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A VARIATIONAL BAYES

In this section we review variational Bayes.

Given M input/output pairs X = (x!,...,2M),Y = (y',...,yM), and a prior over weights
p(W), in a Bayesian approach we are interested in computing the posterior p(W|X,Y) =
p(Y| X, W)p(W)/p(Y|X), which is used to make a prediction on a test point x.: p(y|x.) =
E,wx,v)[p(ylx«, W)]. However the posterior computation involves an intractable denomina-
tor. We proceed using variational Bayes and we introduce an approximate posterior go(W') which
depends on hyperparameters 6, chosen to maximize the evidence p(Y'|X) lower bound (ELBO)
objective:

ELBO = Eg, (w)[log p(Y'| X, W)] — KL (g0 (W)][p(W)) < p(Y'|X). 27

The resulting approximate posterior is then used for a prediction: ¢(y|x.) := Ey, (w)[p(y|z., W)).
Maximizing the gap in variational Bayes is equivalent to minimizing the KL between the approxi-
mate and the true posterior Kingma et al.|(2015):

ELBO — log p(¥|X) = —KL(qs(W)||p(W|X,Y)). (28)

B REVIEW OF QUANTUM MECHANICS

States in quantum mechanics (QM) are represented as abstract vectors in a Hilbert space H, denoted
as |1). Here, we will only be concerned with qubits which can have two possible states |0) and |1).
These states are defined relative to a particular frame of reference, e.g. spin values measured along
the z-axis. More generally, a qubit is described as a complex linear combination (or superposition)
of up and down z-spins: ) = «|0) + 5 |1).

N disentangled qubits are described by a product state |¢)) = Hf\il |1;). Under interactions qubits
entangle with each other. This means that the wave function is now a complex linear combination of
an exponential number of 2%V terms. We can write this as [¢)') = U |+)) where U is a unitary matrix
ina 2% x 2 dimensional space. This entangled state is still *pure’ in the sense that there is nothing
more to learn about it, i.e. its quantum entropy is zero and it represents maximal information about
the system. However, in QM that does not mean our knowledge of the system is complete.

Time evolution in QM is described by a unitary transformation, |¢(¢)) = U (t,0)|¢(0)) with
U(t,0) = eH* where H is the Hamiltonian, a Hermitian operator. Note that time evolution en-
tangles qubits. We will use time evolution to map an input state to an output state as a layer in a NN,
not unlike a neural ODE |Chen et al.|(2018)).

Measurements in QM are nothing else than projecting the state onto the eigenbasis of a symmetric
positive definite operator A. The quantum system collapses into a particular state with a probability
given by Born’s rule: p; = | (¢;|¢) |? where {|¢;)} are the orthonormal eigenvectors of A.

We will also need to describe “mixed states”. A mixed state is a classical mixture of a number of
pure quantum states. Probabilities in this mixture encode our uncertainty about what quantum state
the system is in. This type of uncertainty is the one we are used to in Al, it results from a lack of
knowledge about the system.

Mixed states are not naturally described by wave vectors. For that we need a tool called the density
matrix p. For a pure state we use p = |¢) (1|, a rank-1 matrix (or outer product), where (¢| is the
complex transpose of the vector [¢)). But for a mixed state the rank will be higher and p can be
decomposed as p = >, pr |r) (Y| With {py} (positive) probabilities that sum to 1. Note that a
unitary transformation will change the basis but not the rank (and hence will keep pure states pure):
Rank(p’) = Rank(UpU™). In particular, time evolution will preserve rank and keep pure states pure.

The probability of a measurement is given by the trace of the density matrix over the projector
A; = |¢;) (¢, namely p; = Tr(A;p) = Tr(|ds) (¢il¥) (¥]) = | (¢i|) [, i.e. Born’s rule. Similar
to marginalisation in classical probability theory, we can trace over degrees of freedom we are not
interested in, i.e. p, = Trp(pap)-
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Further, if two operators A, A’ commute, they have a common eigenbasis and we can simultane-
ously measure them leading to a joint probability distribution p(Aa, Aj) = (|11 11 A |t)), where

’5 are the eigenvalues of A" and IT,,, (I, ) projects onto the eigenspace of A (A").

B.1 REVIEW OF QUANTUM PHASE ESTIMATION

We review here the quantum phase estimation, a quantum algorithm to estimate the eigenphases of
a unitary U. Suppose first that we know an eigenvector |v) of U with eigenvalue exp(%gp), and
that ¢ can be represented with ¢ bits: ¢ = 281! 4 -+ 4+ 290", Then introduce ¢ ancilla qubits in
equal weight superposition of all the 2¢ states: H®" |0)®"

m=(1 4w ( f|o>+\}§|1>)®t Qt/;z_le 09)

where we used the identification: |0) = (1,0)” and introduced the basis {|€>}?:51 for the ancilla
qubits, i.e. £ = 271gt + ... 4 29¢*. We use the ancilla’s as control qubits for applying powers of
U on the input state |v), implementing the following unitary map:

2t -1 2t -1 2t -1

1
L
2t/2 Z |é ® |v 2t/2 Z |Z ®U |’U> 2t/2 Z €

Next, we apply the inverse Fourier transform on the ancilla register to get:

FLU) ) . (30)

ot _q 2t—1
il Z o5 (o~ )|k @ |v) Z(swk‘k Y@ [v) =) @ |v) . @31
ek 0

The quantum complexity of this operation is linear in ¢. By linearity if the input is a generic state,
1) = 3, [va) (Valt)), |va) an eigenstate of U with eigenvalue exp (25, ), quantum phase esti-
mation will act as:

00 @ [¥) = Y (valt) [oa) ® [va) - (32)

Here we also assumed that we can represent all the ¢,’s with ¢ bits, in which case the reduced
density matrix of the ancilla state is diagonal

panc = D |Pa) (5] (valth) (¥1vg) Tr{|va) (vs|} = ZI% ) (@al [ {val¥) 7, (33)
o

so that the probability of measuring ¢,, is governed by | (v, |t) |?. In particular, the probability that
the first ancilla bit is b is given by:

b) = Z | (val®) P3(0 (2" pa) — 1), (34)

where o is the threshold non- hnearlty mtroduced in equatlonlsmce 2 t(p =2"tpl 4. 4 2 ot
and if the first bit * = 0 then 27'¢ < 1 and ¢(27'¢) = 0, while if ' = 1, then 27t > 1 and

o(27%) = 1.
Note that computing the reduced density matrix can be done by simply discarding qubits on a quan-
tum computer, while it can be exponentially hard classically. In practice, ¢ can to be chosen to be
lower than the precision of ¢ and in that case one can estimate the accuracy of the measurement, see

Nielsen & Chuang| (2000) for details. We depict the quantum phase estimation with measurement
of the first ancilla in figure [3]

C DETAILED IMPLEMENTATION OF QUANTUM DEFORMED NEURAL
NETWORKS

We here give a detailed derivation of the formulas related to implementing quantum circuit of a
layer in a quantum deformed neural network depicted in figure (1| (a). The input state to that circuit
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Figure 3: Quantum phase estimation circuit with measurement of the first ancilla qubit.

is [0)®"™ @ |1b), where we recall that

1) = [ ® by - ®®[ 22 (W = 0)[0) + qu-<Wji=1>|1>] 35)

=1 j=1
We start by applying the first quantum phase estimation of U; which involves only the first ¢ ancillas.
W.rt. equationlwe identify |vo) = |h, W) 5, |0a) = |@(h, W1 .)), to get:

0 @) > > b, W) |e(h,W1.)) & |h, W), . (36)

heBN WeBNM

Then we proceed to applying to the result the second quantum phase estimation involving Uy and
the second batch of ¢ ancilla qubits:

Y b W0 ®e(h, W) ® |h, W) 37)
hEBN WEBNM
SN o (W) p(h, Wa)) @ p(h, W1)) @ [h, W), (38)

heBN WeBNM

We repeat the procedure M times to get to the final state:

M
> 2 phWReh W) e Wb, le(h W) =Qle(h.W,.) . (39)

heBN WeBNM
and compute the reduced density matrix of the ancilla qubits p,n. which is diagonal as in equation[33}
pme =Y > | R WI)[*p(h,W)) (p(h, W)] . (40)
heBN WeBNM

Now we compute the outcome probability of a measurement of the first qubit in each of the M
registers of ancilla qubits. Recalling equatlonE] and the fact that the first bit of an integer is the most
significant bit, determining whether 27 '@ (h, W;.) = (N + 1)~ 'p(h, W, .) is greater or smaller
than 1/2, the probability of outcome h’ = (h],..., k) is

=3 Y S f(WLR) [(WlR, W[ @1

heBN WeBNM

where f is the layer function introduced in equation [I]

D THE CASE OF CONVOLUTIONAL LAYERS

We extend here the model of [3.3]to the convolution case, where the eigenphases we want to estimate
using the quantum phase estimation are:

K1 Ko

‘pzyd—zzzwkécdhz-i-ké—i-j( (42)

k=1¢=1 c=1
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Here the kernel W has size (K, Ko, C, C"), where K (K>) is the kernel along the height (width)
direction, while C' (C”) is the number of input (output) channels and d = 1,...,C". Classically,
we can implement the convolution by extracting patches of size K7 x Ky x C' from the image and
perform the dot product of the patches with a flattened kernel for each output channel. Moving on to
the quantum implementation discussed in section [3.3] we recall that the input activation distribution
is factorized. Therefore it is encoded in a product state, and we define patches analogously to the
classical case since there is no entanglement coupling the different patches. The quantum convolu-
tional layer can then be implemented as outlined above in the classical case, replacing the classical
dot product with the quantum circuit implementing the fully connected layer of section [3.3] The
resulting quantum layer is a translation equivariant for any choice of D).

E DETAILS OF CLASSICAL SIMULATIONS

We compute here the mean and variance of equation 25 with the choice of equation [26] Denoting
B, = B ,Bojr1 = BW we have

_ 11
K; = DNB%B?H-ID Y= M; 1NBziB2i+1Mi, M; = Q2 2i41Poi—1,2iPait1,2i42
(43)

so the random variable associated to K; will have support only on the four qubits {27 — 1,24, 27 +
1,2i 4+ 2}. Thus (¢| K; K, |¢) = (| K; [¢) (| K, ) for |i — 4’| > 1 and the CLT can be
applied. If we write [¢)) = @22, [¢);), and denote:

(XD = (Wil - Wour| X i) -+ [bur) (44)
the mean and variances are:
(Ko)p.o i=0
= Z Wiy i = (Ki)gi_1.0i42 0<i<N-—-1 (45)
= (Kn-1)on-gan—1 i=N—1
o = (I KK [0) — (0| K [§) (0] K [9) (46)

ij

N—-1
=23 (| KK [) — (] K [8) (0] K [9) + > (W] K7 [) — (] K [$)°) 47)
=0

1<j
N—2 N-1
=2 (Yiit1 — Hifbit1) + Z (48)
1=0 =0
(KoK 1o i =0
Yiji+1 = <’LM KiKi-i-l |’L/}> = <K K1+1>21_1:2z+4 O0<i<N-2. (49)

<KN*2KN*1>2N—3:2N—1 i=N-2

In computing 02 we used K? = K;. Note that both x and o2 can be computed in O(N) and
parallelized. Naively, computing (Ki)y; 1.9;45 and (K;Kiy1)y; 1.4 takes (d?)3 + d, (the first
term comes from the three layers of matrix vector products shown in figure [2] (b,c) and the second
term from the final dot product) where d is the dimensionality of the input state, i.e. d = 2% in the
mean case and d = 26 in the variance case. These constants can be further reduced by choosing an
order of contractions of the tensors exploiting the local connectivities. These times can be further
greatly reduced if we assume that P»;_; o; = 1, in which case K is supported only on two sites
and K;, K are uncorrelated for all 4, j.

F DETAILS OF THE EXPERIMENTS AND ADDITIONAL NUMERICAL RESULTS

We summarize here details of the experiments discussed in section[4.2] We parametrize the 4 x 4
unitaries P/, ;, Q7 as follows. For each 4 x 4 unitary U we introduce 4 x 4 real matrices
A, B, which are learnable. Then we compute U as in Procedure [3| Note that the bandPart routine
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effectively discards half of the parameters, halving the actual number of trainable variables, and we
use this routine only for implementation convenience. We will keep that into account when counting
parameters below.

Procedure 3 Parametrization of a unitary matrix

Input: A, B {N x N real matrices}

QOutput: U
C+—A+iB
C «+ bandPart(C, 0, -1) {Set lower triangular part, diagonal excluded, to zero}
U <« exp(C — CT) {N x N unitary matrix}

At the last layer of the neural network we produce a number of output probabilities equal to the
number of classes, each of which is a number in [0, 1]. We then normalize these to interpret the
normalized result as probability of the input to be in a given class, fed into a cross entropy loss.

For MNIST we preprocess the data by binarizing the images and using the binary value as input bit
to the quantum neural network. For Fashion MNIST such procedure would result in a great loss
of texture and therefore we simply normalize the pixels to [0, 1] and use that value as input prob-
ability. We train the models with the Adam optimizer and 3 = 105 coefficient of the variance
regularization term as in [Peters & Welling| (2018). We train for a fixed budget of 50 epochs for
MNIST Arch. A,B,C and FashionMNIST Arch. C, and 100 epochs for Fashion-MNIST Arch. A,B.
We sweep over the coefficient of the Lo regularization for the deformation parameters beween values
{0,107} and also sweep the learning rate schedule, between constant and equal to 0.01 and piece-
wise decay from 0.01 to 0.001, choosing the best model among all these. On top of the learnable
parameters discussed so far, we also add bias terms to the layers in all runs.

Table E] extends the results of table E} On top of the models discussed in the main text, we also
present results for models with quantum circuits constrained to be translation invariant, which have
a reduced parameter count. In general, those perform less well than the unconstrained models. In a
few cases, the deformed models performed slightly worse than the undeformed ones because of the
more complex optimization procedure.

To understand the practical benefit of the deformations studied, we also compare the results against
classical baselines with increased number of parameters to match or slightly exceed the parameter
count of the deformed layers. We start by noting that for a dense layer with n inputs and m outputs
a classical probabilistic binary neural network baseline has mn 4 m parameters (weights plus bias).
Recalling that a 4 x 4 unitary can be parametrized in terms of its logarithm, an anti-Hermitian matrix
with 16 real free parameters, for the quantum deformations considered we have the following ratio
of deformed over classical parameters per dense layer:

mn(l+16 x 2) +m

[PQ] : T ~1416x2=33 (50)

[Q]:%wl—&—w:l? (51)
[PQ T-inv] : " +$ji>;f g n?f - (52)
[Q T-inv] : % —1 nlf : (53)

The x2 accounts for P, Q and the deformation notation is explained in table[2} When considering
the number of parameters, we note that in principle the parameterization of deformed layers is
redundant. Indeed the weight parameters ¢;; that make up the amplitudes of weights states |t2;_1),
and which correspond to the weights parameters of the classical baseline, could be incorporated into
the definition of P, @ since those are generic unitaries. We however count them separately to reflect
the parameterization used in our experiments.
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Table 2:  Test accuracies for MNIST and Fashion MNIST as function of parameters for var-
ious architectures. The notation cKsS — C indicates a conv2d layer with C filters of size
[K, K| and stride S, and dN a dense layer with V' output neurons. The deformations are: [/]:

P-jiJrl =Qj ;1 =1 (baseline Peters & Welling| (2018)); [PQ]: Pf;iﬂ, sz+1 generic; [PQ T-inv]:

1/7

Pij,iJrl =P, Qg,i+1 =Q’; [Ql: Pi{iﬂ =1, Qg,iJrl generic; [Q] T-inv: Pij,iJrl =1, Qg,i+1 =Q’.

Architecture Deformation  # params MNIST Fashion MNIST

d10 [/] 7850 91.1 84.2

d1o [PQ] 258730 94.3 86.8

d10 [Q] 133290 91.6 85.1

d10 [PQ T-inv] 8170 91.9 84.3

d10 [Q T-inv] 8010 89.3 84.4
¢3s2-8, ¢3s2-16, d10 [/,7,1] 7018 96.6 87.5
c3s2-8, c3s2-22, d10 [/,1,1] 9616 96.7 86.8
¢3s2-9, c3s2-21, d10 [/,7,1 9382 96.7 86.7
¢3s2-10, ¢3s2-21, d10 [/,7,1] 9581 97.1 87.0
c3s2-12, ¢3s2-20, d10 [/,7,1 9510 97.1 86.8
¢3s2-8, ¢3s2-16, d10 [PQ, /, /] 9322 97.6 88.1
¢3s2-8, ¢3s2-16, d10 [Q,/,/] 8170 96.8 87.8
c3s2-8, c3s2-16,d10  [PQ T-inv, /, /] 7274 97.4 87.8
¢3s2-8, ¢3s2-16,d10  [Q T-inv, /, /] 7146 96.6 87.6
c3s2-32, ¢3s2-64, d10 [/,7,1] 41866 98.1 89.3
c3s2-43, ¢3s2-68, d10 [/,7,1 51304 98.2 89.4
c3s2-44, c3s2-67, d10 [/,7,1] 51169 98.4 89.4
c3s2-48, c3s2-64, d10 [/,7,1] 51242 98.3 89.5
c3s2-32, ¢3s2-64, d10 [PQ, /, /] 51082 98.3 89.6
c3s2-32, c3s2-64, d10 [Q,/,/] 46474 98.3 89.5
c3s2-32, ¢3s2-64,d10  [PQ T-inv, /, /] 42890 98.2 89.13
c3s2-32, ¢3s2-64,d10  [Q T-inv, /, /] 42378 98.3 89.0
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