
Under review as a conference paper at ICLR 2020

LEARNING EXPENSIVE COORDINATION:
AN EVENT-BASED DEEP RL APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing works in deep Multi-Agent Reinforcement Learning (MARL) mainly fo-
cus on coordinating cooperative agents to complete certain tasks jointly. However,
in many cases of the real world, agents are self-interested such as employees in
a company and clubs in a league. Therefore, the leader, i.e., the manager of the
company or the league, needs to provide bonuses to followers for efficient coordi-
nation, which we call expensive coordination. The main difficulties of expensive
coordination are that i) the leader has to consider the long-term effect and predict
the followers’ behaviors when assigning bonuses and ii) the complex interactions
between followers make the training process hard to converge, especially when
the leader’s policy changes with time. In this work, we address this problem
through an event-based deep RL approach. Our main contributions are threefold.
(1) We model the leader’s decision-making process as a semi-Markov Decision
Process and propose a novel multi-agent event-based policy gradient to learn the
leader’s long-term policy. (2) We exploit the leader-follower consistency scheme
to design a follower-aware module and a follower-specific attention module to
predict the followers’ behaviors and make accurate response to their behaviors.
(3) We propose an action abstraction-based policy gradient algorithm to reduce
the followers’ decision space and thus accelerate the training process of follow-
ers. Experiments in resource collections, navigation, and the predator-prey game
reveal that our approach outperforms the state-of-the-art methods dramatically.

1 INTRODUCTION
Deep Multi-Agent Reinforcement Learning (MARL) has been widely used in coordinating coop-
erative agents to jointly complete certain tasks where the agent is assumed to be selfless (fully
cooperative), i.e., the agent is willing to sacrifice itself to maximize the team reward. However, in
many cases of the real world, the agents are self-interested, such as taxi drivers in a taxi company
(fleets) and clubs in a league. For instance, in the example of taxi fleets (Miao et al., 2016), drivers
may prefer to stay in the area with high customer demand to gain more reward. It is unfair and
not efficient to compel the taxi driver to selflessly contribute to the company, e.g., to stay in the
low customer demand area. This is also the case in various areas, e.g., employees and manager;
soccer clubs and the league. A better way to achieve coordination among followers and maximize
the leader’s utility is that the manager of the company or the league needs to provide bonuses to
followers so as to finish certain leader’s goals, like the taxi company pays extra bonuses for serving
the customers in rural areas, which we term as expensive coordination. In this paper, we solve the
large-scale sequential expensive coordination problem with a novel RL training scheme.

There are several lines of works related to the expensive coordination problem, including mecha-
nism design (Nisan & Ronen, 2001) and the principal-agent model (Laffont & Martimort, 2009).
However, these works focus more on static decisions (each agent only makes a single decision). To
consider sequential decisions, the leader-follower MDP game (Sabbadin & Viet, 2013; 2016) and the
RL-based mechanism design (Tang, 2017; Shen et al., 2017) are introduced but most of their works
only focus on matrix games or small-scale Markov games, which cannot be applied to the case with
the large-scale action or state space. The most related work is M3RL (Shu & Tian, 2019) where
the leader assigns goals and bonuses by using a simple attention mechanism (summing/averaging
the features together) and mind (behaviors) tracking to predict the followers’ behaviors and makes
response to the followers’ behaviors. But they only consider the rule-based followers, i.e., followers
with fixed preference, and ignore the followers’ behaviors responding to the leader’s policy, which
significantly simplifies the problem and leads the unreasonability of the model.

1

Under review as a conference paper at ICLR 2020

In the expensive coordination problem, there are two critical issues which should be considered: 1)
the leader’s long-term decision process where the leader has to consider both the long-term effect
of itself and long-term behaviors of the followers when determining his action to incentivise the
coordination among followers, which is not considered in (Sabbadin & Viet, 2013; Mguni et al.,
2019); and 2) the complex interactions between the leader and followers where the followers will
adapt their policies to maximize their own utility given the leader’s policy, which makes the training
process unstable and hard, if not unable, to converge in large-scale environment, especially when
the leader changes his actions frequently, which is ignored by (Tharakunnel & Bhattacharyya, 2007;
Shu & Tian, 2019). In this work, we address these two issues in the expensive coordination problem
through an abstraction-based deep RL approach.

Our main contributions are threefold. (1) We model the leader’s decision-making process as a semi-
Markov Decision Process (semi-MDP) and propose a novel event-based policy gradient to learn
the leader’s policy considering the long-term effect (leader takes actions at important points rather
than at each step to avoid myopic decisions.) (Section 4.1). (2) A well-performing leader’s policy
is also highly dependent on how well the leader knows the followers. To predict the followers’
behaviors precisely, we show the leader-follower consistency scheme. Based on the scheme, the
follower-aware module, the follower-specific attention module, and the sequential decision module
are proposed to capture these followers’ behaviors and make accurate response to their behaviors
(Section 4.2). (3) To accelerate the training process, we propose an action abstraction-based policy
gradient algorithm for the followers. This approach is able to reduce followers’ decision space and
thus simplifies the interaction between the leader and followers as well as accelerates the training
process of followers (Section 4.3). Experiments in resource collections, navigation and predator-
prey show that our method outperforms the state-of-the-art methods dramatically.

2 RELATED WORKS
Our works are closely related to leader-follower RL, temporal abstraction RL, and event-based RL.

Leader-follower RL. The leader-follower RL targets at addressing the issue of expensive coordina-
tion where the leader wants to maximize the social benefit (or the leader’s self-benefit) by coor-
dinating non-cooperative followers through providing them bonuses. Previous works have investi-
gated different approaches to solve the expensive coordination, including the vanilla leader-follower
MARL (Sabbadin & Viet, 2013), leader semi-MDP (Tharakunnel & Bhattacharyya, 2007), multiple
followers and sub-followers MARL (Cheng et al., 2017), followers abstraction (Sabbadin & Viet,
2016), and Bayesian optimization (Mguni et al., 2019). But most of them focus on simple tabular
games or small-scale Markov games. The most related work (Shu & Tian, 2019) leverages the deep
RL approach to compute the leader’s policy of assigning goals and bonuses to rule-based follow-
ers. But their method performs poorly when the followers are RL-based. In this work, we aim to
compute the leader’s policy against the RL-based followers in the complex and sequential scenarios.

Temporal abstraction RL. Our methods are also related to temporal abstraction method (Sutton et al.,
1998; Daniel et al., 2016; Bacon et al., 2017; Smith et al., 2018; Zhang & Whiteson, 2019). The
basic idea of temporal abstraction is to divide the original one-level decision process into a two-level
decision process where the high-level part is to decide the meta goal while the low-level policy is to
select the primitive actions. Our leader’s decision process is different from those methods mentioned
above because the leader’s policy can naturally form as an intermittent (temporal abstraction) deci-
sion process (semi-MDP) (Tharakunnel & Bhattacharyya, 2007) and it is unnecessary to design the
two-level decision process. Based on the nature of the leader, a novel training method is introduced.

Event-based RL & Planning. Previous studies also focus on using events to capture important
elements (e.g., whether agent reaches a goal) during the whole episode. Upadhyay et al. (2018)
regard the leader’s action and the environment feedback as events in the continuous time environ-
ment. Becker et al. (2004); Gupta et al. (2018) leverage events to capture the fact that an agent
has accomplished some goals. We adopt this idea by depicting the event as the actions taken by
the leader at some time steps and design a novel event-based policy gradient to learn the long-term
leader’s policy.

3 STACKELBERG MARKOV GAMES

Our research focuses on single-leader multi-follower Stackelberg Markov Games (SMG) (Mguni
et al., 2019; Sabbadin & Viet, 2013), which can be formulated as a tupleG = 〈N ,S,A,Ω, P,R, γ〉.
N is the set of N followers, i.e., |N | = N . S is the set of states. s0 ∈ S0 ⊂ S is an initial state and

2

Under review as a conference paper at ICLR 2020

Figure 1: Overview of our framework. The details of the leader’s module and the follower’s module
can be found in Section 4.2 and Section 4.3, respectively. The implement details of each module can
be found in Appendix D.2.2.

S0 is the set of initial states. A = ×k∈NAk is the set of joint actions for followers where ak ∈ Ak is
an action for the k-th follower. ω ∈ Ω = ×k∈NΩk is an action for the leader and ωk = {gk, bk} ∈
Ωk is a goal and a bonus that the leader assigns to the k-th follower. P : S × A → ∆(S) is the
transition function1 and R = ×k∈N rk × rl is the reward function set where rk : S × A × Ω → R
is the reward function for the k-th follower and rl : S × A × Ω→ R is the reward function for the
leader. γ is the discount factor and a is a joint action of followers.

The leader’s policy is defined as µ = 〈µk〉k∈N where µk : Ω × S → ∆(Ωk) is the leader’s action
to the k-th follower given the leader’s action in the previous timestep ωt−1 and the current state
st. ∆(·) is a probability distribution. The followers’ joint policy is defined as π = 〈πk〉 where
πk : Ωk ×S → ∆(Ak) is the k-th follower policy given the leader’s action ωkt and the current state
st. Given the policy profile of the leader and followers 〈µ,π〉, the follower’s utility is defined as
Jk(µ,π) = E

[∑T
t=0 γ

trkt (st,at,ωt)
]

and the leader’s utility is J(µ,π) = E
[∑T

t=0 γ
trlt (st,at,ωt)

]
.

We assume that the leader and followers aim to maximize their own utilities. We define the trajectory
τ as a sequence of state, leader’s action, and followers’ actions 〈ω−1, (st,at,ωt)

T
t=0〉 where ω−1 is

the first step leader’s action and is set to zero.

4 METHODOLOGY

In this section, we propose a novel training scheme to train a well-performing leader policy against
both rule-based and RL-based followers in the expensive coordination problem. We address the
two issues, the leader’s long-term decision process and the complex interactions between the leader
and followers, with three key steps: (a) we model the leader’s decision-making process as a semi-
Markov Decision Process (semi-MDP) and propose a novel event-based policy gradient to take
actions only at important time steps to avoid myopic policy; (b) to accurately predict followers’ be-
haviors, we construct a follower-aware module based on the leader-follower consistency, including a
novel follower-specific attention mechanism, and a sequential decision module to predict followers’
behaviors precisely and make accurate response to these behaviors; and (c) an action abstraction-
based policy gradient method for followers is proposed to simplify the decision process for the
followers and thus simplify the interaction between leader and followers, and accelerate the conver-
gence of the training process.

4.1 EVENT-BASED TRAJECTORY OPTIMIZATION FOR LEADER

We first describe the event-based trajectory optimization for the leader. As we mentioned
above, the leader’s decision process can be naturally formulated as a semi-MDP (Tharakun-
nel & Bhattacharyya, 2007). Therefore, we firstly describe the basic ideas of semi-
MDP using the modified option structure. We define the modified option as a tuple:
〈µ,
(
βk
)
k∈N 〉 where µ is the leader’s policy as we defined above and βk(st,ωt−1) : S ×

Ω → [0, 1] is the termination function for the k-th follower, to indicate the probabil-
ity whether the leader’s action to the k-th follower changes (ωkt−1 6= ωkt). Based on
these definitions, we formulate the one-step option-state transition function with decay as:
Pγ (st+1,ωt|st,ωt−1,at) = γP (st+1|st,at)π (at|st,ωt)

∏
k{
(
1− βk (st,ωt−1)

)
1ωkt−1=ωkt

+

βk (st,ωt−1)µk
(
ωkt |st,ωt−1

)
}, where 1 is the indicator function and π (at|st,ωt) =

1Notice that the transition function does not depend on the leader’s action.

3

Under review as a conference paper at ICLR 2020

(a) A simple example for the illustration of AT . Sup-
pose that the whole step is 4, the AT = {eI

1 =
〈0, ωI

0〉, eII
1 = 〈1, ωII

1 〉, eII
2 = 〈3, ωII

3 〉}.

(b) The probabilistic graphical model of the pro-
posed framework. Dotted line means that β affects
the final result of ω indirectly. ω−1 is set to be zero.

Figure 2: An example and a probabilistic graphical model to illustrate our method.∏
k∈N π

k
(
akt |st, ωkt

)
is the joint policy for followers. Notice that this is an extension of the aug-

mented process mentioned in (Bacon et al., 2017). Differently, we do not have the low-level policy
here and since we only focus on the finite time horizon, γ is set to be 1. Our modified option is used
to depict the long-term decision process for the leader as shown in Fig. 2.

Now we start to discuss our leader’s policy gradient. In fact, it is not easy to directly optimize
the leader’s utility based on this multi-agent option-state transition function since this form in-
cludes leader’s different action stages to different followers. Notice that for a sampled trajec-
tory, the occurrence of the leader actions is deterministic. Therefore, we can regard the time
step and the action the leader takes at that step as an event and define the (universal) event set
UT = {〈ti, ωkti〉|ti ≤ T, k ∈ N}. We use the notation eki = 〈ti, ωkti〉 to represent the leader’s action
to the k-th follower at step ti, i is the index of the event. Since we focus on the change of the actions
from the leader, we further define a set that represents a collection of new actions (ωkt 6= ωkt−1)
taken by the leader within that trajectory: AT = {eki |ωkti 6= ωkti−1, ti ≤ T, k ∈ N} ⊆ UT , where
ti − 1 is the previous time step. AT represents when and how the leader commits to a new action
(an example can be found in Fig. 2a). For brevity, ekj 6∈ AT means ekj ∈ UT \AT . The probability of
AT can be represented as:

P (AT) =
∏

k∈N

∏
eki ∈AT

βk(sti ,ωti−1)µ
k
(
ωkti |sti ,ωti−1

)∏
ekj 6∈AT

(
1− βk(stj ,ωtj−1)

)
,

where tj−1 is the previous time step. This equation illustrates that the probability of the occurrence
of a certain leader’s event set within a trajectory. Concretely, the leader changes action to the k-
th follower at ti ∈ eki while maintaining the same action within the interval from ti−1 ∈ eki−1 to
ti − 1 (s.t., ti ∈ eki). Similarly, we can further define the probability of the whole trajectory τ as:

P (τ) = P (s0)
∏

k∈N

{[∏
eki ∈AT

βk(sti ,ωti−1)µ
k
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)]
×[∏

ekj 6∈AT

(
1− βk(stj ,ωtj−1)

)
πk
(
aktj |stj , ω

k
tj

)]}∏T

t=0
P (st+1|st,at).

Comparing with P (AT), P (τ) includes the probability of the followers as well as the state transition.
Do note that our goal is to maximize maxAT EP (τ) [Rτ (T)] , indicating that the leader is required
to select an action that can maximize the accumulated reward, where Rτ (T) =

∑T
t=0 γ

trlt is the
accumulated reward and τ is to stress that its accumulated reward is from the trajectory τ . Following
the REINFORCE trick (Sutton & Barto, 1998), the policy gradient for the termination function and
the leader’s policy function can be formulated under the following proposition:

Proposition 1. The policy gradients for the termination function βk (sti ,ωti) and leader’s policy
function µk

(
ωkti |sti ,ωti−1

)
can be written as:

∇θJ(θ) ≈ Eτ∼pτ (·)
{[∑

k∈N

∑T

i=0
I(eki)

]
Rτ (T)

}
; ∇ϑJ(ϑ) ≈ Eτ∼pτ (·)

{[∑
k∈N

∑T

i=0
I ′(eki)

]
Rτ (T)

}
;

where θ and ϑ are the parameters for the termination function βkθ and leader’s policy µkϑ. I(·) and
I ′(·) are the piece-wise functions:

I(eki) =


−∇θβk(sti ,ωti−1)
1−βk(sti ,ωti−1)

eki ∈ AT
∇θ log βk(sti ,ωti−1)

βk(sti ,ωti−1)
eki /∈ AT .

I ′(eki) =

{
∇ϑ logµk

(
ωkti |sti ,ωti−1

)
eki ∈ AT

0 eki /∈ AT

4

Under review as a conference paper at ICLR 2020

All the proofs can be found in Appendix A. Proposition 1 implies that under the event-based method,
whether the leader’s commitment to a new action will induce different policy gradients for both
termination function and the policy function.

However, from the empirical results, we find that the leader’s policy function updates rarely during
the whole episode because the policy only updates when the leader commits to a new action, which
causes the sample inefficiency. Notice that in fact the leader commits to the same action when
eki /∈ AT. Therefore, the policy indication function I ′(·) can be formulated in an alternative way:
I ′(eki) = ∇ϑ logµk

(
ωkti |sti ,ωti−1

)
, eki ∈ AT ;∇ϑ logµk

(
ωkti = ωkti−1|st,ωti−1

)
, eki /∈ AT . This

form considers both committing to a new action and maintaining the same actions (Details can be
found in Remark 2), which we call the Event-Based Policy Gradient (EBPG) and the previous one
as the sparse EBPG respectively.

4.2 NEURAL NETWORK BASED LEADER

The EBPG approach is able to improve leader’s performance. However, it is still very hard for
the leader to choose actions considering long-term effect only based on the current state informa-
tion. This is because the followers change their behaviors over time according to the leader’s policy.
Therefore, we introduce new modules and training schemes so as to capture the change of the fol-
lowers’ behaviors as well as the global state. To abstract the complicated state information, we
use neural networks to learn the state representation. To capture the followers’ behaviors and make
accurate response to their behaviors, we design three modules: (1) we exploit the leader-follower
consistency under game regularization and policy bound conditions, (2) based on the consistency, a
follower-aware module is introduced and (3) based on the follower-aware module, a novel attention
mechanism, and sequential decision making module is designed to make accurate response to these
followers’ behaviors as shown in Fig. 1.

Leader-Follower Consistency. In previous works, a surge of researches focus on predicting other
agents’ behaviors through historical information, where the other agents are assumed to be oppo-
nents of that agent, which is only suitable for zero-sum games (Zheng et al., 2018; Foerster et al.,
2018; He et al., 2016). However, these methods cannot be directly applied to our case because SMG
is not zero-sum. We note that Shu & Tian (2019) attempt to directly use the followers’ behavior
prediction module (use the history of the followers to predict their future actions) but do not analyze
when and how it works. To guarantee that the leader always knows the followers’ behaviors, we
propose a proposition here:

Proposition 2. (Leader-Follower Consistency.) If both the assumptions of game regularization and
policy bound are satisfied (Details can be found in Appendix A), for ∀ε > 0, k ∈ N , there exists
δ > 0, such that |µ− µ′| ≤ ε implies

∣∣πk − π′k∣∣ ≤ δ, where µ′ and π′k are the new policies for the
leader and the k-th follower respectively.

This proposition reveals that the change of the leader causes only slightly changes on each follower’s
policy under the game regularization assumption and the policy bound assumption, which is fun-
damental to follower-aware learning. Roughly speaking, the game regularization requires that the
states, actions, and rewards are bounded while the policy bound states that a little change of a fol-
lower’s policy does not change its utility so much. The former is from the game itself and we only
focus on the latter. To satisfy the latter, one possible method is to make the µ and µ′ close because
the followers always find the best response to the leader’s policy and if the leader changes a little,
the followers do not change too much since the new best response to µ′ is not far away from best
response to µ. One direct method is to slow down the learning rate of the leader to make µ′ and µ
close. Moreover, for the leader part, taking the right actions is also an important way to guarantee
the second assumption because the taken action will more precisely decrease the probability of huge
change of the whole process and stabilize the training process. There is an interesting phenomenon
that on one hand, knowing more about the followers can diminish the wrong decision and thus aids
the establishment of the consistency. On the other hand, the consistency will further guarantee the
accuracy of the follower-aware module. Therefore, they form a positive feedback.

Follower-Aware Module. Based on the leader-follower consistency, we can safely implement the
follower-aware module to our network. Before we discuss this module in details, we first define
the history for both the leader and followers. For the k-th follower, its history at time step t is a
sequence of states, its own actions, and the leader’s actions to it, i.e., hkt = 〈(st′ , akt′ , ωkt′)t′≤t〉 ∈ Hkt

5

Under review as a conference paper at ICLR 2020

while the leader’s history is the stack of all followers histories ht = 〈hkt 〉k∈N ∈ Hlt. Then,
we define the history-based leader’s policy as: µkht

(st) = Z−1p(ωkt |st, ât,ht)p(ât|st,ht) ∝
p(ωkt |st, ât,ht)

∏
k p

k
(
âkt |st, hkt

)
, where Z is the normalization term, pk is the predicted action

probability of the k-th follower and â defines the predicted action. p is to stress the output is a
probability. Since we cannot directly obtain an accurate estimation of ak, we adopt an alternative
way to leverage history information and imitation learning to make a prediction of other agents’
action probability function pk

(
âkt |st, hkt

)
(Implementation details can be found in Appendix B) and

p(ωkt |st, ât,ht) is designed using the attention mechanism as well as the sequential decision module
presented below.

Follower-Specified Attention Mechanism. Inspired by (Chen et al., 2018), we introduce a
follower-specific attention mechanism to identify the important followers where the important fol-
lowers are followers who has just finished a task and the leader has to commit new actions to these
followers. The attention mechanism is as follows:

wkt =
exp

(
A
(
st, â

k
t , h

k
t

))∑
k∈N exp

(
A
(
st, âkt , h

k
t

)) ; ct =
∑

k∈N
wktA

(
st, â

k
t , h

k
t

)
; ckt = [ct, A

(
st, â

k
t , h

k
t

)
].

Where wk is the weight of the k-th follower, A(·) : Rds×dakt ×dhkt → Rdc is a function to blend
various information of an agent together (dc means the dimension of the output of theA(·)), ct is the
total attention value, and ckt is the k-th agent attention value (the compression of history, states and
actions). akt is the output of pk

(
âkt |st, hkt

)
, the predicted the k-th follower’s action. This attention

mechanism is better because it quantifies the importance of each follower in each state through
learning while the original methods only adds/averages all the features (st, â

k
t , h

k
t) together (Shu

& Tian, 2019). Another advantage is that its weights can be visualized to see which follower is
important to the leader at current step. (Details can be found in Appendices D.2.2 & D.3.4). ckt then
is used by βk and µk.

Sequentially Determining Goals and Bonuses. Also notice that the goal and the bonus are sequen-
tially correlated. Therefore, it is better for the leader to choose the bonus and the goal sequentially
rather than select them independently. Therefore, to consider the goal and bonus jointly when mak-
ing a decision, we build a probabilistic graph-based model as: p(ωkt |st, ât,ht) ≈ p(gkt ; bkt |ckt) ∝
p(bkt |gkt , ckt)× p(gkt |ckt), the first approximate equation is established because ckt is the compression
of (st, ât,ht). p(bkt |gkt , ckt) and p(gkt |ckt) means the policy for bonuses and goals (Implementation
details can be found in Appendix D.2.2).

4.3 FOLLOWER ACTION ABSTRACTION POLICY GRADIENT

These methods mentioned above are fully implemented can enhance the performance dramatically.
But when facing the RL-based followers, the SMG is still hard to converge. This is because in SMG,
the policies of the leader and followers are always changing depending on other agents’ performance.
To guarantee convergence, the leader can only update its policy when the followers reach (or are near
to) the best response policy (Fiez et al., 2019). However, when the followers are RL-based agents,
there is no way to ensure the followers’ policies are (near) the best response policies in large-scale
SMG and the commonly-seen idea is to provide enough training time but it is unbearable in practice
due to the limitation of computing power (Mguni et al., 2019).

To accelerate the training process, inspired by the action abstraction approach which is commonly-
seen in Poker (Brown & Sandholm, 2019; Tuyls et al., 2018) and action abstraction RL (Chandak
et al., 2019), we collect the followers’ primitive actions sharing the same properties together as a
meta policy. Then, the followers only need to select the meta action to make a decision. Therefore,
the original game is converted into a meta game, which is easy to solve.

Specifically, we define the policy for the k-th follower as: πkt (ak|ŝ) =∑
z π

k
meta(z|ŝ)πklower(a|ŝ, z), where ŝ = 〈s, ωk〉 is the augmented state for the follower (the

combination of current state and the leader’s action). πkmeta(z|ŝ) is the meta policy for the k-th
follower and z is the high-level (meta) action. We hypothesize that the lower-level policy (the
policy to choose the primitive actions) is already known (rule-based) and deterministic, i.e.,
πklower(a

k|ŝ, z) = 1. For instance, given the example of the navigation task, the πkmeta can be the
selection to which landmark to explore while πklower is a specific route planning algorithm (such
as Dijkstra Algorithm). Based on this assumption, we can design a novel policy gradient to train

6

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

80

60

40

20

0

20

Re
wa

rd

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(a) Resource Collections.

0 50000 100000 150000 200000 250000
Episodes

100

80

60

40

20

0

Re
wa

rd

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(b) Multi-Bonus Resource
Collections.

0 50000 100000 150000 200000
Episodes

175

150

125

100

75

50

25

0

Re
wa

rd

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(c) Navigation.

0 50000 100000 150000 200000 250000
Episodes

300

250

200

150

100

50

0

Re
wa

rd

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(d) Predator-Prey.

Figure 3: Leader’s reward curves for different tasks (rule-based followers).

the meta policy: ∇λkJk ∝ E
[
∇λk log πkmeta(z|ŝ)Rk

]
, where λk is the parameter for meta-policy

πkmeta (Details can be found in Lemma 3).

4.4 LOSS FUNCTIONS

In this section, we discuss how to design the leader’s and followers’ loss functions.

Loss Functions for the Leaders. The basic structure for the leader is the actor-critic structure (Sut-
ton & Barto, 1998). We find that adding regularizers can enhance the leader’s performance and we
implement the maximum entropy for the leader’s policy function as well as the L2 regularization
for the termination function, i.e., Lenp = −

∑
k

∑
ωk µ

k(ωk|s,h) logµk(ωk|s,h) and Lreg = β2.
We also use imitation learning to learn the predicted action function pk. Following the same logic
of (Shu & Tian, 2019), two baseline functions φg(ct) and φb(ct) are also introduced to further reduce
the variance. Details can be found in Appendix B.

Loss Functions for the RL-Based Followers. The basic structure for each follower is also based
on the actor-critic structure. We leverage the action abstraction policy gradient as we mentioned
above. The learning rate between the leader and follower should satisfy the two time-scale principle
(Roughly speaking, the leader learns slower than the follower(s)), similar to (Borkar, 1997). Details
can be found in Appendix B and the pseudo-code can be found in Appendix C.

5 EXPERIMENTAL RESULTS

5.1 SETUP

Resource Collection Multi-bonus Resource Collection Navigation Predator-prey
Tasks

2

0

2

4

6

8

10

Re
wa

rd

Ours
M3RL
Ours (no abstraction)
M3RL (no abstraction)

Figure 4: The final reward for RL-based followers. No ab-
straction means the vanilla RL-based followers.

Tasks. We evaluate the follow-
ing tasks to testify the performance
of our proposed method. All of
these tasks are based on SMG men-
tioned above. (1) resource collec-
tions: each follower collects three
types of resources including its pre-
ferred one and the leader can choose
two bonuses levels (Shu & Tian, 2019); (2) multi-bonus resources collections: based on (1), the
leader can choose four bonuses levels; (3) modified navigation: followers are required to navigate
some landmarks and after one of the landmarks is reached, the reached landmark disappears and
new landmark will appear randomly. (4) modified predator-prey: followers are required to capture
some randomly moving preys, prizes will be given after touching them. Both (3) and (4) are based
on (Lowe et al., 2017) and we modify them into our SMG setting. Moreover, to increase the dif-
ficulty, in each episode, the combinations of the followers will change, i.e., in each task, there are
40 different followers and at each episode, we randomly choose some followers to play the game.
More details can be found in Appendix D.

Baselines & Ablations. To evaluate our method, we compare a recently proposed method as our
baseline: M3RL (Shu & Tian, 2019). We do not include other baselines because other methods
cannot be used in our problems, as justified in (Shu & Tian, 2019). For the ablations of the leader
part, we choose: (1) ours: the full implementation of our method. (2) ours w/o EBPG: removing
the event-based policy gradient part; (3) ours w/o Attention: replacing follower-specified attention
model by the original attention model mentioned in (Shu & Tian, 2019). For the follower part,
we choose (a) with rule-based follower (b) with vanilla RL-based follower, and (c) with action
abstraction RL-based follower to testify the ability of our methods when facing different followers.

7

Under review as a conference paper at ICLR 2020

5.2 LEARNING EFFICIENCY

The quantitative results with different tasks are shown in Figs. 3 & 4. For the rule-based followers,
from Fig. 3, we find that our method outperforms the state-of-the-art method in all the tasks, showing
that our method is sample efficient and fast to coverage. There is an interesting phenomenon that in
the task of multi-bonus resource collections and navigation, only our method obtains a positive re-
ward, indicating that our method can work well in complicated environments. For ablations, we can
see that ours w/o attention and ours w/o EBPG are worse than ours, representing these components
do enhance the performance. For the RL-based followers, from Fig. 4, we observe that when facing
the RL-based method with action abstraction, our approach outperforms the baseline method in all
the tasks (in predator-prey game, the reward for ours is twice as that of the state-of-the-art). We also
find that without action abstraction, the reward is less than zero, revealing that the abstraction does
play a crucial role in stabilizing training.

5.3 ROBUSTNESS Table 1: Robustness results in multi-bound resource collections.
b% is the probability that followers randomly choose actions.

Methods 0% Noise 30% Noise 50% Noise
Ours total incentive 18.32 17.63 17.28

M3RL total incentive 4.06 3.85 4.02
Ours total reward 10.06 5.36 5.30

M3RL total reward -1.58 -3.23 -8.96

This experiment is to evaluate
whether our method is robust to
the noise, i.e., the follower ran-
domly takes actions. We make
this experiment by introducing
noise into the follower decision.
From Table 1, we can find that
our method reaches a higher total reward (more than 5) among all the environment with noise than
the state-of-the-art, indicating that our method is robust to the noise. We also observe that the total
reward for the baseline method becomes lower with the increase of the noise while our method is
more robust to the change. Moreover, for the incentive (the total gain), we find that our method gains
much more incentive than the state-of-the-art method, showing that our method coordinates have a
better coordination the followers than the state-of-the-art method.

5.4 MORE EXPERIMENTS

We also do a substantial number of experiments. However, due to the space limitation, we can
only provide some results here: (1) The total incentives: incentive can reveal the performance of
successful rate interacting with the followers. Our method outperforms the state-of-the-art method,
indicating that our method has a better ability to interact with the followers. (2) Sparse EBPG: we
compare the performance gap between sparse EBPG and (dense) EBPG. This results show that the
sparse one is worse than the dense one, supporting the assumption that the dense signal can improve
the sample efficiency. (3) Visualizing attention: We visualize the attention module to find what it ac-
tually learns and the result indicates that our attention mechanism does capture the followers whom
the leader needs to assign bonuses to. (4) Two time-scale training: We testify whether our two time-
scale training scheme works and the ablation shows that this scheme does play an important role in
improving the performance of both the leader and the followers. (5) The committing interval: We
observe that the dynamic committing interval (our method) performs better than the one with fixed
committing intervals. (6) Reward for RL-based followers: we show the reward for the followers,
which can provide the situation of the followers. The result represents that our method aids the
followers to gain more than the state-of-the-art method. (7) Number of RL-based followers: finally,
we testify our method in cases with different number of RL-based followers. The result shows that
our method always performs well. The full results can be found in Appendix D.

6 CONCLUSION

This paper proposes a novel RL training scheme for Stackelberg Markov Games with single leader
and multiple followers, which considers the leader’s long-term decision process and complicated
interaction between followers with three contributions. 1) To consider the long-term effect of the
leader’s behavior, we develop an event-based policy gradient for the leader’s policy. 2) To predict the
followers’ behaviors and make accurate response to their behaviors, we exploit the leader-follower
consistency to design a novel follower-aware module and follower-specific attention mechanism. 3)
We propose an action abstraction-based policy gradient algorithm to accelerate the training process
of followers. Experiments in resource collections, navigation, and predator-prey game reveal that
our method outperforms the state-of-the-art methods dramatically.

8

Under review as a conference paper at ICLR 2020

REFERENCES

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted Q-iteration in continuous action-space
mdps. In NeurIPS, pp. 9–16, 2008.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, pp. 1726–
1734, 2017.

Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V Goldman. Solving transition
independent decentralized Markov decision processes. Journal of Artificial Intelligence Research,
22:423–455, 2004.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):
885–890, 2019.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip S Thomas. Learning
action representations for reinforcement learning. arXiv preprint arXiv:1902.00183, 2019.

Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement learning. arXiv preprint
arXiv:1809.08835, 2018.

Chi Cheng, Zhangqing Zhu, Bo Xin, and Chunlin Chen. A multi-agent reinforcement learning
algorithm based on Stackelberg game. In DDCLS, pp. 727–732, 2017.

Robert Dadashi, Marc G Bellemare, Adrien Ali Taiga, Nicolas Le Roux, and Dale Schuurmans. The
value function polytope in reinforcement learning. In ICML, pp. 1486–1495, 2019.

Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 104(2-3):337–357, 2016.

Tanner Fiez, Benjamin Chasnov, and Lillian J Ratliff. Convergence of learning dynamics in Stack-
elberg games. arXiv preprint arXiv:1906.01217, 2019.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In AAMAS, pp. 122–130, 2018.

FA Gers, J Schmidhuber, and F Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10):2451, 2000.

Tarun Gupta, Akshat Kumar, and Praveen Paruchuri. Planning and learning for decentralized MDPs
with event driven rewards. In AAAI, pp. 6186–6194, 2018.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In ICML, pp. 1804–1813, 2016.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In ICML,
pp. 2961–2970, 2019.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, pp. 267–274, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jean-Jacques Laffont and David Martimort. The Theory of Incentives: The Principal-Agent Model.
Princeton University Press, 2009.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In NeurIPS, pp. 6379–6390, 2017.

9

Under review as a conference paper at ICLR 2020

David Mguni, Joel Jennings, Emilio Sison, Sergio Valcarcel Macua, Sofia Ceppi, and Enrique
Munoz de Cote. Coordinating the crowd: Inducing desirable equilibria in non-cooperative sys-
tems. In AAMAS, pp. 386–394, 2019.

Fei Miao, Shuo Han, Shan Lin, John A Stankovic, Desheng Zhang, Sirajum Munir, Hua Huang,
Tian He, and George J Pappas. Taxi dispatch with real-time sensing data in metropolitan areas: A
receding horizon control approach. IEEE Transactions on Automation Science and Engineering,
13(2):463–478, 2016.

Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35
(1-2):166–196, 2001.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In Autodiff Workshop NeurIPS, 2017.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International Conference on Machine Learning, pp.
4215–4224, 2018.

Régis Sabbadin and Anne-France Viet. A tractable leader-follower MDP model for animal disease
management. In AAAI, pp. 1320–1326, 2013.

Régis Sabbadin and Anne-France Viet. Leader-follower MDP models with factored state space and
many followers-followers abstraction, structured dynamics and state aggregation. In ECAI, pp.
116–124, 2016.

Weiran Shen, Binghui Peng, Hanpeng Liu, Michael Zhang, Ruohan Qian, Yan Hong, Zhi Guo,
Zongyao Ding, Pengjun Lu, and Pingzhong Tang. Reinforcement mechanism design, with ap-
plications to dynamic pricing in sponsored search auctions. arXiv preprint arXiv:1711.10279,
2017.

Tianmin Shu and Yuandong Tian. M3RL: Mind-aware multi-agent management reinforcement
learning. In ICLR, 2019.

Matthew Smith, Herke Hoof, and Joelle Pineau. An inference-based policy gradient method for
learning options. In ICML, pp. 4710–4719, 2018.

Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learning. MIT Press Cam-
bridge, 1998.

Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning about temporally
abstract actions. In ICML, pp. 556–564, 1998.

Pingzhong Tang. Reinforcement mechanism design. In IJCAI, pp. 26–30, 2017.

Kurian Tharakunnel and Siddhartha Bhattacharyya. Leader-follower semi-Markov decision prob-
lems: Theoretical framework and approximate solution. In 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning, pp. 111–118, 2007.

Karl Tuyls, Julien Perolat, Marc Lanctot, Joel Z Leibo, and Thore Graepel. A generalised method
for empirical game theoretic analysis. In AAMAS, pp. 77–85, 2018.

Utkarsh Upadhyay, Abir De, and Manuel Gomez Rodriguez. Deep reinforcement learning of marked
temporal point processes. In NeurIPS, pp. 3168–3178, 2018.

Shangtong Zhang and Shimon Whiteson. DAC: The double actor-critic architecture for learning
options. arXiv preprint arXiv:1904.12691, 2019.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A
deep Bayesian policy reuse approach against non-stationary agents. In NeurIPS, pp. 954–964,
2018.

10

Under review as a conference paper at ICLR 2020

A PROOFS

Proposition 1. The policy gradients for termination function βk (sti ,ωti) and leader’s policy func-
tion µk

(
ωkti |sti ,ωti−1

)
can be written as:

∇θJ(θ) ≈ Eτ∼pτ (·)

{[∑
k∈N

T∑
i=0

I(eki)

]
Rτ (T)

}
; ∇ϑJ(ϑ) ≈ Eτ∼pτ (·)

{[∑
k∈N

T∑
i=0

I ′(eki)

]
Rτ (T)

}
;

where θ and ϑ are the parameters for the termination function βkθ and the leader’s policy µkϑ. I(·)
and I ′(·) are the piece-wise functions:

I(eki) =


−∇θβk(sti ,ωti−1)
1−βk(sti ,ωti−1)

eki ∈ AT
∇θβk(sti ,ωti−1)
βk(sti ,ωti−1)

eki /∈ AT .
I ′(eki) =

{
∇ϑ logµk

(
ωkti |sti ,ωti−1

)
eki ∈ AT

0 eki /∈ AT

Proof. First recall the utility for the leader:

J(θ) = EP (τ) [R∗(T)]

=
∑
τ

∑
m

P(|AT | = m)P (s0)
∏

k∈N

{[∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)]
×[∏

ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)
πk
(
aktj |stj , ω

k
tj

)]}∏T

t=0
P (st+1|st,at)Rτ (T);

Where m is the number of the times taking new action, m ≤ T . If m = T , implying that the leader
has taken new action at each time. P(|AT | = m) means the probability of times taking new action
within an episode.

Take derivatives on both LHS and RHS, we get:

∇θJ(θ) =
∑
τ

∑
m

∇θP(|AT | = m)P (s0)
∏
k∈N

{ ∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)×
 ∏
ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)
πk
(
aktj |stj , ω

k
tj

)} T∏
t=0

P (st+1|st,at)Rτ (T)

=
∑
τ

∑
m

∇θP(|AT | = m)
∏
k∈N

∏
eki ∈AT

βk(sti ,ωti−1)
∏
ekj 6∈AT

(1− βk(stj ,ωtj−1))

P(|AT | = m)
∏
k∈N

∏
eki ∈AT

βk(sti ,ωti−1)
∏
ekj 6∈AT

(1− βk(stj ,ωtj−1))

× P(|AT | = m)P (s0)
∏
k∈N

{ ∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)×
 ∏
ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)
πk
(
aktj |stj , ω

k
tj

)} T∏
t=0

P (st+1|st,at)Rτ (T)

For brevity, we useP (τ) to representP (s0)
∏
k∈N

{[∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)]
×[∏

ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)
πk
(
aktj |stj , ω

k
tj

)]}∏T
t=0 P (st+1|st,at), the trajectory proba-

bility. And we use i ∈ eki and j ∈ ekj to represent i ∈ eki ∈ AT to j ∈ ekj /∈ AT with a slight abuse

11

Under review as a conference paper at ICLR 2020

of notation. Thus the equation mentioned above can be further simplified as:

=
∑
τ

∑
m

P(|AT | = m)∇θ

∑
k∈N

∑
i∈eki

log(1− βk (sti ,ωti−1)) +
∑
k∈N

∑
j∈ekj

log βk
(
stj ,ωtj−1

)P (τ)Rτ (T)

≈ Eτ∼pτ (·)

∇θ
∑
k∈N

∑
i∈eki

log(1− βk (sti ,ωti−1)) +
∑
k∈N

∑
j∈ekj

log βk
(
stj ,ωtj−1

)Rτ (T)


= Eτ∼pτ (·)


∑
k∈N

∑
i∈eki

−∇θβk (sti ,ωti−1)

1− βk (sti ,ωti−1)
+
∑
k∈N

∑
j∈ekj

∇θβk
(
stj ,ωtj−1

)
βk
(
stj ,ωtj−1

)
Rτ (T)


The equation above is exactly the REINFORCE trick (Sutton & Barto, 1998) and the rule of deriva-
tions. The approximation indicates that one trajectory only has one AT 2. Also based on the definition
of eki and ekj , the equation can be rewritten in a more compact form:

∇θJ(θ) = Eτ∼pτ (·)


∑
k∈N

∑
i∈eki

−∇θβk (sti ,ωti−1)

1− βk (sti ,ωti−1)
+
∑
k∈N

∑
j∈ekj

∇θβk
(
stj ,ωtj−1

)
βk
(
stj ,ωtj−1

)
Rτ (T)


= Eτ∼pτ (·)

{[∑
k∈N

T∑
i=0

I(eki)

]
Rτ (T)

}
,

Where I(·) is the piece-wise function:

I(eki) =


−∇θβk(sti ,ωti−1)
1−βk(sti ,ωti−1)

eki ∈ AT
∇θβk(sti ,ωti−1)
βk(sti ,ωti−1)

eki /∈ AT .

This is the first part of the proof (the policy gradient for the termination function). Here, we start
proving the second part (the policy gradient for the leader’s action).

The proof of the second part is similar to the first part.

∇ϑJ(ϑ) =
∑
τ

∑
m

P(|AT | = m)P (s0)
∏
k∈N

{ ∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)×
 ∏
ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)} T∏
t=0

P (st+1|st,at)Rτ (T);

=
∑
τ

∑
m

∇ϑP(|AT | = m)
∏
k∈N

∏
eki ∈AT

µk
(
ωkti |sti ,ωti−1

)
P (|AT | = m)

∏
k∈N

∏
eki ∈AT

µk
(
ωkti |sti ,ωti−1

)
× P(|AT | = m)× P (s0)

∏
k∈N

∏
i∈eki

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
πk
(
akti |sti , ω

k
ti

)
×
∏

ekj 6∈AT

(1− βk(stj ,ωtj−1))πk
(
aktj |stj , ω

k
tj

)
Rτ (T)

=
∑
τ

∑
m

∑
k∈N

∑
eki

∇ϑ logµk
(
ωkti |sti ,ωti−1

)P (τ)Rτ (T)

= Eτ∼pτ (·)


∑
k∈N

∑
i∈eki

∇ϑ logµk
(
ωkti |sti ,ωti−1

)Rτ (T)


2We find that Upadhyay et al. (2018) also implement this approximation but use different explanations.

12

Under review as a conference paper at ICLR 2020

We rewrite it to a more compact form:

∇ϑJ(ϑ) = Eτ∼pτ (·)

{[∑
k∈N

T∑
i=1

I ′(ekt)

]
Rτ (T)

}

I ′(eki) =

{
∇ϑ logµk

(
ωkti |sti ,ωti−1

)
eki ∈ AT

0 eki /∈ AT

Remark 1. Some researches also focus on event-based RL but either on single-agent continuous
time (Upadhyay et al., 2018) or reward representation (Gupta et al., 2018). We are the first to
develop and implement the event-based policy gradient into the multi-agent system.
Remark 2. In fact, the policy gradient for the leader actions might be somewhat sparse, i.e., we only
update the policy when the leader changes its actions. Notice that the leader commits to the same
action when eki /∈ AT. Therefore, the probability of leader’s action P (AT) can also represented as:

P (AT) =
∏
k∈N

∏
eki ∈AT

βk(sti ,ωti−1)µk
(
ωkti |sti ,ωti−1

)
×
∏

ekj 6∈AT

(
1− βk(stj ,ωtj−1))

)
µk
(
ωktj = ωktj−1|stj ,ωtj−1

)
;

Then the policy gradient for leader’s policy ∇ϑJ(ϑ) can thus be ∇ϑJ(ϑ) ≈
Eτ∼pτ (·)

{[∑
k∈N

∑T
i=0 I

′(eki)
]
Rτ (T)

}
, where

I ′(eki) =

{
∇ϑ logµk

(
ωkti |sti ,ωti−1

)
eki ∈ AT

∇ϑµk
(
ωkti = ωkti−1|st,ωti−1

)
eki /∈ AT

Assumption 1. (Game regularization) The leader-follower state-action space (A×Ω×S) is com-
pact and rk is a continuous function bounded by Rmax.

This assumption is inspired by (Antos et al., 2008). We only extend it into the multi-agent environ-
ment.
Lemma 1. (Reward Bound) For any agent k, the corresponding reward function rk w.r.t ω is C-
Lipschitz continuous.

|rkt
(
st, a

k
t , a
−k
t ,µ

)
− rkt

(
st, a

k
t , a
−k
t ,µ′

)
| ≤ C|µ− µ′|, st,at = [akt , a

−k
t].

Where C is a constant that satisfies C > 0.3 µ′ is leader’s new policy.

Proof. Based on Assumption 1, we can build a compact metric space (A × Ω × S, Rk). From the
Heine-Cantor theorem we know that the compact metric space induce uniformly continuous.

That is, for every ε > 0, there exists a δ > 0, such that |µ− µ′| ≤ ε implies |rkt
(
st, a

k
t , a
−k
t ,µ

)
−

rkt
(
st, a

k
t , a
−k
t ,µ′

)
| ≤ δ. There exists at least one positive Constance C such that δ ≤ C/ε. Then

|rkt
(
st, a

k
t , a
−k
t ,µ

)
− rkt

(
st, a

k
t , a
−k
t ,µ′

)
| ≤ δ ≤ C

ε ≤ C|µ− µ
′|.

This Lemma is similar to the assumption in (Mguni et al., 2019). We prove it rather than make it an
assumption.
Assumption 2. (Policy Bound) For any agent k, reward function rk and policy is consistency, i.e.,

|Jk(
[
πk, π−k

]
,µ)− Jk(

[
πk, π−k

]
,µ′)| ≥ C2|πk − π′k|

Where C2 is a constant that satisfies C2 > 0. π′k is the k-th follower’s new policy.
3The follower’s reward is originally defined based on the rkt

(
st, a

k
t , a
−k
t ,ωt ∼ µ

)
. Here to emphasize the

relationship between leader’s policyµ and reward, with a little abuse of the notation, we use rkt
(
st, a

k
t , a
−k
t ,µ

)
to represent the reward function.

13

Under review as a conference paper at ICLR 2020

This assumption is inspired by (Dadashi et al., 2019). π−k indicates the joint policy without the k-th
agent’s while a−k is the joint action without agent k’s.

Lemma 2. If Assumption 1 is satisfied, the inequality is established:

|Jk(
[
πk, π−k

]
,µ)− Jk(

[
πk, π−k

]
,µ′)| ≤ C|µ− µ′|

Proof. Expand the utility function by the bellman equation:

|Jk(
[
πk, π−k

]
,µ)− Jk(

[
πk, π−k

]
,µ′)| (1)

= |max
π∈Π

E

[
rk
(
s0, a

k
0 , a
−k
0 ,µ

)
+ γ

∑
s1∈S

P (s1|s0,a0)V k1 (
[
πk1 , π

−k
1

]
,µ, s1)

]

−max
π∈Π

E

[
rk
(
s0, a

k
0 , a
−k
0 ,µ′

)
+ γ

∑
s1∈S

P (s1|s0,a0)V k1 (
[
πk1 , π

−k
1

]
,µ′, s1)

]
| (2)

≤ max
π∈Π
|E{rk

(
s0, a

k
0 , a
−k
0 ,µ

)
− rk

(
s0, a

k
0 , a
−k
0 ,µ′

)
+ γ

∑
s1∈S

P (s′|s,a)
[
V k1 (

[
πk1 , π

−k
1

]
,µ, s1)− V k1 (

[
πk1 , π

−k
1

]
,µ′, s1)

]
}|, (3)

=
∑
s∈S

∞∑
t=0

γtPπ (st+1|st,π) max
π∈Π

∣∣E [rk (st, akt , a−kt ,µ
)
− rk

(
st, a

k
t , a
−k
t ,µ′

)]∣∣ (4)

The first relaxation is due to the property of max: max |A(x)−B(x)| ≥ |maxA(x)−maxB(x)|,
where A(x) and B(x) are both the real functions. The Eq. (4) is the result of recursive iteration.

≤(1− γ)−1 max
π∈Π
|Eπ

[
rk
(
st, a

k
t , a
−k
t ,µ

)
− rk

(
st, a

k
t , a
−k
t ,µ′

)]
| ≤ C|µ− µ′| (5)

Where C = (1 − γ)−1C.The last equation is drawn form the Assumption 1 and the inequality of a
geometric series: |(I − γpπ)−1| ≤ (1 − γ)−1. Some parts follow the same logic of (Bacon et al.,
2017; Mguni et al., 2019; Kakade & Langford, 2002).

Proposition 2. (Leader-Follower Consistency.) If both Assumptions 1 and 2 are satisfied, for every
ε > 0, k ∈ N , there exists δ > 0, such that |µ− µ′| ≤ ε implies

∣∣πk − π′k∣∣ ≤ δ, where µ′ and π′k
are the new policies for the leader and follower k respectively.

Proof. By combining Lemma 2 and Assumption 2, we can draw that:∣∣πk − π′k∣∣ ≤ (1− γ)C|µ− µ′|

If there exist |ω − ω′| < ε and we have:∣∣πk − π′k∣∣ ≤ (1− γ)C|µ− µ′| ≤ ε(1− γ)C

And we set δ ≥ ε(1− γ)C, the consistency is established.

Lemma 3. (Action Abstraction Policy Gradient.) Under the assumption that the low-level follower
policy πklower(at|st, zt) is fixed and deterministic, the policy gradient for action abstraction-based
follower can be formulated as:

∇λkJk ∝ E
[
∇λk log πkmeta(z|ŝ)Rk

]
,

Where Rk is the accumulated reward for the k-th follower.

Proof. Recall the utility for the k-th follower:

Jk(µ,π) = E
[∑T

t=0
γtrkt (st,at,ωt) |at ∼ π (·|st) , st+1 ∼ P (·|st,at) , s0 = s,ωt ∼ µ(·|st,ωt−1)

]

14

Under review as a conference paper at ICLR 2020

For brevity, we rewrite the object as: Jk = E
[∑T

t=0 γ
trkt (st,at,ωt)

]
with a slight abuse of

notation. The standard policy gradient can be:
∇λkJk = E[∇λk log πkt (akt |st)Rk]

When πklower(a|ŝ, z) is fixed and deterministic, the equation can be:

∇λkJk = E

[
∇λk log[

∑
zt

πkmeta(zt|ŝt)πklower(at|ŝt, zt)]Rk
]

= E

[
∇λk [

∑
zt
πkmeta(zt|st)πklower(at|ŝt, zt)]∑

zt
πkmeta(zt|ŝt)πklower(at|ŝt, zt)

Rk

]

= E

[
∇λk [

∑
zt
πkmeta(zt|ŝt)πklower(at|ŝt, zt)]∑

zt
πkmeta(zt|ŝt)πklower(at|ŝt, zt)

Rk

]
= E

[
[
∑
zt
∇λkπkmeta(zt|ŝt)πklower(at|ŝt, zt)]∑
zt
πkmeta(zt|ŝt)πklower(at|ŝt, zt)

Rk

]

= E

[
[
∑
zt
∇λkπkmeta(zt|ŝt)πklower(at|ŝt, zt)]

Z
Rk

]
∝ E

[
∇λk log[πkmeta(zt|ŝt)

]
Rk]

Where Z =
∑
z π

k
meta(zt|ŝt)πklower(at|ŝt, zt) = 1 is the partition function. For brevity, with a

slight abuse of notation, we omit the superscript for variables a and z which represents the index of
an agent.

B LOSS FUNCTIONS

B.1 LEADER LOSS FUNCTIONS

We add a baseline function to reduce the variance of the event-based policy gradient for the leader.
We adopt the idea of successor representation (Rabinowitz et al., 2018; Shu & Tian, 2019) as two
expected baseline functions: φ̂g(ct) and φ̂b(ct). For the gain baseline function:

φg =
∑
g∈G

∑
k∈N

I
(
g = gkt

)
I
(
skt = sg

)
vg,

For the bonus-based baseline function:
φb = −

∑
g∈G

∑
k∈N

I
(
g = gkt

)
bkt ,

Two baseline neural network functions with parameters θ̂g and θ̂b are trained through minimizing
the mean square error:

Lbaseline = (φg(ct; θ̂g)− φg)2 + (φb(ct; θ̂b)− φb)2,

Where ct is the attention-based latent variable.

To this end, the gradient for the leader can be formulated as:

∇θLpolicyl = −∇θJ ′(θ) +∇ϑ(λ1Lreg); ∇ϑLpolicyl = −∇ϑJ ′(ϑ) +∇ϑ(λ2Lenp).

Where

∇θJ ′(θ) ≈ Eτ∼pτ (·)

{[∑
k∈N

∑
t

I(ekt)

]
(Rτ (T)− φg(ct; θ̂g) + φb(ct; θ̂b))

}
,

∇ϑJ ′(ϑ) ≈ Eτ∼pτ (·)

{[∑
k∈N

∑
t

I1(ekt)

]
(Rτ (T)− φg(ct; θ̂g) + φb(ct; θ̂b))

}
,

are the baseline policy gradients.

We also leverage the imitation learning to learn the action probability function pk
(
akt |st, hkt , θ̂I

)
similar to (Shu & Tian, 2019), where θI is the parameters for follower-aware module:

LIL = E

[
− 1

N

∑
k∈N

log pk
(
akt |st, hkt ; θ̂I

)]
.

The history encoder, the state encoder and the attention module are updated with the leader’s policy
gradient end-to-end.

15

Under review as a conference paper at ICLR 2020

B.2 FOLLOWER LOSS FUNCTIONS

The follower policy gradient is from Lemma 3 and we find that adding the history hk can improve
the performance:

∇λkJk ∝ E
[
∇λk log πkmeta(z|s, hk)Rk

]
,

and the learning rate of the follower α and the leader β satisfy∑
t≥0

αt =
∑
t≥0

βt =∞,
∑
t≥0

α2
t + β2

t <∞, lim
t→∞

βt/αt = 0.

Which indicates the follower’s learning rate is much higher than the leader. β̂ is the learning rate for
the leader’s critic function, which is the same as α. Followers do not have critic function.

C ALGORITHM

Algorithm 1: EBPG
Input: The initialized leader’s parameters θ, ϑ and followers’ parameters λ;
Output: Well-trained leader and followers;

1 while not converge do
2 if Rollout Stage then
3 for t ≤ T do
4 leader commits to the goals g and bonuses b according to Algorithm 2;
5 send the goals and bonuses to each agent separately;
6 for k in N do
7 The k-th follower receives its own bonus bkt and goal gkt ;
8 each agent make a decision akt = πkt (akt |ŝt) ;
9 end

10 st+1, r
l
t, {rkt }k∈N = step(st,at) ; // transition function.

11 end
12 store 〈st,at,ωt, st+1, r

l
t, {rkt }k∈N 〉 in episode buffer;

13 else if Training Stage then
14 for k ∈ N do
15 λk ← λk − α∇λkJk; // the follower’s parameters
16 end
17 θ̂g ← θ̂g − β̂∇θ̂gLbaseline, θ̂b ← θ̂b − β̂∇θ̂bLbaseline ; // the critic’s

parameters

18 θ̂I ← θ̂I − βLIL ∇θ̂ILIL; // the follower-aware module’s parameters

19 θ ← θ − β∇θLpolicyl ; // the termination function’s parameters

20 ϑ← ϑ− β∇ϑLpolicyl ; // the parameters of leader’s policy;
21 end

Algorithm 2: Action Choices for Leader
Input: Leader’s policy µ
Output: goals g and bonuses b;

1 for k ∈ N do
2 sample the termination function βkt ;
3 if βkt terminates previous leader’s action ωkt−1 then
4 choose new action ωkt ;
5 else
6 ωkt = ωkt−1; // maintain previous action.

16

Under review as a conference paper at ICLR 2020

D EXPERIMENT DETAILS

D.1 TASKS DETAILS

The illustration of experimental scenarios can be found in Figure 5. Here we give some details about
these environments:

Resource Collections. This task is similar to (Shu & Tian, 2019), which is based on the scene that
the leader and the followers collect some resources. Each follower has its own preference which
might be the same (or against) to the leader’s preference. In order to make the followers obey the
leader’s instruction, the leader should pay the followers bonuses. There are total 4 types of resources
and for different resources each agent has different preferences. The leader owns two type of bonus
(1 or 2) and 4 types of goals (each resource is a goal). The number of leader is 1 while the number
of followers is 4.

Multi-Bonus Resource Collections. This task is similar to Resource Collections. Except that the
leader can take 4 level bonuses (a bonus from 1 to 4) while each agent owns one skill. The number
of leader is 1 while the number of followers is 4.

Modified Navigation. This task is original from (Lowe et al., 2017). We make some modifications
here to make it suitable our SMG: the leader and the followers are going to navigate some land-
marks. Each follower has its own preference which might be the same (or against) to the leader’s
preference. When a landmark has been navigated, it disappears immediately and a new landmark
will appear. There are total 6 types of landmarks and for different landmarks, each agent has differ-
ent preferences. The leader owns two type of bonuses and 6 types of goals (each landmark is a goal).
The number of leader is 1 while the number of followers is 8 and the number of the landmarks is 6.

Modified Predator-Prey. This task is also original from (Lowe et al., 2017). We make some modifi-
cation here to make it suitable our SMG: the leader and the followers are going to catch some preys.
Each follower has its own preference which might be the same (or against) to the leader’s preference.
In each step, whether a prey has been caught, it randomly chooses a direction to go. Catching a prey
will not make it disappear, which means that the preys can exist until the game ends. There are total
8 types of preys and for different preys, each agent has different preferences. The leader owns two
type of bonuses and 8 types of goals (each prey is a goal). The followers are faster than the preys.
The number of leader is 1 while the number of followers is 10 and the number of the landmarks is 8.

Reward Design. The rewards mentioned in Section 3 are the general forms. Here, we define two
specified forms of the leader and followers reward function in our experiments:

Leader Reward. We define vg as the prize (utility) for finishing task g. We set the reward function
for the leader at step t as: rlt =

∑
g∈G

∑
k∈N I

(
g = gkt

) (
I
(
skt = sg

)
vg − bkt

)
, formulated by the

total gain
∑
g∈G

∑
k∈N I

(
g = gkt

)
I
(
skt = sg

)
vg (the total prizes got by the leader at time t) minus

the total payment−
∑
g∈G

∑
k∈N I

(
g = gkt

)
bkt (the total bonuses paid to the followers). We should

emphasize that our leader reward is total different from the (Shu & Tian, 2019): in their approaches,
the leader changes its mind after signing a contract will not be punished. To make it suitable to the
real world, we modify the reward as the leader should pay the followers bonuses immediately after
signing the contract and cannot get back if it gives up the contract.

Follower Reward. For the followers, we set the reward for the k-th follower as: rkt =
∑
g r

k
g,t =(

uk,g I
(
skt = sg

)
+ I
(
glt = gkt

)
× bkt

)
, where uk,g reveals the payoff of the k-th follower when

finishing task g (the preference). Specifically, rkt indicates that the follower can either follow the
leader’s instruction or just do what it prefers to. The followers will receive reward immediately after
signing the contract (the leader and the followers achieve an agreement). I

(
skt = sg

)
means that the

follower finishes the task g at step t. A penalty is added to the followers if the followers betray the
leader (the followers and the leader sign the contract but the followers do not agree to work).

17

Under review as a conference paper at ICLR 2020

(a) Resource Collections &
Multi-bonus Resource Collec-
tions. This figure is inspired by
(Shu & Tian, 2019).

(b) Navigation. (c) Predator-Prey.

Figure 5: Illustration of different tasks.

D.2 TRAINING DETAILS

D.2.1 HYPER-PARAMETERS

Our code is implemented in Pytorch (Paszke et al., 2017). If no special mention, the batch size is 1
(because we use the online learning method). Similar to (Shu & Tian, 2019), we set the learning rate
as 0.001 for the leader’s critic and followers while 0.0003 for the leader’s policy. The optimization
algorithm is Adam (Kingma & Ba, 2014). Our method takes less than two days to train on a NVIDIA
Geforce GTX 1080Ti GPU in each experiment.

For the loss function, we set the λ1 = 0.01 and λ2 = 0.001. The total training episode is 250, 000
for all the tasks (including both rule-based followers and RL-based followers). To encourage explo-
ration, we use the ι-greedy4. For the leader, the exploration rate is set to 0.1 and slightly decreases
to zero (5000 episode). For the followers, the exploration rate for each agent is always 0.3 (except
for the noise experiments).

D.2.2 NETWORK DESIGN

Our network is based on (Shu & Tian, 2019). Some do not suit our method. We do some modification
here: (1) We change the vanilla attention mechanism (sum/average all the history and action of
each follower together) to a follower-specified one: each follower has a weight which indicates
how important the follower is at the current step. (2) The output for g and b are changed into the
sequential form, i.e., we first calculate p(gkt |ckt) to get gkt , then based on gkt , we choose p(bkt |gkt , ckt).
(3) The history information hkt is compressed by the LSTM (Gers et al., 2000).

Leader’s Network. For the history information, we are willing to stress that the history consists of
two parts, one is the statistical information similar to (Shu & Tian, 2019) and the other is the past
information given by the neural networks. We leverage the LSTM with 128 hidden units and two
fully-connected layers to compress the past information and the statistical information and obtain
hkt . Each layer contains 128 neurons.

For the state information, we encode it into a 128-dimension hidden state by a state encoder. For
resource collections task, the state encoder consist of a convolutional layer with 64 channels and
kernels of 1×1 and two fully connected layers with 128 neurons. For navigation and predator-prey
task, we encode the state using two fully connected layers with 128 neurons.

For the follower-specific attention module, we firstly predict the âkt from the follower-aware mod-
ule which contains an LSTM with 128 hidden units and two fully-connected layers with 128 neu-
rons. Secondly, we transform âkt , hkt and the output of the state encoder into A(st, â

k
t , h

k
t) using

a fully connected layer with 128 neurons. The hidden vector is generated by concatenating all the
A(st, â

k
t , h

k
t). Then the attention weight w is calculated using two fully connected layers with soft-

4Normally it is called the decayed ε-greedy. We use ι instead of ε to avoid notation abuse.

18

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

0

20

40

60

80

100

120
In

ce
nt

iv
e

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(a) Total incentive for the predator-prey task (rule-
based agent).

0 50000 100000 150000 200000 250000
Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
ce

nt
iv

e

Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(b) Total incentive for the multi-bonus task (rule-
based agent).

Figure 6: Total incentives for predator-prey task and multi-bonus resource collections task.

max activation. The ct is calculated as a weighted summation of w and A(·). Finally, we obtain the
k-th attention value ckt by concatenating ct and A(st, â

k
t , h

k
t).

For sequential graph-based model, we firstly calculate p(gkt |ckt) using two fully connected layers.
Each layer consists of 128 neuron units. The input of layers is ckt and the output is gkt . Then we
obtain bkt by two fully connected layers. The input of layers is the concatenation of ckt and gkt .

Follower’s Network. We construct the RL-based followers by a state encoder and two fully con-
nected layers. Each fully connected layer contains 128 neurons. For resource collections task, the
state encoder consists of a convolutional layer with 64 channels and kernels of 1×1, two fully con-
nected layers with 128 neurons and an LSTM with 128 hidden units. For navigation and predator-
prey task, we encode the state using two fully connected layers with 128 neurons and an LSTM
with 128 hidden units. Notice that the network structure of action-abstraction RL-based follower
and non-action-abstraction RL-based follower is similar. The only difference is that the output of
the former is high-level action z and the output of the latter is low-level action akt .

D.3 MORE EXPERIMENTAL RESULTS

D.3.1 TOTAL INCENTIVE FUNCTION

Total incentive (income) functionsRin =
∑
t r
l
t+
∑
t

∑
k b

k
t can reveal how well the leader interacts

with the followers; the higher the Rin is, the more successful the coordination between the leader
and the followers.

From Figure 6 and 7, comparing with the state-of-the-art method, we can see that our method far
outperforms the state-of-the-art method, which reveals that our method does have a better ability to
coordinate with the followers. In all of the scenarios, without the EBPG, the performance of our
method is worse than ours with EBPG. Specifically, in some scenarios (e.g., multi-bonus resource
collections, navigation), without the EBPG, the performance of our method is (or nearly) similar to
the performance of M3RL, showing the effectiveness of our novel policy gradient. Moreover, we can
notice that in navigation environment, without follower-specified attention, the performance of our
method diminishes rapidly, which implies that in some scenarios, attention does play an important
role.

D.3.2 ROBUST OF OUR METHOD

In this section, we are going to testify the robust of our method. Specifically, we evaluate whether
our method is robust to the noise. We make this experiment by introducing noise into the follower
decision. For example, if we set the noise function as 30%, indicating that there is 30% probability
that the followers will choose action randomly.

19

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
In

ce
nt

iv
e Ours

Ours w/o EBPG
Ours w/o Attention
M3RL

(a) Total incentive for the resource collections task
(rule-based agent).

0 50000 100000 150000 200000
Episodes

0

10

20

30

40

50

60

70

In
ce

nt
iv

e Ours
Ours w/o EBPG
Ours w/o Attention
M3RL

(b) Total incentives for the navigation task (rule-
based agent).

Figure 7: Total incentives for resource collections task and navigation task.

0 50000 100000 150000 200000 250000
Episodes

60

40

20

0

Re
wa

rd

Ours
Sparse EBPG
Sparse EBPG w/o Attention

(a) The reward curves for multi-bonus resource
collections.

0 50000 100000 150000 200000 250000
Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
ce

nt
iv

e

Ours
Sparse EBPG
Sparse EBPG w/o Attention

(b) The total incentive curves for multi-bonus re-
source collections.

Figure 8: The ablation study of sparse EBPG in the multi-bonus resource collections task.

D.3.3 SPARSE EVENT-BASED POLICY GRADIENT

This experiment testifies whether the dense event-based policy gradient increases the leader’s per-
formance comparing with the sparse event-based policy gradient. We make ablations here: (1) Ours:
the full structure of our method; (2) Sparse Event-Based Policy Gradient (sparse EBPG): the fully
structure of ours except that the EBPG is replaced by sparse event-based policy gradient; (3) sparse
EBPG w/o attention: replacing the follower-specified attention mechanism by averaging the input
features.

From Figure 8 and 9 we can find that if the policy gradient is sparse, its performance is worse than
the dense one, implying that the dense method does improve the leader’s performance. There is also
an interesting phenomenon that sparse EBPG with follower-specified attention mechanism performs
better than that without, revealing that the attention can stabilize training when the training signal is
sparse.

D.3.4 VISUALIZING ATTENTION

Following the same logic of (Iqbal & Sha, 2019), we visualize the weight of the attention when the
leader takes actions. From Figure 10, we find that the attention mechanism does learn to strongly
attend to the followers that the leader needs to take actions. The followers with leader’s commitment
obtain much higher attention weight than others, showing that the attention module actually learn to

20

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

250

200

150

100

50

0
Re

wa
rd

Ours
Sparse EBPG
Sparse EBPG w/o Attention

(a) The reward curves for predator-prey.

0 50000 100000 150000 200000 250000
Episodes

0

20

40

60

80

100

120

In
ce

nt
iv

e

Ours
Sparse EBPG
Sparse EBPG w/o Attention

(b) The total incentive curves for predator-prey.

Figure 9: The ablation study of sparse EBPG in the predator-prey task.

Commit to Follower 10.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

follower 1
follower 2
follower 3
follower 4

(a)

Commit to Follower 20.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

follower 1
follower 2
follower 3
follower 4

(b)

Commit to Follower 30.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

follower 1
follower 2
follower 3
follower 4

(c)

Commit to Follower 40.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

follower 1
follower 2
follower 3
follower 4

(d)

Figure 10: Visualization of the attention. The x-axis indicates the commit time for different agents
and the y-axis indicates the corresponding weights wk when the leader commits to that agent.

identify the important followers while leader committing new action. Thus, the attention mechanism
does play an important role in improving the performance.

D.3.5 TWO TIME-SCALE UPDATING

In order to evaluate the performance of our two time-scale update scheme (TTSU), we do an ablation
study as shown in Fig 11. We can find that the performance where the followers’ learning rate α
(1 × 10−3) is much larger than the leader’s β (3 × 10−4) is better than the performance where
the leader’s learning rate is similar to the followers (1 × 10−3). Moreover, without TTSU, the
reward curves of training methods become unstable, revealing that TTSU can stabilize the training
process. In fact, TTSU improves the rate of convergence and play an important role in improving
performance.

D.3.6 COMMITTING INTERVAL

We evaluate the leader’s performance between static committing interval and our dynamic commit-
ting interval. As shown in Figure 12, we observe that all the different fixed committing intervals
only change the rate of convergence and do not enhance the leader’s performance. All the fixed
committing intervals are much worse than our dynamic committing approach, revealing the fact that
our dynamic committing approach aids a lot in improving the leader’s performance.

D.3.7 REWARD FOR RL-BASED FOLLOWERS

We are interesting in the reward for the RL-based follower(s). Intuitively, a well-performing leader
can make the follower gain more. As shown in Figure 13, the reward for RL follower is higher than
M3RL follower in all the tasks. This represents the leader can coordinate the followers better and
make them gain more reward than other methods, which forms a win-win strategy.

21

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Re

wa
rd

Ours (different learning-rate)
Ours (same learning-rate)
M3RL (different learning-rate)
M3RL (same learning-rate)

(a) The ablation study of reward curves for two
time-scale update method (one RL-based fol-
lower).

0 50000 100000 150000 200000 250000
Episodes

20

15

10

5

0

5

10

Re
wa

rd

Ours (different learning-rate)
Ours (same learning-rate)
M3RL (different learning-rate)
M3RL (same learning-rate)

(b) The ablation study of reward curves for two
time-scale update method (two RL-based follow-
ers).

Figure 11: The ablation study of reward curves for two time-scale update method in resource col-
lections task.

0 50000 100000 150000 200000 250000
Episodes

100

80

60

40

20

0

20

Re
wa

rd

Dynamic interval commit (ours)
1 step interval commit (M3RL)
3 step interval commit (M3RL)
6 step interval commit (M3RL)

(a) The ablation study of reward curves for differ-
ent committing interval in resource collections.

0 50000 100000 150000 200000 250000
Episodes

175

150

125

100

75

50

25

0

Re
wa

rd

Dynamic committing interval (ours)
1 step committing interval (M3RL)
3 step committing interval (M3RL)
6 step committing interval (M3RL)

(b) The ablation study of reward curves for fixed
committing interval method in navigation.

0 50000 100000 150000 200000 250000
Episodes

120

100

80

60

40

20

0

20

Re
wa

rd

Dynamic interval commit (ours)
1 step interval commit (M3RL)
3 step interval commit (M3RL)
6 step interval commit (M3RL)

(c) The ablation study of reward curves for fixed
committing interval method in multi-bonus re-
source collections.

0 25000 50000 75000 100000 125000 150000 175000 200000
Episodes

300

250

200

150

100

50

0

Re
wa

rd

Dynamic committing interval (ours)
1 step committing interval (M3RL)
3 step committing interval (M3RL)
6 step committing interval (M3RL)

(d) The ablation study of reward curves for fixed
committing interval method in predator-prey.

Figure 12: The ablation study of reward curves for fixed commitment time in resource collections
task.

22

Under review as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Episodes

60

40

20

0

20

40

Re
wa

rd

Ours
M3RL

(a) Resource Collections.

0 50000 100000 150000 200000 250000
Episodes

0

10

20

30

40

Re
wa

rd

Ours
M3RL

(b) Multi-Bonus Resource
Collections.

0 50000 100000 150000 200000 250000
Episodes

10

5

0

5

10

15

20

Re
wa

rd

Ours
M3RL

(c) Navigation.

0 50000 100000 150000 200000
Episodes

20

10

0

10

20

Re
wa

rd

Ours
M3RL

(d) Predator-Prey.

Figure 13: Reward curves for RL-based followers in different tasks.

0 50000 100000 150000 200000 250000
Episodes

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
wa

rd

Ours
Ours (no abstraction)
M3RL
M3RL (no abstraction)

(a) Resource Collections.

0 50000 100000 150000 200000 250000
Episodes

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Re
wa

rd

Ours
Ours (no abstraction)
M3RL
M3RL (no abstraction)

(b) Multi-Bonus Resource
Collections.

0 50000 100000 150000 200000 250000
Episodes

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Re
wa

rd

Ours
Ours (no abstraction)
M3RL
M3RL (no abstraction)

(c) Navigation.

0 50000 100000 150000 200000 250000
Episodes

4

2

0

2

4

6

8

10

Re
wa

rd

Ours
Ours (no abstraction)
M3RL
M3RL (no abstraction)

(d) Predator-Prey.

Figure 14: Leader’s reward curves for different tasks (RL-based followers).

D.3.8 NUMBER OF THE FOLLOWER AGENTS

Finally, we evaluate the leader’s performance with different number of RL-based followers. As
shown in Figure 15, we find that our method outperforms the state-of-the-art method when facing
different number of RL-based workers.

1 2
Number of followers

0

2

4

6

8

Re
wa

rd

Ours
M3RL
Ours (no abstraction)
M3RL (no abstraction)

(a) Resource Collections.

1 4
Number of followers

2

0

2

4

6

8

10

12

Re
wa

rd

Ours
M3RL
Ours (no abstraction)
M3RL (no abstraction)

(b) Multi-Bonus Resource
Collections.

1 8
Number of followers

0

2

4

6

8

10

12

Re
wa

rd

Ours
M3RL
Ours (no abstraction)
M3RL (no abstraction)

(c) Navigation.

1 10
Number of followers

0

2

4

6

8

10

12

Re
wa

rd

Ours
M3RL
Ours (no abstraction)
M3RL (no abstraction)

(d) Predator-Prey.

Figure 15: The final reward of different number of follower agents in different tasks.

23

	Introduction
	Related Works
	Stackelberg Markov Games
	Methodology
	Event-Based Trajectory Optimization for Leader
	Neural Network based Leader
	Follower Action Abstraction Policy Gradient
	Loss Functions

	Experimental Results
	Setup
	Learning Efficiency
	Robustness
	More Experiments

	Conclusion
	Proofs
	Loss Functions
	Leader Loss Functions
	Follower Loss Functions

	Algorithm
	Experiment Details
	Tasks Details
	Training Details
	Hyper-Parameters
	Network Design

	More Experimental Results
	Total Incentive Function
	Robust of Our Method
	Sparse Event-based Policy Gradient
	Visualizing Attention
	Two Time-Scale Updating
	Committing Interval
	Reward for RL-based Followers
	Number of the follower agents

