ]plan3
</plan> il Results Interpretation
<summary>
**1. Detailed Visual Analysis:** The odd ratio
plot shows ...
**2. Biological Implication:** The BMI and CKD
is positively associated (p<0.05) ...
</summary>
Proprietary LLM
Conclusion:

" . . . Open-source LLM
Is Mediterranean diet associated with CKD? True

Algorithmic Logic

Figure 1: An overview of UKB Agent. The system is composed of two main components. (A) The LLM-based
data preprocessing workflow translates a high-level user hypothesis into a curated, analysis-ready
dataset by automatically generating phenotyping rules from the UK Biobank data dictionary. (B)
The Analysis Agent takes the curated data and autonomously executes a statistical analysis plan to
test the hypothesis, producing a final conclusion. It operates in a Human-in-the-loop collaboration
mode, where the user confirms specific analysis details such as how to handle missing data or which
statistical models to apply before the analysis is performed.

medical questionnaire or screening system using avail-
able UK Biobank fields, a researcher must manually
search for suitable fields that can serve as proxies
for each item in the questionnaire. This process is
not only susceptible to inconsistencies but can also
lead to the omission of crucial data fields. Further-
more, phenotyping algorithms for the same condition
often vary significantly between studies, which com-
plicates meta-analyses (Patel et al., 2022; Torralbo
et al., 2025; Kong et al., 2022; Wei et al., 2024). To
address these issues, several computational tools have
been developed (Hanscombe et al., 2019; Kiral et al.,
2020; Yeung et al., 2022). While these tools have been
developed to do either data processing or analysis in
UK Biobank data, they still depend on a manually
defined and curated phenotype and are not entirely
automated.

Recently, the paradigm of autonomous Al agents
has emerged as a powerful tool for complex problem-
solving in scientific domains (Gottweis et al., 2025; Lu
et al., 2024; Gridach et al., 2025). These agents, of-
ten powered by Large Language Models (LLMs), can
devise plans, use tools, and iteratively work towards
a goal with minimal human intervention. Ground-
breaking research such as Biomni has demonstrated
the potential of multi-agent systems to perform com-
plex bioinformatics tasks by planning and execut-

ing code in a self-correcting manner (Huang et al.,
2025). Similarly, other studies have shown agents
capable of designing experiments and searching lit-
erature, heralding a new era of automated scientific
discovery (Boiko et al., 2023; Swanson et al., 2025;
Gao et al., 2024).

To address the challenges in phenotyping and
analysis, we propose an agentic framework for au-
tomated data curation and analysis in large-scale
biobanks. While the core agentic logic—including
relevant field refinement, coding rule generation, au-
tomated analysis—is designed to be portable across
biobank infrastructures, we present the UK Biobank
as the first validation case study for this framework.
This system, referred to as the UKB Agent in this
context, is designed to automate the research lifecycle
from hypothesis to validation, aiding clinicians and
researchers who may be unfamiliar with the intrica-
cies of large-scale biobank data architectures. By pre-
senting a scenario analyzing the association between
a lifestyle factor and a disease outcome, this study
introduces a more scalable, transparent, and accessi-
ble approach to biomedical data science. We believe
this agent-based methodology is a promising step to-
ward accelerating the pace of discovery and uncover-
ing novel insights into the determinants of health and
disease.
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2. Method

Our framework is designed to automate the research
lifecycle, from the formulation of a structured hy-
pothesis to the final analytical report. The entire
process is initiated by the user, who must provide a
hypothesis structured with three key components:

e Exposure: A high-level concept for the expo-
sure of interest, typically the name of a clini-
cal or lifestyle screening instrument (e.g., 'MED’,
'PHQ-9’, ’Alcohol consumption’).

e Outcome: A list of ICD-9 and ICD-10 codes
to define disease outcome (e.g., [585.9, N18.0,
N18.5] for Chronic Kidney Disease).

e Covariates: A list of confounding factors for
statistical adjustment (e.g., ’age’, ’sex’, 'BMI’).

For instance, a user hypothesizes an “association
between CKD (defined by specific ICD codes) and
Mediterranean diet (as measured by MED), with co-
variates age, sex, and BMI.”

To automate the full research lifecycle from hy-
pothesis to conclusion, we designed and implemented
a dual-component framework. The first component,
the LLM-based data preprocessing workflow, is en-
gineered to translate abstract variables from a re-
search hypothesis into computable definitions using
the UKB data dictionary. The second component,
the Analysis Agent, receives the curated, analysis-
ready dataset from the Phenotyping Framework. It
then autonomously performs the statistical analyses
required to test the user’s initial hypothesis.

2.1. LLM-based Data Preprocessing
Workflow

The primary objective of the data preprocess-
ing workflow is to find relevant fields in the UK
Biobank for each variable within a given hypoth-
esis and to generate rational rules for their cod-
ing using LLMs. We used the proprietary LLM,
gpt-5-mini-2025-08-07 model, in this stage. For
each variable, the framework iteratively executes the
following phases to produce a set of variable coding
rules. These rules are subsequently applied to the
Biobank to generate the final curated data for anal-
ysis (Figure 1A).

2.1.1. DESCRIPTION OF THE UK BIOBANK DATA
SHOWCASE

All data processing and mapping operations
in our workflow are performed using the pub-
licly available UK Biobank Data Showcase
(https://biobank.ndph.ox.ac.uk/showcase/).  This
showcase serves as a comprehensive data dictionary
that details the thousands of variables available to
researchers.

The showcase is organized hierarchically. At the
highest level are Category, which group related infor-
mation into broad domains such as ”Biological sam-
ples” or ”Genomics”. Within each Category are nu-
merous Data Field, which represent the individual
variables. Each Data Field is annotated with its
descriptive Notes, and for categorical variables, its
Coding information. The Coding provides a direct
mapping between numerical codes and their human-
readable meanings.

2.1.2. PHASE 1: VARIABLE CONCEPTUALIZATION

The data preprocessing workflow begins with the au-
tomated comprehension of each variable. The goal is
to deconstruct such a concept into a structured spec-
ification. Lifestyle phenotypes, such as the Mediter-
ranean Diet (MED) score, are composite scores de-
rived from multiple pieces of information, requiring
detailed deconstruction. To address this, we employ
LLMs augmented with web search capabilities. The
system obtains the full name, description, a complete
list of questionnaire items, and the precise encoding
logic for each item via web search. Simple phenotypes
like age or sex are identified as single, direct measure-
ments and bypass this intensive deconstruction.

2.1.3. PHASE 2: SEMANTIC UKB Field MAPPING

The core of the workflow is the accurate mapping
of each variable to its proxies within the UKB data.
With a structured definition for each variable compo-
nent, the workflow maps them to the relevant UKB
data fields using a Breadth-First Search-LLM (BFS-
LLM) algorithm. The process begins with a BFS
traversal of the UKB Category hierarchy to ensure
a comprehensive search. For every Category, both it
and its sub-categories are gathered as a branch. The
model is provided with complete context, which in-
cludes the names, descriptions, and field lists of all
categories within the branch, to assess if the entire
branch is relevant to the target variable. If a Cate-
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gory and its sub-categories are considered to be irrel-
evant, the entire branch is pruned from the search,
significantly reducing the search space.

Upon reaching a relevant, Field-bearing Category
after BFS traversal, the system performs a final
Field-level Evaluation. For each relevant Category,
the system examines its Fields. It enriches each Field
by scraping its detailed Notes and Coding informa-
tion from the UKB showcase. This enriched context
is fed back to gpt-4.1-mini for high-speed, large-
volume initial field relevance screening. After this ini-
tial pass, gpt-5-mini, employing advanced reasoning
for final validation and selection, reviews all poten-
tially relevant fields for a single item and selects only
the most suitable ones that serve as proxies.

To further enhance efficiency, we have also imple-
mented an embedding-based search method as an
optional alternative to the initial Fields relevance
screening with BFS-LLM approach. This method
uses the abhinand/MedEmbed-base-v0.1 model to
compute semantic embeddings of Fields descriptions
and performs rapid similarity-based retrieval. This
option significantly reduces search time while main-
taining reasonable accuracy, providing users with a
flexible trade-off between speed and comprehensive-
ness.

2.1.4. PHASE 3: FIELD CODING RULE
GENERATION

In this phase, the verified mappings are translated
into executable JSON-based rules. For each item-
to-field mapping, an LLM is prompted with the
item’s encoding criteria and the coding details of the
mapped UKB Field. The LLM’s task is to generate
a precise rule that connects each field’s specific
value to a numeric score. For example, it translates
”Score 1 for consuming 4 or more tablespoons
of olive oil daily” into a machine-readable condi-
tion like {"field_id": "26110", "conditions":
{"operator": ">=", "value": 4}, "score": 1}.
Then LLM ensures that all relevant fields are logi-
cally combined to produce a single value based on
the encoding criteria.

2.1.5. PHASE 4: COHORT TABLE CONSTRUCTION

Once the rule sets for all variables in the hypothe-
sis are generated, they are systematically applied to
the raw UK Biobank dataset. This computational
phase executes the JSON rules against the large-scale

data table. For each participant, the workflow calcu-
lates the necessary variables, determines the outcome
status based on ICD codes, and extracts the values
for all specified covariates. The final output is an
analysis-ready cohort table where each row represents
a unique participant and each column represents a
fully processed and curated variable.

2.2. The Analysis Agent

Once the dataset is curated by the preprocessing
workflow, it is passed to the Analysis Agent, which is
responsible for conducting the scientific inquiry from
statistical analysis to final reporting. Instead of a
simple reactive loop, the agent is built upon a so-
phisticated, stateful, graph-based architecture that
ensures a structured and transparent, and secure an-
alytical framework.

To facilitate user interaction with the system, we
developed an intuitive web-based interface using the
Streamlit framework. The analytical workflow is
initiated when a user provides an initial request, such
as a research hypothesis and the path to their dataset,
through an interactive chat prompt.

2.2.1. CORE ARCHITECTURE: A STATEFUL
GRAPH-BASED APPROACH

The agent’s core is implemented as a state graph us-
ing the LangGraph library, functioning as a state ma-
chine that transitions between two primary states:
generation and ezecution. The generation state
serves as the reasoning engine, where the agent plans
its next move, interprets results, or synthesizes find-
ings. The ezecution state is the action engine, where
the agent interacts with its tools, primarily a Python
interpreter.

Crucially, to uphold the strict data privacy re-
quirements of the UK Biobank, all analytical tasks
are performed by a locally-hosted, open-source
LLM (ChatOllama with the gpt-oss:120b and
gemmad:27b model). This design ensures that no sen-
sitive, participant-level data is ever transmitted out-
side the researcher’s secure computational environ-
ment, guaranteeing data integrity and confidentiality.

2.2.2. THE STRUCTURED REASONING AND
ActioN CYCLE

As shown in Figure 1B, the agent operates on a struc-
tured reasoning and action cycle, which is more rig-
orous than a generic plan-act-observe paradigm (Yao
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UKB Agent Food Fruit Oliveoil Redand White  Butter  Sugary ~ Wine  Logumes Nuts  Seafood Swaets Sofrito
Component meat  and drinks
margarine dossorts
Zhu, et aly
96 Fields 2/2 212 ” 4/4 ”n 6/7 ” 6/6 a7 4/4 6/6 31/36
68 Recall (100%) (100%) (100%) (100%) (100%) (86%) (100%) (100%) (57%) (100%) (100%) (86%)
9 Additional 35 " " 4 5 8 - 2 2 5 n 2
fields
(c) Number of UKB Fields for MED score
Question Field Generated Rule Rationale
Do you consume 2 or more servings of 104060: Mixed vegetable intake €1{300,2} > 1 Codes 300 (3+) and 2 (2) indicate consumption of 2 or more servings of

vegetables per day?

vegetables per day

Do you consume 3 or more servings of fruit
(including fruit juice) per day?

26089: Apples and pears

>240>1 Standard UK fruit portion = 80 g. Three servings = 3 x 80 g = 240 g.

Do you consume less than 1 servingof red ~ 26066: Beef

and processed meat per day?

<1001 The item awards a point for consuming <1 serving of red/processed

meat per day. A commonly used single serving of red meat is 100 g.

Do you consume less than 1 serving of
sugary drink per day?

26127: Sugar-sweetened beverages and other sugary drinks

<2501 The question asks for <1 serving/day. A standard beverage servingis

approximated as 250 mL (~250 g, assuming density =1 g/mL).

Do you consume 2 or more servings of wine
per week?

4407: Average monthly red wine intake

=91 2 servings/week = 2 * 52/ 12 8.67 glasses per month

Do you consume 3 or more servings of
legumes per week?

26101: Legumes and pulses

>35>1 Field 26101 reports grams consumed in the past 24 hours. To
approximate '3 or more servings per week' convert servings to a daily
equivalent: using a typical UK cooked legume serving of 80 g, 3
servings/week = 240 g/week ~ 34.3 g/day.

Figure 2: Detailed outputs of the automated phenotyping process for the Mediterranean Diet (MED) score.
(A) A summary of the concordance between UKB fields identified by the UKB Agent and those
from a prior expert-curated study (B) A summary of the concordance for each of the 13 MED items.
(C) Examples of the machine-readable rules and the corresponding natural language rationale

generated by the agent.

et al., 2023). Every action is preceded by an ex-
plicit reasoning step, enclosed in <think> tags, where
the agent articulates its rationale. This process,
analogous to Chain-of-Thought prompting, makes
the agent’s decision-making process fully transpar-
ent. Following this, the agent must choose one of
four predefined actions, each denoted by a specific
tag:

1. Planning (<plan>): The agent first establishes
a step-by-step analytical strategy in a checklist
format. This plan is revisited and updated dy-
namically as the analysis progresses.

2. Code Execution (<execute>): To perform
data analysis, the agent writes and runs Python
code within a secure interpreter.

3. Result Interpretation (<summary>): After
executing code, the agent receives the output as
an <observation>, which can be text, a table,
or a plot. The agent then uses the <summary>
action to perform self-reflection, interpreting the
results from both a detailed visual or statistical
perspective and a broader biological or clinical
context.

4. Final Hypothesis validation (<solution>):
Once all steps in the plan are marked as com-

plete, the agent invokes the <solution> action
to synthesize all findings, interpretations, and re-
sults into a cohesive final report that addresses
the user’s initial hypothesis.

2.2.3. HUMAN-IN-THE-LOOP FOR ANALYTICAL
CONSISTENCY

To enhance analytical utility and ensure run-to-run
consistency, the agent integrates a critical Human-
in-the-loop checkpoint. This is particularly crucial
for large-scale biobank analysis, where common ana-
lytical decisions—such as the strategy for handling
missing data or the selection of specific statistical
models—are highly consequential and often guided
by researcher preference. Without this user-guided
step, the agent’s autonomous choices might vary be-
tween sessions, leading to inconsistent results when
comparing different analytical runs.

Operationally, this checkpoint is triggered after the
agent performs an initial Exploratory Data Analy-
sis (EDA). The agent then pauses its operation and,
via the web interface, presents the user with explicit
proposals for the subsequent data handling and sta-
tistical modeling steps. The user must then con-
firm or modify these choices. Once the user provides
this confirmation, the agent locks in these decisions
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and proceeds with the analysis, guaranteeing that
the workflow aligns perfectly with the researcher’s in-
tended methodology.

2.2.4. ITERATIVE REFINEMENT AND VISUAL
ANALYSIS

The state-graph architecture facilitates a robust pro-
cess of iterative refinement and self-correction. If a
code execution step results in an error, the agent
observes the error message, re-enters the generation
state to diagnose the problem, and attempts to fix
the code in a subsequent <execute> action.

A key capability of the agent is its capacity for mul-
timodal visual analysis. It is designed to automati-
cally capture any plots, encode them as base64 im-
ages, and append them to the message history. This
allows the LLM to see the visualizations it creates.
The agent can then analyze patterns, trends, and dis-
tributions directly from the plots such as interpret-
ing an odds ratio plot or a histogram and integrate
these visual insights into its scientific reasoning and
reporting within the <summary> step, leading to a
more profound and human-like analytical process.

3. Results

To evaluate the efficacy of our framework, we tasked
the agent with real-world exposure phenotyping chal-
lenges, such as Mediterranean diet adherence (MED),
Generalized Anxiety Disorder-7 (GAD-7), and Re-
cent Depressive Symptoms-4 (RSD-4) using the UK
Biobank (UKB) dataset. We then compared our sys-
tem’s output against a manually curated definition
from a peer-reviewed study. Subsequently, to assess
the autonomous analysis capabilities of our analysis
agent, we compared the agent’s analysis result on the
curated data with an analysis conducted by a human
expert.

3.1. Successful Variable Conceptualization

We evaluated the agent’s ability to autonomously
discover relevant clinical constructs from high-level
terminology. When provided with general concepts
such as ”anxiety screening” or ”Mediterranean diet
adherence”, the system successfully performed web-
based searches to identify standardized assessment in-
struments. Specifically, the agent autonomously dis-
covered the Generalized Anxiety Disorder-7 (GAD-
7) scale for anxiety assessment and the MEDAS-14

(Mediterranean Diet Adherence Screener) for diet
evaluation.

3.2. Case Study: Automated Phenotyping of
the Mediterranean Diet (MED)

3.2.1. VALIDATION OF UKB FIELD MAPPING

Our system’s primary task was to identify relevant
UKB data fields that could serve as proxies for each
of the 13 items in the MED score. To ensure a fair
comparison, we bypassed the web-based information
extraction. Instead, the MED score information from
Zhu et al. (2025) was directly provided to our system.
The results, summarized in Figure 2A, demonstrate a
remarkable concordance between the fields identified
by our analysis agent and those selected by human
experts in Zhu et al. (2025).

As shown in Figure 2B, for most MED compo-
nents, the agent successfully identified most of the
UKB fields used in Zhu et al. (2025) or their alterna-

tives:

e 100% coverage: In 9 out of 13 categories, the
agent utilized all the fields from Zhu et al. (2025)
and, in addition, used additional fields that were
also manually confirmed to be related to each
item.

e Majority coverage: In Butter and mar-
garine, Legumes, and Sweets and Desserts,
the agent utilized a majority of the fields chosen
by human experts and, in addition, used other
related fields.

e Alternative fields extracted: While Zhu
et al. (2025) did not map any fields for sofrito,
the agent reasonably checked for the use of
‘tomato-based sauce’ in ’'Field 20088: Types
of spreads/sauces consumed’ and ’Field 10430:
Tinned tomato intake’ as a proxy for sofrito.

Notably, for several items like Vegetables and
Sweets and Desserts, our agent not only success-
fully identified the fields from prior work Zhu et al.
(2025) but also proposed a substantially larger set of
novel fields. We manually verified the relevance of
these additional fields. A comprehensive list of all
identified fields is provided in Appendix A. This sug-
gests that the agent may offer a more comprehensive
search than manual methods, potentially increasing
the robustness of the resulting phenotype. The ex-
tensive list of food codes for ’Sweets and desserts’
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showcases the agent’s ability to navigate the granu-
lar detail of the UKB data dictionary effectively.

3.2.2. VALIDATION OF AUTOMATED RULE
GENERATION AND RATIONALE

Beyond simply identifying the correct fields, the
agent was tasked with generating the encoding logic
required to translate raw data into a MED score. Fig-
ure 2C provides examples of these generated rules and
the agent’s rationale. The evaluation confirms that
the agent’s logic is not only correct but also demon-
strates a sophisticated ability to handle the nuances
of phenotyping.

The agent consistently formulated valid rules based
on sound reasoning:

e Direct Mapping: For simple cases like veg-
etable consumption (Field 104050), the agent
correctly interpreted the categorical codes and
generated a logical rule (€ {300,2} — 1) to
award a point for consuming two or more serv-
ings.

e Handling Unit and Frequency Discrepan-
cies: The agent demonstrated its ability to
bridge gaps between the MED score’s require-
ments and the UKB data’s structure.

— For red meat, the MED item is based on
"servings,” while the UKB field (26065) is
in grams. The agent rationally inferred a
standard serving size of 100g to create the
rule (< 100 — 1).

— For wine, the agent correctly converted the
weekly serving requirement to a monthly
value to match the UKB field’s frequency,
resulting in a sound threshold of > 9 glasses
per month.

In summary, these results show that our agent can
successfully replicate and even potentially enhance
the manual process of phenotyping. The generated
rules are not arbitrary but are founded on logical con-
versions, validating the agent’s capability as a reliable
tool for complex biomedical data analysis.

To evaluate the capabilities of our Analysis Agent,
we tasked it with a representative biomedical re-
search hypothesis: investigating the association be-
tween Mediterranean diet (measured by the gen-
erated MED score) and Chronic Kidney Disease
(CKD), using the curated dataset derived from our

Phenotyping Framework. The agent operated en-
tirely autonomously, starting from the initial data
exploration to the final synthesis of results, with its
process and findings detailed below.

3.3. Phenotyping of Other Exposures

We systematically replicated more exposure pheno-
types from peer-reviewed studies that publicly doc-
umented their UK Biobank field codes. Specif-
ically, we also replicated multiple definitions of
lifestyle variables, such as alcohol consumption, as
documented by Kim et al. (2024). We replicated
two widely-used screening systems—the Generalized
Anxiety Disorder-7 (GAD-7) and the Recent Depres-
sive Symptoms-4 (RSD-4)—following the methodol-
ogy described by Dutt et al. (2022).

This expanded analysis demonstrates that our
automated phenotyping framework can successfully
handle diverse variable types, lifestyle factors such as
alcohol consumption and sedentary behavior, and val-
idated screening instruments (GAD-7, RSD-4). Our
system achieved perfect replication accuracy in field
mapping and reasonably captured extra supplemen-
tary fields as well. The detailed results are summa-
rized in Appendix B

3.4. Agent-Driven Analysis of the User’s
Hypothesis with Human-in-the-loop

We tasked the Analysis Agent with the user’s hy-
pothesis, investigating the association between the
Mediterranean diet (MED) score and Chronic Kid-
ney Disease (CKD) using the curated dataset. A
critical component of our framework is the Human-
in-the-Loop checkpoint, which ensures analytical con-
sistency and reproducibility. We experimentally con-
firmed that without this step, the agent might make
different autonomous decisions (e.g., choosing data
imputation instead of row deletion for missing val-
ues), leading to variations in the final analysis results.

In this analysis, the agent’s initial EDA identified
that 90% of MED score records were missing. The
agent paused and presented this to the user, who
provided the explicit instruction: ”drop rows with
any missing value. Proceed with logistic regression.”
The agent then autonomously executed this user-
defined plan. The resulting multivariable logistic re-
gression model was highly significant (LLR p-value:
3.01 x 107245 Pseudo R-squared: 0.089). The analy-
sis found a statistically significant protective associa-
tion for the MED score (OR = 0.859, 95% CI [0.822,
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(A)

@ Agent's Thought Process... . . . .
J will load the CSV file “MED_Score_data.csv” using pandas Agentis waiting for your feedback. Please provide instruction on how to handle missing values

Your response:

B code Execution
import pandas as pd

#Load the dataset
df = pd.read_csv("MED_Score_data.csv") Sl e

N ® Agent's Thought Process...
Observation Result I willupdate the plan to reflect the next steps:
First5 rows:
eid MED_Score age sex bmi Chronic_kidney_disease
01000019 NaN 62.01.0 20.1468 0
11000022 NaN 43.01.0 34.8255 0
21000035 3.0 48.0 1.0 28.2800 0

[ Drop rows with any missing values. Proceed with logistic regression. ]

(] Analysis Plan

[ 1Drop rows with any missing values from the dataframe.

[ 1Show the shape of the cleaned dataset and confirm no missing values remain.
The initial exploratory analysis is complete. Here are the key findings: [ ]Fit a logistic regression model ( Chronic_kidney_disease ~ MED_Score + age +
- Dataset size: 502,490 rows 6 columns. sex + bmi) using statsmodels.api.Logit .
- Missing values: [ ]Print the model summary i d errors, p-values).

[ 1 Compute odds ratios and 95 % confidence intervals and display them.

[ 1Generate aROC curve and calculate the AUC to assess model discrimination.
[ ]1Summarize the preprocessing steps, model findings, and visualizations in a
concise report.

Next steps require decisions on:

1. Handling missing data @ Agent's Thought Process...
- MED_Score (very sparse): 1 will drop all rows containing any missing values, verify the cleaned data shape
- Drop the column entirely? and missingness, then fit a logistic regression using statsmodels (Logit) ...

- Keep only rows where it is present (sub-sample)?

- Impute with a constant (e.g., 0) or with the mean/median of the observed | CbEen
u’

values?
- age, sex, bmi (few missing): import pandas as pd
- Impute with mean (numeric) or median (robust to outliers). import numpy as np
- For sex (binary), impute with the mode or treat as a separate “missing” import statsmodels.api as sm
category. from sklearn.metrics import roc_curve, auc
P Gl D import matplotlib.pyplot as plt
o # Load the data (already loaded previously, but reload to ensur

- Build a logistic regression with Chronic_kidney_disease as the dependent © " .

variable and MED_Score, age, sex, bmi as predictors. df = pd.read_csv("MED_Score_data.csv")

- Doyou want any additional (e.g., scaling, ion terms) #1. Drop rows with any missing values
before fitting the model? df_clean = df.dropna()

(B) Final Analysis Report

Distribution of MED_Score Distribution of bmi

1.Data
16000 s000
oo + Mising ales:
7000 eo_scor (+90% mising)
A misingeac
12000 6000 ¢ g each)
o (503 mising)
10000 5000 + Action:Droppec any row conaning  misingvale.
H € .
§ o000 P i
2. Exploratory Data Analysis (EDA)
6000 2000
n Variable Distrbution Key Observations
4000 2000 MED_Score icrts,pes t 35 Tiptspre,
2000 1000 nge \meanss6sy gt it sk
. A o Ao medons24 | FewighM utis (-4
o1 R 0 % @ % © sox Sinary 0=famle 1emal) 459%male, 55% female,
VD Score i
" K0 (chroric_kidney_disese
Distribution of age ROC Curve for CKD Logistic Model [Chioole hidam)” diesen,
3000 n o Visualzations eachdispayed sepaatly:
H + Hitograms & KDEfor MED. Score, A, B
2500 08 oot highightingthespresd nd outiers
2000 i B . : r20.12)
L | Ee ) )
" v 3. Logistic Regression Modeling
& 1500 o | 2 Mo
S o (oo WolCKD-) et ot D, e et 2o et s et (e
1000 - itadcoufients tandard s and patues:
Predctor con(st) puatue OdtsRatio a5t
02 I s
500 It 2030 <om 400 Roar-ronrY
L o ROCaune (AUC= 074g) | MEDSon oo <01 ossios-0sn
LU oaicony <o 1z0a1-113
I 0 oz o+ o6 o8 10
age e Positve Rate Sexmaio oamiome <o 13701
o omsnes <omi 10908110
Correlation Matrix
10 [r—

- MED_Score: Ench adeitions poit reduces CKD odds by 146 (OR=0.861
. AgeEnch et yearfses KD s by 129 (ORe1.12,

Fos © Sex Mol have 270 igherodds hanfmaes

oty 9%

MED_Score

m——

e
[ ——"
oo sy
Moot iscrimnstion:
sox SRS oo |Nol EER T ——
~0a + Ukehood RatlTst: 56823107 (hghysignfcnt,
v (62 H.H o2 5. Conclusions & Recommendations
5 s ighr B and
Chronic_kidney_disease -SRCKE i
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. + rurthor
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Figure 3: (A) The user interface displaying the agent’s transparent, step-by-step analysis (B) Plots and final
report created by the Analysis Agent.
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Table 1: A result comparison between a human expert and the UKB Agent for CKD

Variable Source Estimate Odds Ratio (OR) 95% CI for OR  p-value
Expert -0.1515 0.859 (0.822, 0.898) 1.83e-11

MED Score UKB Agent  -0.1515 0.859 (0.822, 0.898) <0.001
Age Expert 0.1158 1.123 (1.113, 1.133) <2e-16
& UKB Agent  0.1158 1.123 (1.113, 1.133) <0.001
Sex (male—1)  EXpert 0.2386 1.269 (1.138, 1.416)  8.71e-05
=1 UKB Agent  0.2386 1.269 (1.138, 1.416) <0.001

BMI Expert 0.0891 1.093 (1.082, 1.104) <2e-16
UKB Agent 0.0891 1.093 (1.082, 1.104) <0.001

0.898]), with all covariates being significant predic-
tors (p < 0.001). The complete, step-by-step agentic
analysis, including all generated code and intermedi-
ate observations, is available in the Supplementary
file.

Crucially, the results produced by the agent follow-
ing this Human-in-the-loop directive were bit-for-bit
identical to an independent analysis conducted by a
human expert following the same protocol (Table 1).
This validates the agent’s ability to perfectly repli-
cate expert-level analysis when precisely guided by
the researcher, guaranteeing both scientific validity
and run-to-run consistency.

4. Discussion

A cornerstone of our framework is the systematic
workflow for phenotyping, designed to ensure com-
prehensive field discovery. The manual curation of
phenotypes is not only labor-intensive but also sus-
ceptible to inconsistencies that can compromise scien-
tific validity. As highlighted in (Huang et al., 2021),
minor variations in cohort definitions can lead to sta-
tistically significant shifts in study outcomes. Our
Hybrid BFS-LLM algorithm mitigates this risk. By
combining the exhaustive nature of BFS with the se-
mantic pruning of LLM, our method ensures that
no relevant data fields are overlooked. However, the
choice of model and search strategy presents signifi-
cant trade-offs, as shown in Table Al. For the 'Fruit’
item, using the BFS-LLM approach, the advanced
gpt-5-mini-2025-08-07 model took over 14 min-
utes but comprehensively identified 26 fields. In con-
trast, the faster gpt-4.1-mini-2025-04-14 model
completed in under 4 minutes but found only 2 fields.
Our alternative embedding-based search method re-
solves this trade-off, offering both high speed (1-2

minutes) and high comprehensiveness (27-28 fields)
regardless of the model used.

Despite its promise, our framework has limitations.
The agent’s analytical sophistication, while compe-
tent, may not yet match the nuanced judgment of
a human expert in selecting optimal statistical mod-
els for complex scenarios. Moreover, the validity of
the output fundamentally depends on the quality of
the initial user-provided hypothesis. The system au-
tomates the process but cannot correct for a scien-
tifically flawed premise. Finally, its performance re-
lies on the accuracy of the LLM and the clarity of
the public documentation for the biobank data fields.
Human oversight, therefore, remains essential for val-
idating the final results.

Looking forward, we envision this framework as
a foundational step toward the paradigm of an Al
co-scientist (Swanson et al., 2025; Gottweis et al.,
2025). Our next plans involve extending the frame-
work’s capabilities. First, we will adapt the system to
other large-scale biobanks, such as the All of Us Re-
search Program (Investigators, 2019), by developing
new data-parsing modules. Second, we aim to incor-
porate multi-modal data types, including genomics
and medical imaging, to enable more complex, in-
tegrative analyses. The long-term vision, inspired
by the agentic science movement (Wei et al., 2025),
is to evolve the agent from a hypothesis-tester to a
hypothesis-generator. In conclusion, we have devel-
oped and demonstrated an autonomous agentic sys-
tem that successfully automates the end-to-end re-
search lifecycle, from computable phenotype genera-
tion in large-scale biobanks to final statistical analysis
and reporting. This work represents a foundational
step toward a new paradigm of biomedical research,
positioning Al agents as powerful co-scientists capa-
ble of accelerating our understanding of the determi-
nants of human health and disease.
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Appendix A. Figure and Table
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Food, 2025) 101430, 101470, 101510, 1608,4407,  103310,104000, 102420, 103150,103200, 101990, 102010, 102020, 102030, 102050,
4418,4451 104010, 104110, 102430, 103210,103220 102060, 102070, 102120, 102140, 102150,

104120 102440 102170, 102180, 102190, 102200, 102210,

102210, 102220, 102250, 102260, 102270,
102280, 102290, 102310, 102310, 102320,
102330, 102340, 102350, 102360, 102370,

102380
Ours (BFS-LLM) 1289, 1299, 103990, 1309, 1319, 26089, 26090, 20090 1349, 1369, 1379, 1389,  1359,26069, 20087, 26062, 26063, 26095,26127, 1568,1578,  26101,104000, 26107, 1329, 1339, 26064, 26068, 26080, 26084, 26085, 26140, 20088,
104000, 104010, 104030, ~ 26091, 26092, 26093, 26094, 26066, 26100, 26117, 26121, 103050, 101300, 101310, 101350, 100170, 1608,4407,  104010,104110, 26108, 103150, 103160, 101970, 101980, 101990, 102010, 102020, 104350
104060, 104070, 104080, ~ 26095, 100190, 100200, 26122, 103010, 103020, 103060 101390, 101430, 101470, 100180, 4418,4451  104120,104280 102410, 103170, 103180, 102050, 102060, 102070, 102080, 102090,
104090, 104110, 104120, 100210, 100220 103030, 103040, 103070, 101510, 104040 100200, 102420, 103190, 103200, 102120, 102130, 102140, 102150, 102180,
104130, 104140, 104150, 103080, 103090 100220, 102430, 103210, 103220, 102190, 102200, 102210, 102220, 102230,
104160, 104170, 104180, 100230, 102440 103230 102250, 102260, 102270, 102280, 102290,
104190, 104200, 104210, 100530, 102300, 102310, 102320, 102330, 102340,
104230, 104240, 104250, 100550 102350, 102360, 102370, 102380
104260, 104270, 104280,
104290, 104300, 104310,
104320, 104330, 104340,
104350, 104360, 104370,
104380
Ours (Semantic 1289, 1299, 26098, 1309, 1319, 26091, 26092, 2654,2009, 1349, 1369,1379,1389, 1349, 1359, 101300, 101310,101430, 26001, 26003,  1556,1568,  26101,104000, 26106, 1329, 1339, 26011, 26080, 26085, 26140, 102120, 102130, 20088,
Embedding) 26125, 26144, 26146, 26093, 26095 26009, 26066, 26104, 26117, 1369,1379, 101470, 101510, 101550, 26095, 26126,  1578,1608,  104010,104110, 26107, 26132,103150, 102190, 102230, 102250, 102260, 102280, 104340,
26147, 103990, 104000, 26032, 26122,103000,103010, 138926066, 103980, 104040 26127, 4407,4418,  104120,104280 26108, 103160, 103170, 102290, 102330, 102340, 102350, 102360, 104350
104010, 104020, 104030, 103980 103020, 103030, 103040, 26104, 26117, 100170, 4851, 20117, 102400, 103180, 103190, 102370
104050, 104060, 104070, 103070, 103080 26121, 26122, 100180, 100590, 102410, 103200, 103210,
104080, 104090, 104110, 103020, 100190, 100630, 102420, 103220, 103230
104120, 104130, 104140, 103030, 100200, 100670, 102430,
104150, 104160, 104170, 103040, 100220, 100720, 102440,
104180, 104190, 104200, 103060 100530, 102450,
104210, 104230, 104240, 100550 103290

104250, 104260, 104270,
104280, 104290, 104300,
104310, 104320, 104330,
104340, 104350, 104360,
104370, 104380

Figure Al: Fields comparison between Zhu et al. (2025) and our systems for each component in MED score

Table Al: Comparison of methods and models in terms of the time and performance.

Method Model Time Count Items

BFS-LLM gpt-5-mini-2025-08-07 14’16” 26 26089(Apples and pears), 26090(Berries), 26091(Citrus), 26092(Dried fruit),
26095(Fruit juice), 26093(Other fruit), 26094(Stewed fruit), 100190(Orange juice
intake), 100200(Grapefruit juice intake), 100210(Pure fruit/vegetable juice intake),
100220(Fruit smoothie intake), 104410(Stewed fruit intake), 104430(Dried fruit in-
take), 104440(Mixed fruit intake), 104450(Apple intake), 104460(Banana intake),
104470(Berry intake), 104520(Melon intake), 104530(Orange intake), 104540 (Sat-
suma intake), 104560(Pear intake), 104570(Pineapple intake), 104580(Plum in-
take), 104590(Other fruit intake), 1309(Fresh fruit intake), 1319(Dried fruit intake)

gpt-4.1-mini-2025-04-14 3'58” 2 1309(Fresh fruit intake), 1319(Dried fruit intake)

gpt-5-mini-2025-08-07 2247 28 1309(Fresh fruit intake), 1319(Dried fruit intake), 100026(Daily dietary data not
credible), 104400(Fruit consumers), 104450(Apple intake), 104460(Banana intake),
104470(Berry intake), 104440(Mixed fruit intake), 104430(Dried fruit intake),
104520(Melon intake), 104540 (Satsuma intake), 104560 (Pear intake), 104500(Grape
intake), 104510(Mango intake), 104550(Peach/nectarine intake), 104570(Pineap-
ple intake), 104480(Cherry intake), 104420(Prune intake), 104580(Plum in-
take), 104410(Stewed fruit intake), 100210(Pure fruit/vegetable juice in-
take), 100220(Fruit smoothie intake), 26089(Apples and pears), 26090(Berries),
26092 (Dried fruit), 26093(Other fruit), 26094 (Stewed fruit), 26095(Fruit juice)

Embedding-based

gpt-4.1-mini-2025-04-14 1°03” 27 1309(Fresh fruit intake), 1319(Dried fruit intake), 104450(Apple intake),
104460(Banana  intake), 104540(Satsuma  intake), 104560(Pear  intake),
104550(Peach/nectarine intake), 104570(Pineapple intake), 104480(Cherry in-
take), 104420(Prune intake), 104580(Plum intake), 104440(Mixed fruit intake),
104470(Berry intake), 104430(Dried fruit intake), 104490(Grapefruit intake),
104500(Grape intake), 104410(Stewed fruit intake), 104400(Fruit consumers),
100220(Fruit smoothie intake), 100210(Pure fruit/vegetable juice intake),
104590(Other fruit intake), 26093(Other fruit), 26092(Dried fruit), 26094 (Stewed
fruit), 26089 (Apples and pears), 26090 (Berries), 26091 (Citrus)
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Appendix B. More phenotypes varing

B.1.

complexity

Alcohol Consumption Replication

Query: CONSUMPTION OF WINE < 150ML PER

DAY

Reference Fields: 1568 (Average weekly red
wine intake), 1578 (Average weekly champagne
plus white wine intake), 4407 (Average monthly
red wine intake), 4418 (Average monthly cham-
pagne plus white wine intake)

Selected Fields: 100590 (Red wine intake),
100630 (Rose wine intake), 100670 (White wine
intake), 100720 (Fortified wine intake), 20096
(Size of red wine glass drunk), 20097 (Size of
rose wine glass drunk), 20095 (Size of white wine
glass drunk), 1568 (Average weekly red wine
intake), 1578 (Average weekly champagne plus
white wine intake), 1608 (Average weekly for-
tified wine intake), 4407 (Average monthly red
wine intake), 4418 (Average monthly champagne
plus white wine intake), 4451 (Average monthly
fortified wine intake), 1558 (Alcohol intake fre-
quency.), 100560 (Other drink intake)

Rule Rationale: Return 1 when the rule es-
tablishes that typical daily wine consumption is
< 150 ml based on prioritized sources: (1) yes-
terday counts with size checks, (2) weekly aver-
ages scaled to daily with size checks, (3) monthly
averages scaled to daily with size checks, (4)
direct 'no alcohol yesterday’ or 'never drinks’
indicators. If none of the conditions indicat-
ing < 150 ml/day are met or data are miss-
ing/uninterpretable, the rule returns 0.

Query: CONSUMPTION OF 4% ABV PINT BEER <
1 PER DAY

Reference Fields: 1588 (Average weekly beer
plus cider intake)

Selected Fields: 1588 (Average weekly beer
plus cider intake), 4429 (Average monthly beer
plus cider intake), 100710 (Beer/cider intake),
26067 (Beer and cider), 100580 (Alcohol con-
sumed), 1558 (Alcohol intake frequency.)

Rule Rationale: If any of the available, trans-
formed sources indicate beer/cider consumption
< 1 pint per day (or an explicit non-drinker flag
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yields 0), classify as 1 (< 1 pint/day). Other-
wise classify as 0. Missing/unavailable sources
simply fail their respective conditions; the OR
logic ensures classification if any reliable indica-
tor supports < 1 pint/day.

Query: CONSUMPTION OF SPIRITS < 45ML PER

e Reference Fields: 1598 (Average weekly spir-

its intake), 4440 (Average monthly spirits intake)

Selected Fields: 1598 (Average weekly spirits
intake), 4440 (Average monthly spirits intake),
100730 (Spirits intake), 26138 (Spirits), 100580
(Alcohol consumed)

Rule Rationale: Evaluate whether any avail-
able, non-missing source yields an estimated
daily spirits volume < 45 ml. Order/structure
rationale: each source is checked only if it carries
a usable numeric signal (we exclude known neg-
ative/missing codes using explicit checks). For
weekly /monthly measures we convert measures
— ml and normalize to daily; for categorical yes-
terday responses we map codes to numeric mea-
sures then to ml; for 24h grams we convert to
ml via 1 g & 1 ml. An explicit 'No’ to ’Alcohol
consumed yesterday’ (100580 == 0) is treated
as 0 ml and thus satisfies < 45 ml. If none of
these conditions are true (no quantitative evi-
dence of < 45 ml), the rule returns 0 (not <
45 ml). This is intentionally conservative: only
explicit quantitative evidence or an explicit 'No’
leads to classification as < 45 ml/day.

Query: CONSUMPTION OF FORTIFIED WINE <
90ML PER DAY

e Reference Fields: 1608 (Average weekly forti-

fied wine intake), 4451 (Average monthly forti-
fied wine intake)

Selected Fields: 26151 (Fortified wine),
100720 (Fortified wine intake), 1608 (Average
weekly fortified wine intake), 4451 (Average
monthly fortified wine intake), 20414 (Frequency
of drinking alcohol)

Rule Rationale: Priority-based evaluation: (1)
If a 24-hour fortified-wine ml estimate exists,
classify based on that (< 90 ml = 1). (2) Else if
yesterday’s glass count exists, convert to ml and
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classify. (3) Else if weekly average exists, convert
to ml/day and classify. (4) Else if monthly aver-
age exists, convert and classify. (5) Else if par-
ticipant reports 'Never’ drinking, infer 0 ml/day
and classify as < 90. If none of the sources
provide usable information, the overall rule re-
turns 0 (value_if_false) to avoid falsely labeling
as low consumption; alternatively users may set
such cases to missing during downstream anal-
yses. Missing-code handling: in preprocessing,
UKB missing codes (-1, -3, -10, -818) must be
converted to null so that the equality checks to
“*’ reflect missingness.

B.2. Sedentary Behavior Replication

Query: SUM OF TIME SPENT WATCHING TV OR
USING COMPUTER LESS THAN 2 HOURS PER DAY

e Reference Fields: 1070 (Time spent watching

television (TV)), 1080 (Time spent using com-
puter)

Selected Fields: 1070 (Time spent watching
television (TV)), 1080 (Time spent using com-
puter), 40031 (Sedentary - Day hour average),
40043 (Sedentary - Day average), 1120 (Weekly
usage of mobile phone in last 3 months)

Rule Rationale: The rule returns 1 (true)
when any available data source indicates
combined TV+4computer time is less than
2 hours/day by the prioritized hierar-
chy:  (A) direct combined self-report (to-
tal_tv_computer_hours) j 2; (B) single self-report
(TV or computer) j 2 when the other is
missing; (C) accelerometer-derived evening
sedentary hours (from 40031) | 2 as an ob-
jective evening-window proxy; (D) derived
total sedentary hours/day from 40043 | 2 as
a broader objective fallback; (E) conservative
mobile-phone-hours/day from 1120 | 2 as final
fallback. Missing special codes (-1,-3,-10) are
treated as NULL and do not count toward
numeric comparisons. If none of the conditions
can be evaluated as true (including the case
that no data are available), the rule resolves to
0 to provide a defined output for downstream
analyses. For transparency, analysts may wish
to additionally record which source produced
the classification (primary vs fallback) and
to perform sensitivity analyses excluding the
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weakest proxies (accelerometry and phone

proxies).

B.3. GAD-7 Replication

ITEM 1. Query: FEELING NERVOUS, ANXIOUS, OR
ON EDGE

e Reference Fields: 20506 (Recent feelings or

nervousness or anxiety)

e Selected Fields: 28735 (Feeling anxious, ner-

vous or on edge over the last 2 weeks), 30484
(Frequency of feeling nervous, anxious or on edge
in last 2 weeks), 29058 (Recent feelings or ner-
vousness or anxiety), 20506 (Recent feelings or
nervousness or anxiety), 23045 (Very nervous
mood over last week), 2070 (Frequency of tense-
ness / restlessness in last 2 weeks), 1970 (Ner-
vous feelings)

Rule Rationale: Selected fields (ordered by
priority and reason):

1) 28735 — ”Feeling anxious, nervous or on edge
over the last 2 weeks” (1=195,605). Chosen as
primary because it directly matches the wording,
timeframe (last 2 weeks, same as GAD-T7), and
has the largest respondent count among exact
matches.

2) 30484 — ”Frequency of feeling nervous, anx-
ious or on edge in last 2 weeks” (n=179,118).
Direct match of wording/timeframe from a dif-
ferent online module; used as the first fallback
when 28735 is missing.

3) 29058 — ”Recent feelings or nervousness or
anxiety” (n=170,619). Direct mental well-being
item matching wording/timeframe; used as the
next fallback.

4) 20506 — ”Recent feelings or nervousness or
anxiety” (n=157,235). Same content but differ-
ent encoding (1-4). Included as another fallback;
will be remapped to 0-3.

5) 23045 — ”Very nervous mood over last week”
(n=211,849). Different timeframe (last week vs
last 2 weeks) and different response scale (1-5),
but semantically highly related. Included as a
tertiary fallback when all exact 2-week items are
missing.

6) 2070 — "Frequency of tenseness / restlessness
in last 2 weeks” (n=>501,274). This asks about
tenseness/restlessness (closely related symptom
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domain and same 2-week timeframe). Included
as a lower-priority fallback because wording is
not identical but clinically relevant and high cov-
erage.

7) 1970 — ”Nervous feelings” (binary life-
time/trait on touchscreen; n=501,278). This is a
trait / lifetime question (not 2-week frequency)
but directly asks about being a 'nervous person’.
Included only as the last-resort fallback to max-
imize coverage; mapped conservatively to indi-
cate presence vs absence.

Create a single numeric value per participant
equal to (priority_weight + mapped_item_score)
for each candidate field; take the max across
fields so that (because weights are set in de-
creasing priority) the highest-priority available
response is selected even when lower-priority re-
sponses have higher raw scores.

ITEM 2. Query: NOT BEING ABLE TO STOP OR
CONTROL WORRYING

e Reference Fields: 20509 (Recent inability to

stop or control worrying)

Selected Fields: 28736 (Not being able to stop
or control worrying over the last 2 weeks), 29059
(Recent inability to stop or control worrying),
30485 (Frequency of not being able to stop or
control worrying in last 2 weeks), 20509 (Re-
cent inability to stop or control worrying), 20537
(Frequency of difficulty controlling worry during
worst period of anxiety), 20539 (Frequency of in-
ability to stop worrying during worst period of
anxiety)

Rule Rationale: Harmonise each field to the
canonical 0-3 GAD-7 item scale, map all known
UKB missing codes and ’prefer not to an-
swer’/’do not know’ variants to null, then com-
pute the maximum non-null value across the har-
monised item instances. Max is chosen because
(a) it returns a single interpretable 0-3 score, (b)
it is robust to missingness (any available instance
yields a value), and (c) it is conservative in cap-
turing the highest reported symptom frequency
across assessments/timeframes—useful for anal-
yses where presence/severity matters. The ag-
gregation uses only the selected fields to avoid
dilution by non-equivalent items.
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ITEM 3. Query: WORRYING TOO MUCH ABOUT
DIFFERENT THINGS

e Reference Fields: 20520 (Recent worrying too

much about different things)

e Selected Fields: 29060 (Recent worrying too
much about different things), 20520 (Recent wor-
rying too much about different things), 28737
(Little interest or pleasure in doing things over
the last 2 weeks), 29058 (Recent feelings or ner-
vousness or anxiety), 20506 (Recent feelings or
nervousness or anxiety), 30484 (Frequency of
feeling nervous, anxious or on edge in last 2

weeks)

e Rule Rationale: Compute the (weighted) av-

erage of all available harmonised sources mapped
Primary exact-match field
(29060) is duplicated to weight it more heavily:
when present it dominates the average. The fi-
nal aggregated numeric value is mapped to the
>25 —3,>15
— 2, > 0.5 — 1, else 0. This yields a single
item score consistent with the original 0-3 scor-
ing, while maximising data coverage through in-
clusion of equivalent items and alternate codings
(which are harmonised to 0-3). Missing/opt-out
codes are mapped to null so they are ignored in
the averaging. If no selected fields are available,

to the 0-3 scale.

integer 0-3 via thresholds:

the aggregation yields null (no data).

ITEM 4. Query: TROUBLE RELAXING

e Reference Fields: 20515 (Recent trouble re-

laxing)

e Selected Fields: 29061 (Recent trouble relax-
ing), 20515 (Recent trouble relaxing), 29062 (Re-
cent restlessness), 20516 (Recent restlessness),
2070 (Frequency of tenseness / restlessness in
last 2 weeks), 29058 (Recent feelings or nervous-

ness or anxiety)

e Rule Rationale: All selected fields are trans-
formed to the same 0-3 scale and missing/opt-
out codes are mapped to null (so they are ig-
nored by aggregation). The aggregation 'max’
then returns the highest non-null value among
these harmonized inputs. This implements a pri-
oritized fallback implicitly (direct item responses
are identical or aligned to the scale; related
items will only influence the result when the di-
rect item is absent). Using 'max’ minimizes the
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chance of returning an artificially low score when
one instrument captured higher symptom sever-
ity; it favors capturing present symptom severity
across instruments when direct item is missing.

ITEM 5. Query: BEING SO RESTLESS THAT IT IS
HARD TO SIT STILL

e Reference Fields: 20516 (Recent restlessness)

29062 (Recent restless-
ness), 20516 (Recent restlessness), 29009 (Recent
changes in speed/amount of moving or speak-
ing), 20518 (Recent changes in speed /amount of
moving or speaking), 2070 (Frequency of tense-
ness / restlessness in last 2 weeks), 120111 (Mov-
ing or speaking slower or faster than usual over
the last two weeks)

Rule Rationale: Compute the average of all
non-missing standardized 0-3 item scores from
multiple questionnaire instances and wordings
that capture 'restlessness’ or closely overlapping
fidgety /movement symptoms. Mapping rules
convert each instrument’s coding to the com-
mon 0-3 scale; missing/prefer-not-to-answer/do-
not-know codes are mapped to null and thus ex-
cluded from the average. Using the average (ig-
noring nulls) provides an integrated single score
between 0 and 3 that maximizes participant in-
clusion when some questionnaire versions are
missing.

ITEM 6. Query: BECOMING EASILY ANNOYED OR
IRRITABLE

e Reference Fields: 20505 (Recent easy annoy-

ance or irritability)

Selected Fields: 29063 (Recent easy annoy-
ance or irritability), 20505 (Recent easy annoy-
ance or irritability), 20494 (Felt irritable or had
angry outbursts in past month), 20422 (More ir-
ritable than usual during worst period of anxi-
ety), 4653 (Ever highly irritable/argumentative
for 2 days), 29050 (Ever had period extreme ir-
ritability), 20502 (Ever had period extreme ir-
ritability), 1940 (Irritability), 28726 (Currently
suffering from problems relating to mood, anx-
iety and emotions), 29049 (Ever had period of
mania / excitability), 29057 (Problems caused by
manic or irritable periods - aspects of life were
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affected), 29056 (Problems caused by manic or
irritable periods - treatment was required)

Rule Rationale: If encoded_priority_max ex-
ists (> 0) we derive the integrated 0-3 score
by taking encoded_priority_max modulo 10 (be-
cause each transformed field was encoded as off-
set + base_score with offsets being multiples of
10). This implements the fallback: the highest-
priority available field determines the encoded
value (via offset), and modulo extracts the orig-
inal 0-3 score. If encoded_ priority_max is miss-
ing (no relevant field available or all mapped to
null), the rule returns NULL. All UKB missing
codes (e.g., -3, -818, -1, -121, -4) were explic-
itly mapped to null in the categorical mappings
above so they are treated as missing and will not
contribute to encoded_priority_max.

ITEM 7. Query: FEELING AFRAID AS IF
SOMETHING AWFUL MIGHT HAPPEN

e Reference Fields: 20512 (Recent feelings of

foreboding)

Selected Fields: 29064 (Recent feelings of fore-
boding), 20512 (Recent feelings of foreboding),
29058 (Recent feelings or nervousness or anxi-
ety), 20506 (Recent feelings or nervousness or
anxiety), 28735 (Feeling anxious, nervous or on
edge over the last 2 weeks), 30484 (Frequency
of feeling nervous, anxious or on edge in last 2
weeks), 29060 (Recent worrying too much about
different things), 20520 (Recent worrying too
much about different things), 29059 (Recent in-
ability to stop or control worrying), 20509 (Re-
cent inability to stop or control worrying)

Rule Rationale: Aggregate (max) across
harmonised 0-3 values drawn from the direct
item, its assessment-centre equivalent (trans-
formed), and conceptually-close anxiety items
(and their assessment-centre equivalents, trans-
formed). Max is chosen to capture the high-
est reported severity across available sources
(conservative approach) and to provide a sin-
gle numeric value when any source is present.
Missing/opt-out codes are mapped to null before
aggregate so they do not affect the result.
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B.4. RSD-4 Replication

ITEM 1. Query: FREQUENCY OF DEPRESSED
MOOD IN LAST 2 WEEKS

2050 (Frequency of de-
pressed mood in last 2 weeks)

Selected Fields: 2050 (Frequency of depressed
mood in last 2 weeks), 28738 (Feeling down, de-
pressed or hopeless over the last 2 weeks), 30487
(Frequency of feeling down, depressed or hope-
less in last 2 weeks), 29003 (Recent feelings of
depression), 120105 (Feeling down, depressed, or
hopeless over the last two weeks), 20510 (Recent
feelings of depression)

Rule Rationale: Compute the maximum har-
monized item value across equivalent ’feeling
down/depressed/hopeless in last 2 weeks’ ques-
tions. Each field has been transformed to the
canonical 1-4 scale (1=Not at all, 4=Nearly ev-
ery day) with explicit mapping of UKB miss-
ing codes to null. 'Max’ was chosen to capture
the highest reported recent frequency across dif-
ferent instruments (a conservative approach to-
wards identifying recent depressed mood when
multiple assessments exist).

ITEM 2. Query: FREQUENCY OF
UNENTHUSIASM /DISINTEREST IN LAST 2 WEEKS

e Reference Fields: 2060 (Frequency of unen-

thusiasm / disinterest in last 2 weeks)

Selected Fields: 2060 (Frequency of unenthu-
siasm / disinterest in last 2 weeks), 20514 (Re-
cent lack of interest or pleasure in doing things),
28737 (Little interest or pleasure in doing things
over the last 2 weeks), 30486 (Frequency of hav-
ing little interest or pleasure in doing things in
last 2 weeks), 120104 (Little interest or plea-
sure in doing things over the last two weeks),
29002 (Recent lack of interest or pleasure in do-
ing things)

Rule Rationale: If the aggregated 'rds4_value’
(the max of transformed equivalent items) is
within the valid 1-4 range then return that value
as the integrated Item 2 score. If no selected
source provides a valid response (all are NULL
/ missing / prefer-not-to-answer), return NULL.
Returning the maximum across available equiv-
alent items preserves severity information and
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maximizes coverage because it accepts any valid
contribution from the prioritized set of fields.

ITEM 3. Query: FREQUENCY OF
TENSENESS/RESTLESSNESS IN LAST 2 WEEKS

e Reference Fields: 2070 (Frequency of tense-

ness / restlessness in last 2 weeks)

e Selected Fields: 2070 (Frequency of tenseness

/ restlessness in last 2 weeks), 30484 (Frequency
of feeling nervous, anxious or on edge in last 2
weeks), 29062 (Recent restlessness), 20516 (Re-
cent restlessness), 20506 (Recent feelings or ner-
vousness or anxiety), 28735 (Feeling anxious,
nervous or on edge over the last 2 weeks), 29061
(Recent trouble relaxing), 20515 (Recent trou-
ble relaxing), 20505 (Recent easy annoyance or
irritability)

Rule Rationale: Map each selected source to
a common 1-4 scale representing frequency in
the past 2 weeks (1=Not at all ... 4=Nearly ev-
ery day). Use aggregation_type 'max’ to select
the highest available mapped frequency across
sources for each participant. This preserves the
construct (frequency of tenseness/restlessness)
while maximizing data coverage across assess-
ment branches and questionnaires; it treats mul-
tiple parallel items as fallbacks and prioritizes
the strongest recent report.

ITEM 4. Query: FREQUENCY OF
TIREDNESS/LETHARGY IN LAST 2 WEEKS

e Reference Fields: 2080 (Frequency of tired-

ness / lethargy in last 2 weeks)

Selected Fields: 2080 (Frequency of tiredness
/ lethargy in last 2 weeks), 20519 (Recent feel-
ings of tiredness or low energy), 29005 (Recent
feelings of tiredness or low energy), 120107 (Feel-
ing tired or having little energy over the last two
weeks), 30575 (Frequency of fatigue over the last
two weeks), 30568 (Feelings of tiredness during
waking time)

Rule Rationale: After mapping each field to
a common 1-4 scale, 'max’ captures the highest
reported frequency/severity of tiredness across
sources. The post-aggregation conditions simply
return the aggregated numeric severity when it
equals 1-4, and null otherwise (catch-all). This
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approach increases the number of participants
with a usable score while remaining transpar-
ent about transformations and handling of miss-
ing/special codes.
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