
Under review as a conference paper at ICLR 2024

A ADDITIONAL GFP ANALYSIS

Design-bench difficulty. Prior works have used the GFP task introduced by design-bench (DB), a
suite of model-based reinforcement learning tasks (Trabucco et al., 2022), which samples a starting
set of 5,000 sequences from the 50-60th percentile fitness range. However, we found this task to be
too easy in the sense only one mutation was required from sequences in the training set to achieve
the 99th percentile. We quantify this difficulty using the mutational gap described in eq. (6). Our
proposed medium and hard difficulties (Appendix C.2.1) require many more mutations to reach the
top fitness percentile, see Figure 4. Similar issues may be present in other benchmarks.

Figure 4: Easy is taken from design-bench where sequences between the 50-60th percentile are used
in training regardless of edit distance to sequences in the 99th percentile. Data leakage is present due
to multiple measurements that allows the wild-type and other top sequences to be included during
training. Medium filters the training dataset to have sequences in the 20-40th percentile and be 6 or
more mutations away from anything in the top 99th percentile. Hard similarly filters for sequences
in at most the 30th percentile and 7 or more mutations away.

13

Under review as a conference paper at ICLR 2024

B ADDITIONAL METHODS

B.1 CNN ARCHITECTURE

We utilize a 1D convolutional neural network (CNN) architecture in our model and oracle. The CNN
takes in a one-hot encoded sequence as input then applies a 1D convolution with kernel width 5
followed by max-pooling and a dense layer to a single node that outputs a scalar value. It uses 256
channels throughout for a total of 157,000 parameters. Despite its simplicity, we find the CNN to
outperform Transformers. Indeed, this corroborates the results in Dallago et al. (2021) that a simple
CNN can be effective in low data regimes.

Training is performed with batch size 1024, ADAM optimizer (Kingma & Ba, 2014) (with β1 =
0.9, β2 = 0.999), learning rate 0.0001, and 50 epochs, using a single A6000 Nvidia GPU.

B.2 METRICS

We provide mathematical definitions of each metric. Note gϕ is the evaluator trained to predict the
approximate fitness as a proxy for experimental validation.

• (Normalized) Fitness = median({ξ(x̂i;Y
∗)}Nsamples

i=1) where ξ(x̂;Y ∗) =
gϕ(x̂i)−min(Y ∗)
max(Y ∗)−min(Y ∗) is

the min-max normalized fitness based on the lowest and highest known fitness in Y ∗.

• Diversity = median({dist(x, x̃) : x, x̃ ∈ X̂, x ̸= x̃}) is the average sample similarity.

• Novelty = median({η(x̂i;X)}Nsamples
i=1) where η(x;X) = min({dist(x, x̃) : x̃ ∈ X∗, x̃ ̸= x})

is the minimum distance of sample x to any of the starting sequences X .

Algorithm 2 Smooth: Graph-based Smoothing

Require: Sequences: X
Require: Noisy model weights: θ̃

1: V,E ← CreateGraph(X) ▷ Construct graph (Algorithm 4).
2: L← GraphLaplacian(V,E) ▷ Compute graph Laplacian.
3: Y ← [fθ̃(x1), . . . , fθ̃(xNnodes)]

⊤

4: Ŷ ← (I+ γL)−1Y ▷ Compute smoothed fitness labels.
5: θ ← argmaxθ E(x,ŷ)∼(V,Ŷ)

[
(ŷ − fθ(x))

2
]

▷ Train on smoothed dataset.
6: Return θ

Algorithm 3 GWG: Gibbs With Gradients

Require: Parent sequences: X
Require: Model weights: θ

1: X ′ ← ∅
2: for x ∈ X do
3: for i = 1, . . . , Nprop do ▷ Number of proposals per sequence.
4: x′ ← x
5: (iloc, jsub) ∼ q(·|x) ▷ Sample index and token eq. (3)
6: x′

iloc ← Vjsub ▷ Apply mutation
7: if accept using eq. (4) then
8: X ′ ← X ′ ∪ {x′}
9: end if

10: end for
11: end for
12: Return X ′ ▷ Return accepted sequences.

14

Under review as a conference paper at ICLR 2024

Algorithm 4 CreateGraph
Require: Sequences: X

1: V ← X ▷ Construct nodes.
2: while |V | ≤ Nnodes do
3: x ∼ U(V)
4: x′ ← PointMutation(x) ▷ Sample a point mutation uniformly at random.
5: end while
6: E ←

⋃
x∈V kNN(x;V) ▷ Construct edges (Algorithm 5).

7: Return (V,E)

Algorithm 5 kNN
Require: Current node: x
Require: All nodes: V

1: D(x)←
⋃

x′∈V/{x} dist(x
′, x) ▷ Levenstein distance between every pair of sequences.

2: X ′ ← TopK(D(x), V) ▷ Compute K closest sequences to x.
3: E(x)←

⋃
x′∈X ′(x, x′) ▷ Construct neighborhood around x.

4: Return E(x)

Figure 5: Illustration of clustered sampling. Ṽr is the starting set of sequences for sampling in round
r. GWG (Algorithm 3) is ran to generate many sample sequences, Vr+1. To control computation, we
hierarchically cluster all sampled sequences based on Levenshtein distance and take the top fitness
sequence in each cluster, using our trained fitness prediction model fθ to score each sequence – we
refer to this subroutine as Reduce (eq. (5)). The top sequences, Ṽr+1 are used for the next round.

C ADDITIONAL RESULTS

C.1 SAMPLING TEMPERATURE SWEEP

We determine the effect of different tmperatures γ when running GGS on the hard difficulty for GFP
and AAV. All other hyperparameters follow those used in the main results, see Section 4.2. Table 5
shows the results where clearly γ = 0.1 performs the best for both AAV and GFP.

15

Under review as a conference paper at ICLR 2024

Table 5: Temperature sweep.

GFP hard AAV hard

Temperature (γ) Fitness Diversity Novelty Fitness Diversity Novelty

0.01 0.65 (0.0) 5.3 (0.8) 7.4 (0.5) 0.45 (0.0) 15.2 (1.1) 9.0 (0.0)
0.1 0.74 (0.0) 3.6 (0.1) 8.0 (0.0) 0.6 (0.0) 4.5 (0.2) 7.0 (0.0)
1.0 0.0 (0.1) 28.2 (0.8) 11.4 (0.5) 0.45 (0.0) 11.9 (0.5) 8.0 (0.0)
2.0 0.0 (0.1) 36.1 (1.0) 13.0 (0.0) 0.33 (0.0) 16.7 (0.9) 8.5 (0.5)

C.2 SMOOTHING ANALYSIS

In this section, we provide further analyses into the effect of smoothing on performance of GGS,
extrapolation to unseen data, and acceptance rate of the GWG sampling procedure. Throughout, we
use the same parameters τ = 0.1, γ = 1, r = 15, Nnodes = 250, 000 as in the main text.

C.2.1 ADDITIONAL BENCHMARKS

We first define additional benchmarks, one easier, and three harder, for each protein dataset.

Table 6: GFP extra tasks

Difficulty Range (%) Gap |D|

Easy 50th-60th 0 5609
Harder1 < 30th 8 1129
Harder2 < 20th 8 792
Harder3 < 10th 8 397

Table 7: AAV extra tasks

Difficulty Range (%) Gap |D|

Easy 50th-60th 0 4413
Harder1 < 30th 13 1157
Harder2 < 20th 13 920
Harder3 < 10th 13 476

We note that the “easy” GFP task is equivalent to the design-bench baseline that is sometimes used as
a benchmark in protein engineering tasks. Due to experimental noise, protein variants are assayed
multiple times, and can be assigned multiple fitness values, which means the fitness values of one
sequence may occupy a large percentile range. In the case of this task, multiple measurements of the
wildtype GFP fitness are found in the 50th-60th percentile range. Because WT GFP is also a “top
sequence,” this task necessarily has a mutational gap of 0. Due to this leakage, we develop our own
benchmarks in the main text, and extend those to AAV.

C.2.2 HOW SMOOTHING AFFECTS PERFORMANCE

The following two tables show how a smoothed model outperforms its unsmoothed counterpart
according to our evaluator across all GFP/AAV benchmarks except AAV Harder2 (see (∗)), and GFP
Harder3, where the smoothing was not sufficient to induce successful GWG sampling (see Table 10).

16

Under review as a conference paper at ICLR 2024

Table 8: Smoothing improves GGS performance on GFP tasks

Difficulty Smoothed Median
Fitness

Diversity Novelty

Easy
No 0.05 24.83 13.36
Yes 0.84 5.45 3.51

Medium
No 0.51 10.5 15.4
Yes 0.76 3.7 5.0

Hard
No 0.10 23.02 16.8
Yes 0.74 3.6 8.0

Harder1
No 0.00 22.86 17.0
Yes 0.67 4.45 9.12

Harder2
No 0.00 22.22 16.5
Yes 0.60 5.42 9.82

Harder3
No 0.00 23.02 16.8
Yes 0.00 15.73 21.2

For the GFP task, our model fails (achieves 0 median fitness) when we restrict the data to the 10th
percentile and mutation gap 8 for GFP where |D| = 397.

Table 9: Smoothing improves GGS performance on AAV tasks

Difficulty Smoothed Median
Fitness

Diversity Novelty

Easy
No 0.47 2.69 7.81
Yes 0.49 9.18 7.99

Medium
No 0.37 6.60 6.62
Yes 0.48 4.66 5.59

Hard
No 0.33 12.32 13.8
Yes 0.60 4.5 7.0

Harder1
No 0.47 2.69 7.81
Yes 0.49 9.18 7.99

Harder2
No 0.28∗ 8.067 2.067
Yes 0.27 15.98 19.41

Harder3
No 0.25 3.08 5.63
Yes 0.38 7.05 9.486

(∗): The unsmoothed model only outperforms its smoothed counterpart when applying GWG to the unsmoothed
model generates only a few unique sequences nearby to the starting set (as evidenced by the low novelty for this
benchmark)

For AAV, we find the model is able to still find signal and achieve 0.384 evaluated fitness despite
the data being limited to the 10th percentile and mutation gap of 13 where |D| = 476. It is notable,
though, that the performance improvements gained from smoothing are smaller than in the case
of GFP. Presumably, this is due to the vastly reduced dimension of the AAV sequence space in
comparison to that of GFP, which may result in a neural network to learn a smoother landscape
without any regularization.

17

Under review as a conference paper at ICLR 2024

C.2.3 HOW SMOOTHING AFFECTS EXTRAPOLATION + SAMPLING

The following tables show the benefits of smoothing on extrapolation to held out ground truth
experimental data, up to a certain difficulty benchmark, as well as how smoothing vastly improves
the acceptance rate for the GWG sampling procedure.

Table 10: Smoothing improves extrapolation and GWG sam-
pling, up to GFP Harder3

Difficulty Smoothed Train
MAE

Holdout
MAE

Acc. Rate

Easy
No 0.03 0.99 0.02
Yes 0.71 0.61 0.99

Medium
No 0.10 1.29 0.61
Yes 0.20 0.88 0.62

Hard
No 0.06 1.44 0.01
Yes 0.15 0.93 0.43

Harder1
No 0.07 1.39 0.01
Yes 0.15 0.94 0.43

Harder2
No 0.01 1.41 0.01
Yes 0.12 0.90 0.59

Harder3
No 0.01 1.41 0.01
Yes 0.01 1.42 0.01

Table 11: Smoothing improves extrapolation up to AAV Hard
and GWG sampling on all AAV tasks

Difficulty Smoothed Train
MAE

Holdout
MAE

Acc. Rate

Easy
No 0.28 2.82 0.01
Yes 1.76 2.28 0.99

Medium
No 0.35 3.12 0.01
Yes 0.44 2.76 0.82

Hard
No 0.48 3.70 0.30
Yes 0.55 3.09 0.78

Harder1
No 0.66 3.99 0.01
Yes 0.69 4.24 0.47

Harder2
No 0.56 4.13 0.01
Yes 0.58 4.37 0.55

Harder3
No 0.47 4.58 0.01
Yes 0.47 4.59 0.64

For each benchmark category, we evaluated the impact of smoothing on extrapolation abilities by
analyzing the Mean Absolute Error (MAE) of the models on that benchmark’s training and holdout
datasets from the experimental ground truth. The effectiveness of smoothing was indicated by
reduced MAE values on the holdout set. We also find that the MAE on the training set is lower for
the unsmoothed models, as expected. In line with the results of the previous section, the effect of
smoothing is reduced for AAV. As task difficulty increases, for both proteins, the effectiveness of
smoothing on extrapolation decreases, which we expect as any signal leading from the training set to
the fitter sequences gets obscured as training set size decreases.

18

Under review as a conference paper at ICLR 2024

Finally, we note that in every case except two, smoothing dramatically increases accep-
tance rate of the GWG sampling procedure, which aligns with the inversely proportional relationship
between smoothness of the energy function and sampling efficiency. In the case of the hardest GFP
task, even the the smoothed model had overfit to the training set. As for the GFP medium task, we
suspect that this particular section of the experimental dataset allowed the unsmoothed model to learn
a smooth landscape initially.

19

	Introduction
	Related work
	Method
	Problem formulation
	Graph-based smoothing on proteins
	Sampling improved fitness with Gibbs

	Experiments
	Benchmark
	Results
	Analysis

	Discussion
	Additional GFP analysis
	Additional methods
	CNN architecture
	Metrics

	Additional results
	Sampling temperature sweep
	Smoothing analysis
	Additional Benchmarks
	How smoothing affects performance
	How smoothing affects extrapolation + sampling

