
A Appendices

A.1 Further details on spatial-based, spectral-based, and spectral-designed graph convolution

Figure 3: Left: Spectral Convolution transforms graph signals to the spectral domain via Graph
Fourier Transform (Graph FT), applies filtering, and returns to the graph domain through Inverse
Graph Fourier Transform (Graph IFT). Right: In Spatial Convolution, the target node (shown in white)
aggregates information from its neighbors to update its representation. Center: Spectral-Designed
Graph Convolution applies a set of filters in the spectral domain and then transforms back to the
graph domain to obtain the kernels for spatial convolution.

Spatial-based graph convolutions are analogous to convolutions on images in the way that they both
focus on local neighbors, as seen in Fig. 3 (right). In early research, Neural Network for Graphs
(NN4G) [25] aggregates information from reachable neighbors by summing up their hidden states.
GraphSage [26] then introduced random sampling of neighbors followed by an aggregation function.

Spectral-based graph convolutions are grounded in spectral graph theory. They operate in the Fourier
domain by the eigendecomposition of the (normalized) Laplacian matrix L(norm). This method
transforms signals on the graph into the spectral domain by applying the Graph Fourier Transform
(Graph FT) defined as the product of the signal with the eigenvector matrix UT of L. Also, various
filters can be applied to the signals, these filtered signals can then be mapped back to the spatial
domain through the Inverse Graph Fourier Transform (Graph IFT) with U, as seen in Fig. 3 (left).
Early methods like Spectral CNN [27] offer better global information capture but are computationally
dense due to eigendecomposition. ChebNet [28] then reduces the complexity by approximating the
eigendecomposition with a K-order Chebyshev polynomial, but also limits the receptive field to a
K-order neighborhood. Inspired by this, GCN [29] limited the polynomial order to K=1, achieving
an effective convolution layer with fewer parameters. Since GCN "works on local neighborhoods", it
is also considered a spatial-based approach [30].

A.2 Spectral Responses

Taking advantage of the Spectral Parsing Module’s ability to combine the outputs of multiple
convolutional kernels, we employed all five filters designed in DSGCN, i.e., one low-pass, one
high-pass, and three band-passes, whose frequency responses and expressions are shown in Fig. 4
and Fig. 5.

Figure 4: Frequency responses of each
filter.
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Figure 5: Designed filters, where λc1, λc2, λc3 are the
center frequencies and γ is the bandwidth parameter.
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A.3 Further details on experimental settings

For regression tasks, the target values ytrue are normalized to the range 0 to 1 using min-max
normalization. Following the node regression protocol in CoEvoGNN [15], the evaluation metrics
are RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error). The final score is the
average of the scores for each snapshot, with lower scores indicating better performance. To ensure
reproducibility and assess variance, each experiment is run five times with different random seeds
(0, 1, 2, 3, 4). These seeds are used to initialize the model parameters as well as the hidden states of
the nodes for the first k time steps. For fairness in the experiments, the node embedding dimension
dh is uniformly set to 64 across all conducted experiments. We use the default hyperparameter
of CoEvoGNN, marked as CoEvoGNN* in Table 2, and also apply the same hyperparameters for
CoEvoGNN, EvolveGCN, and DspGNN as follows: learning rate = 0.003, weight decay = 1× 10−6,
and K = 6, which means using the adjacency matrices and the encoded hidden states from the
previous six snapshots to predict the hidden state of the next snapshot. The loss function is the same
for all the models which inherited from CoEvoGNN. In this configuration, all the models converge
well and have access to relatively rich information about the past, finally, they perform the regression
task with a linear layer as in the protocol of CoEvoGNN.

A.4 Further details on Active Node Mapping Procedure

The concrete procedure of Active Node Mapping can be expressed as follows:

1. Map the indexes of the active nodes at time t from global node index 1 to N to a sequence
of natural numbers from 1 to Nt. This mapping function is represented by a matrix Mt of
dimensions N ×Nt such that Ãt = AtMt. The post-mapping degree matrix and Laplacian
matrix are also computed based on Ãt, denoted as D̃t and L̃t, respectively.

2. Perform eigendecomposition on the reduced graph, denoted as L̃norm
t = ŨtΛ̃tŨ

T
t

3. Filter the eigenvalue matrix Λ̃ through a function g(·).
4. Apply graph IFT to get the spectral-designed convolutional kernel(s) C̃t = Ũtg(Λ̃t)Ũ

T
t

5. Apply the inverse mapping by multiplying the matrix MT
t to the kernel C̃t for mapping

from the active node index back to the global node index for assigning the weights to
corresponding edges.

A.5 Speedup of Eigendecomposition with Active Node Mapping

In this subsection, we provide a theoretical and empirical analysis of the computational cost for
eigendecomposition with and without Active Node Mapping (ANM). The theoretical maximum
space complexity without ANM is O(N2) and the time complexity is O(N3) (multiplied by T , the
number of snapshots). In contrast, with ANM, the maximum space complexity is determined by the
largest number of active nodes O(max(Nt)

2), and the time complexity is reduced to the sum of the
cubes of active nodes per snapshot, Σt(Nt)

3. Based on these theoretical formulas, we calculated the
order-of-magnitude estimates for both space and time complexity as a theoretical reference (hence,
no units are provided), listed in Table 3.

For the empirical evaluation, we performed five runs of eigendecomposition for all snapshots on
Google Colab with consistent configurations, not including adjacency matrix generation and I/O
time. The median time for each approach is reported in the table 3. W/O ANM implementations use
either numpy.linalg.eigh 2 for the standard algorithm or scipy.sparse.linalg.eigs 3 optimized for sparse
matrices. Both W/O ANM implementations have a runtime at least 100 times greater than our ANM
approach across three datasets.

2https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html
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Table 3: Computational cost comparison between without and with Active Node Mapping (ANM)
techniques. ’Max space complexity’ refers to the theoretical maximum space complexity required.
’Time complexity’ refers to the computational operations based on theoretical time complexity. ’Real
time consumed’ shows the time taken to perform eigendecomposition on all snapshots. W/O ANM
uses a standard numpy algorithm or scipy sparse-matrix optimized version, and ANM uses only the
standard numpy algorithm. The value shown is the median value measured over five runs.

W/O Active Node Mapping With Active Node Mapping

Max space complexity (Theo.)
Bitcoin-Alpha 1 × 107 3 × 105

Bitcoin-OTC 3 × 107 3 × 105

MovieLens-100K 1 × 108 6 × 106

Time complexity (Theo.)
Bitcoin-Alpha 7 × 1012 6 × 108

Bitcoin-OTC 3 × 1013 1 × 109

MovieLens-100K 9 × 1013 1 × 1011

Real time consumed (seconds)

Library Numpy Scipy Numpy
Bitcoin-Alpha 1826.31 225.69 0.31
Bitcoin-OTC 7203.62 592.23 0.55
MovieLens-100K 11150.19 1159.91 12.83
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