
A Appendix for ManiCast: Collaborative Manipulation with Cost-Aware1

Human Forecasting2

We provide the proof for lemma 1 and include additional details about the MPC planner, the collab-3

orative manipulation tasks, our dataset, and model implementation.4

A.1 Proof for Lemma 15

Proof. We first analyze the performance of a model trained on P(φ).6

Let’s assume that a model trained with MLE loss on P(φ) bounds the average L1 distance between7

the ground truth distribution P(ξH |φ) and the learned distribution Pθ (ξH |φ) on P(φ) by ε , i.e.8

∑
φ

P(φ)∑
ξH

|P(ξH |φ)−Pθ (ξH |φ)| ≤ ε

Then, for any given ξR be the robot trajectory ξR, the final loss ℓ(θ), i.e. the expected cost difference9

of ξR due to the ground truth distribution and the forecast model can be expressed as:10

ℓ(θ) =∑
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P(φ)
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≤∑
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P(φ)

(
∥C(ξR|ξH ,φ)∥∞ ∑

ξH

|P(ξH |φ)−Pθ (ξH |φ)|
)

(Holder’s ineq.)

≤∑
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P(φ)

(
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)
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φ

Cmax(φ)∑
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(
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where Cmax(φ) = ∥C(ξR|ξH ,φ)∥∞ is the maximum cost of a robot trajectory given a context, Cmax =11

maxφ Cmax(φ) is the maximum cost across all context. Cmax can be high in general, resulting in an12

inflated bound for the model above.13

Now let’s assume we train a model to minimize loss on the new distribution Q(φ) = 0.5P(φ) +14

0.5PT (φ) and get the following bound15

∑
φ

Q(φ)∑
ξH

|P(ξH |φ)−Pθ (ξH |φ)| ≤ ε

Then the loss can be expressed as:16

ℓ(θ) =∑
φ

P(φ)

(∣∣∣∣∣∑
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C(ξR|ξH)P(ξH |φ)−∑
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P(φ)Cmax(φ)
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P(φ)Cmax(φ)

Q(φ) ∑
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|P(ξH |φ)−Pθ (ξH |φ)|
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For Q(φ) = 0.5P(φ)+0.5PT (φ), we need to bound the ratio17

max
φ

P(φ)Cmax(φ)

Q(φ)
= max

φ

P(φ)Cmax(φ)

0.5P(φ)+0.5PT (φ)

There are two cases to consider:18

Case 1: Cmax(φ)≤ δ . Then PT (φ) = 0, and the ratio is bounded by19

max
φ

P(φ)Cmax(φ)

0.5P(φ)+0.5PT (φ)
≤ P(φ)δ

0.5P(φ)
≤ 2δ

Case 2: Cmax(φ)≥ δ . Then ratio is maximized when Cmax(φ) is maximized for φ = φ ∗20

max
φ

P(φ)Cmax(φ)

0.5P(φ)+0.5PT (φ)
≤ P(φ ∗)Cmax(φ

∗)

0.5PT (φ ∗)
≤

P(φ ∗)Cmax ∑φ P(φ)I(Cmax(φ)≥ δ )

0.5P(φ ∗)

≤ 2CmaxEP(φ) [I(Cmax(φ)≥ δ )]

Combining these cases, we can bound the ratio maxφ
P(φ)Cmax(φ)

Q(φ) as21

max
φ

P(φ)Cmax(φ)

Q(φ)
≤ 2max(δ ,CmaxEP(φ) [I(Cmax(φ)≥ δ )])

The ratio above can be no worse than Cmax by a factor of 2, and can be much smaller based on22

the choice of δ . Intuitively setting δ to be very high makes the transition probability PT (φ) peaky23

driving down the second term, while making δ to be small makes the transition probability close to24

the original distribution, driving down the first term.25

26

A.2 MPC Planner Details27

We use the open-sourced STORM codebase1 to implement sampling-based model-predictive control28

on a 7-DOF Franka Research 3 robot arm. At every timestep, the planner samples robot trajectories29

and evaluates the cost function with MANICAST forecasts. The robot executes the first action from30

the lowest-cost plan and updates its sampling distribution for the next timestep using the MPPI [1]31

algorithm. The manipulation components of the cost function independent of the human remain32

unchanged. We additionally introduce a collaborative task-specific cost component (T (ξR|ξ̂H)) that33

depends on the future human trajectory. The cost function optimized by the planner is laid out in34

Eq.1. Self-collisions are checked by training the jointNERF model introduced by Bhardwaj et al.35

[2].36

C(ξR|ξ̂H) = αsĈstop(ξR)+α jĈ joint(ξR)+αmĈmanip(ξR)+αcĈcoll(ξR)+ααα tT(ξξξ R|ξ̂̂ξ̂ξ H) (1)

A.3 Tasks for Collaborative Manipulation37

We describe three collaborative manipulation tasks that focus on house-hold cooking activities.38

Reactive Stirring: In this cooking task, the human and robot share a common workspace. While39

the robot arm is performing a stirring motion, the human may add vegetables into the pot. The robot40

arm preemptively predicts the arrival of the human arm and retracts back to give the human arm41

sufficient space to reach into the pot. The task-specific component of the cost function is:42

T (ξR|ξ̂H) =
T

∑
t=1

1
[
D(ŝ H

t ,s
pot)≤ ε

]
∥sR

t − srest∥+1
[
D(ŝ H

t ,s
pot)> ε

]
∥sR

t −ξ
t
stir∥ (2)

1https://github.com/NVlabs/storm
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The cost function checks whether the human’s position (ŝ H
t ) is close to the pot’s position (spot ) and43

decides whether to move to a pre-defined resting position (srest ) or to continue stirring in a circular44

trajectory (ξstir) starting from the current state of the robot (sR
0 ). A cost-aware forecasting model for45

this task should be able to predict the arrival and departure of the human ahead of time.46

Human-Robot Handovers: Handovers of objects are an important task in the kitchen. When a47

human is handing over an object, a robot arm should move towards the intended handover location.48

The task-specific component can be described as:49

T (ξR|ξ̂H) =
T

∑
t=1

1
[
IsOb jectInHand(sH

0 )
]
Ĉpose

(
Xee

t ,GraspPose(Xee
0 , X̂Hwrist

T )
)

(3)

Similar to prior work [3], the robot motion is initiated when the human arm has picked up the50

handover object. The robot’s end-effector (Xee
t ) moves towards a grasp location that is computed51

using the final wrist position of the human (X̂Hwrist
T ). The orientation of the grasp pose is calculated52

by drawing a straight line from the current end-effector position (Xee
t ) to the grasp location.53

Collaborative Table Setting: Movements on top of a table in the presence of a human in the54

workspace are a common collaborative manipulation task. Motion planners should not only avoid55

collision in the current timestep but also be able to forecast future motion and preemptively avoid56

collisions with the human body. The cost function is simply given by:57

T (ξR|ξ̂H) =
T

∑
t=1

Ĉpose
(
Xee

t ,XG
t
)
+βĈcoll

(
sR

t ,s
H
t
)

(4)

Here, β is the relative weight given to the collision avoidance component compared to the goal-58

reaching component. Collisions are checked between the human body and robot arm by representing59

them as a pack of sphere and cuboid rigid bodies.60

A.4 Collaborative Manipulation Dataset (CoMaD)61

Similar to a real-world collaborative activity, in much of the episode, both humans perform their62

respective cooking tasks in isolation. Episodes of reactive stirring and handovers contain 3-5 close-63

proximity interactions, each of which are short (4-5 seconds) compared to the length of the overall64

episode (30-60 seconds). Often, these interactions are initiated by verbal requests or subtle facial65

gestures. Collaborative table setting consists almost entirely of close-proximity fast human arm66

movements. We collect an RGB visual view of the scene containing audio along with motion capture67

data of both humans’ upper bodies. We also annotate transition windows for interactions in each68

episode.69

A.5 Model Implementational Details70

We train our forecasting models using the STS-GCN [4] architecture on an upper body skeleton con-71

sisting of 7 joints (Wrists, Elbows, Shoulders, and Upper Back). The last 0.4 seconds (10 timesteps)72

of motion is input to the models and the next 1 second (25 timesteps) of motion is predicted. We73

pretrain for 50 epochs on AMASS (1 hour) and finetune on CoMaD for 50 epochs (5 minutes). We74

divided the episodes in CoMaD into train, validation, and test sets (8:1:1).75
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