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ABSTRACT

Graph representation learning for hypergraphs can be utilized to extract patterns
among higher-order interactions that are critically important in many real world
problems. Current approaches designed for hypergraphs, however, are unable to
handle different types of hypergraphs and are typically not generic for various
learning tasks. Indeed, models that can predict variable-sized heterogeneous hy-
peredges have not been available. Here we develop a new self-attention based
graph neural network called Hyper-SAGNN applicable to homogeneous and het-
erogeneous hypergraphs with variable hyperedge sizes. We perform extensive
evaluations on multiple datasets, including four benchmark network datasets and
two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN
significantly outperforms state-of-the-art methods on traditional tasks while also
achieving great performance on a new task called outsider identification. We be-
lieve that Hyper-SAGNN will be useful for graph representation learning to un-
cover complex higher-order interactions in different applications.

1 INTRODUCTION

Graph structure is a widely-used representation for data with complex interactions in many
applications. Machine learning on graphs have also been an active topic of research on
how to predict or discover new patterns based on the graph structure (Hamilton et al.,
2017b). Although the existing methods can achieve strong performance in tasks such as
link prediction and node classification, they are mostly designed for analyzing pair-wise
interactions and thus are unable to effectively capture higher-order interactions in graphs.
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Figure 1: An example of the co-
authorship hypergraph. Within the
graph, authors are represented as
nodes and coauthorships are repre-
sented as hyperedges.

In many real world applications, however, relationships among
multiple instances are key to capturing critical properties, e.g.,
co-authorship involving more than two authors or relationships
among multiple heterogeneous objects such as (human, location,
activity). Hypergraphs can be used to represent higher-order in-
teractions (Zhou et al., 2007). To analyze higher-order interac-
tion data, it is straightforward to expand each hyperedge into
pair-wise edges with the assumption that the hyperedge is de-
composable. Several previous methods were developed based on
this notion (Sun et al., 2008; Feng et al., 2018). However, earlier
work DHNE (Deep Hyper-Network Embedding) (Tu et al., 2018)
suggested the existence of heterogeneous indecomposable hyper-
edges where relationships within an incomplete subset of a hyperedge do not exist. Although DHNE
provides a potential solution by modeling the hyperedge directly without decomposing it, due to the
neural network structure used in DHNE, it is limited to deal with fixed type and fixed-size hetero-
geneous hyperedges, and is unable to consider relationships among multiple types of instances with
variable size. For example, Fig. 1 shows a heterogeneous co-authorship hypergraph with 2 types of
nodes (corresponding author and coauthor). Due to the variable number of both authors and cor-
responding authors in a publication, the hyperedges (co-authorship) have different sizes or types.
Unfortunately, methods for representation learning of hetergeneous hypergraph with variable-sized
hyperedges, especially those that can predict variable-sized hyperedges, have not been developed.

In this work, we developed a new self-attention based graph neural network, called Hyper-SAGNN
that can work with both homogeneous and heterogeneous hypergraphs with variable hyperedge size.
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Using the same datasets in the DHNE paper (Tu et al., 2018), we demonstrated the advantage of
Hyper-SAGNN over DHNE in multiple tasks. We further tested the effectiveness of the method on
predicting edges and hyperedges and showed that the model can achieve better performance from
this multi-tasking setting. We also formulated a novel task called outsider identification and showed
that Hyper-SAGNN performs strongly. Importantly, as an application of Hyper-SAGNN to single-
cell genomics, we were able to learn the embeddings for the most recently produced single-cell Hi-C
(scHi-C) datasets to understand the clustering of cells based on their 3D genome structure (Ramani
et al., 2017; Nagano et al., 2017). We showed that Hyper-SAGNN achieved improved results in
identifying distinct cell populations as compared to existing scHi-C clustering methods. Taken to-
gether, Hyper-SAGNN can significantly outperform state-of-the-art methods and can be applied to
a wide range of hypergraphs for different applications.

2 RELATED WORK

Deep learning based models have been recently developed to generalize from graphs to hyper-
graphs (Gui et al., 2016; Tu et al., 2018). The HyperEdge Based Embedding (HEBE) method (Gui
et al., 2016) aims to learn the embeddings for each object in a specific heterogeneous event by
representing it as a hyperedge. However, as demonstrated in Tu et al. (2018), HEBE does not per-
form well on sparse hypergraphs. Notably, previous methods typically decompose the hyperedge
into pair-wise relationships where the decomposition methods can be divided into two categories:
explicit and implicit. For instance, given a hyperedge (v1, v2, v3), the explicit approach would de-
compose it directly into 3 edges (v1, v2), (v2, v3), (v1, v3), while the implicit approach would add
a hidden node e representing the hyperedge before decomposition, i.e., (v1, e), (v2, e), (v3, e). The
Deep hypergraph embedding (DHNE) model, however, directly models the tuple-wise relationship
using MLP (Multilayer Perceptron). The method is able to achieve better performance on multiple
tasks as compared to other methods designed for graphs or hypergraphs like Deepwalk (Perozzi
et al., 2014), node2vec (Grover & Leskovec, 2016), HEBE. Unfortunately, the structure of MLP
takes fixed-size input, making DHNE only capable of handling k-uniform hypergraphs, i.e., hy-
peredges containing k nodes. To use DHNE for non-k-uniform hypergraphs or hypergraphs with
different types of hyperedges, a function for each type of hyperedges needs to be trained individu-
ally, which leads to significant computational cost and loss of the capability to generalize to unseen
types of hyperedges. Another recent method, hyper2vec (Huang et al., 2019), can also generate
embeddings for nodes within the hypergraph. However, hyper2vec cannot solve the link prediction
problem directly as it only generates the embeddings of nodes in an unsupervised manner without a
learned function to map from embeddings of nodes to hyperedges. Also, for k-uniform hypergraphs,
hyper2vec is equivalent to node2vec, which cannot capture the high-order network structures for in-
decomposable hyperedges (as shown in Tu et al. (2018)). Hyper-SAGNN in this work addresses all
these challenges with a self-attention based graph neural network that can learn embeddings of the
nodes and predict hyperedges for non-k-uniform heterogeneous hypergraphs.

3 METHOD

3.1 DEFINITIONS AND NOTATIONS

Definition 1. (Hypergraph) A hypergraph is defined as G = (V,E), where V = {v1, ..., vn}
represents the set of nodes in the graph, and E = {ei = (v

(i)
1 , ..., v

(i)
k )} represents the set of

hyperedges. For any hyperedge e, it can contain more than two nodes (δ(e) ≥ 2). If all hyperedges
within a hypergraph have the same size of k, it is called a k-uniform hypergraph. Note that even if
a hypergraph is k-uniform, it can still have different types of hyperedges as the node type can vary
for nodes within the hyperedges.

Definition 2. (The hyperedge prediction problem) We formally define the hyperedge prediction
problem. For a given tuple (v1, v2, ..., vk), our goal is to learn a function f that satisfies:

f(v1, v2, ..., vk) =

{
≥ s, if (v1, v2, ..., vk) ∈ E
< s, if (v1, v2, ..., vk) /∈ E (1)

where s is the threshold to binarize the continuous value of f into a label, which indicates whether
the tuple is an hyperedge or not. Specifically, when we are given the pre-trained embedding vectors
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or the features of nodes X = {x1, ..., xi}, we can rewrite this function as:

f(v1, v2, ..., vk) , f(g(x1), g(x2), ..., g(xk)) (2)

where the vectors g(xi) can be considered as the fine-tuned embedding or embedding vectors for
the nodes. For convenience, we will refer to xi as the features and g(xi) as the learned embeddings.

3.2 STRUCTURE OF HYPER-SAGNN

Our goal is to learn the functions f and g that take tuples of node features (x1, ..., xk) as in-
put and produce the probability of these nodes forming a hyperedge. Without the assumption
that the hypergraph is k-uniform and the type of each hyperedge is identical, we require that f
can take variable-sized, non-ordered input. Although simple functions such as average pooling
f(g(x1), ..., g(xk)) =

1
K

∑k
i=1 g(xi) satisfy this tuple-wise condition, previous work showed that

the linear function is not sufficient to model this relationship (Tu et al., 2018). DHNE used an
MLP to model the non-linear function, but it requires that an individual function needs to be trained
for different types of hyperedges. Here we propose a new method to tackle the general hyperedge
prediction problem.

Figure 2: Structure of the neural network used in Hyper-SAGNN.
The input (~x1, ~x2, ..., ~xk) passes through two branches of the net-
work resulting in static embeddings (~s1, ~s2, ..., ~sk) and dynamic em-
beddings (~d1, ~d2, ..., ~dk), respectively. Then the pseudo-euclidean
distance of each pair of static and dynamic embeddings is calculated
by one-layered position-wise feedforward network to produce prob-
ability scores (p1, p2, ..., pk). These scores are further averaged to
represent whether this group of nodes form a hyperedge or not.

Graph neural network based meth-
ods such as GraphSAGE (Hamil-
ton et al., 2017a) typically de-
fine a unique computational graph
for each node, allowing it to per-
form efficient information aggrega-
tion for nodes with different de-
grees. Graph Attention Network
(GAT) introduced by Veličković
et al. (2017) utilizes a self-attention
mechanism in the information ag-
gregation process. Motivated by
these properties, we propose our
method Hyper-SAGNN based on
self-attention mechanism within
each tuple to learn the function f .

We first briefly introduce the self-
attention mechanism. We use the
same terms as the self-attention
mechanism described in Vaswani
et al. (2017). Given a group of
nodes (~x1, ~x2, ..., ~xk) and weight
matrices WQ,WK ,WV that represent linear transformation of features before applying the scaled
dot-product attention (Vaswani et al., 2017) to be trained, we first compute the attention coefficients
that indicate the pair-wise importance of nodes:

eij =
(
WT
Qxi

)T (
WT
Kxj

)
,∀1 ≤ i, j ≤ k (3)

We then normalize eij by all possible j within the tuple through the softmax function, i.e.,

αij =
exp(eij)∑

1≤l≤k exp(eil)
(4)

Finally, a weighted sum of the transformed features with an activation function is calculated:

~di = tanh

 ∑
1≤j≤k

αijW
T
V xj

 (5)

In GAT, each node is applied to the self-attention mechanism usually with all its first-order neigh-
bors. In Hyper-SAGNN, we aggregate the information for a node vi only with its neighbors for a
given tuple. The structure of Hyper-SAGNN is illustrated in Fig. 2.
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The input to our model can be represented as tuples, i.e., (~x1, ~x2, ..., ~xk). Each tuple first passes
through a position-wise feed forward network to produce (~s1, ~s2, ..., ~sk), where ~si = tanh(WT

s ~xi).
We refer to each ~si as the static embedding for node i since it remains the same for node i no matter
what the given tuple is. The tuple also passes through a multi-head graph attention layer to produce
a new set of node embedding vectors (~d1, ~d2, ..., ~dk), which we refer to as the dynamic embeddings
because they are dependent on all the node features within this tuple.

Note that unlike the standard attention mechanism described above, when calculating ~di, we re-
quire that j 6= i in Eqn. (5). In other words, we exclude the term αiiW

T
V xi in the calculation of

dynamic embeddings. Our results showed that including ~αii would lead to either similar or worse
performance in terms of the hyperedge prediction and node classification task (see Appendix A.4
for details). We will elaborate on the motivation of this choice later in this section.

With the static and dynamic embedding vectors for each node, we calculate the Hadamard power
(element-wise power) of the difference of the corresponding static/dynamic pair. It is then further
passed through a one-layered neural network with sigmoid as the activation function to produce a
probability score pi. Finally, all the output pi ∈ [0, 1] is averaged to get the final result p, i.e.,

oi =WT
o ((~di − ~si)◦2) + b (6)

p =
1

K

k∑
i=1

pi =
1

K

k∑
i=1

σ(oi) (7)

By design, oi can be regarded as the squared weighted pseudo-euclidean distance between the static
embedding ~si and the dynamic one ~di. It is called pseudo-euclidean distance because we do not
require the weight to be non-zero or to sum up to 1. One rationale for allowing negative weights
when calculating the distance could be the Minkowski space where the distance is defined as d2 =
x2 + y2 + z2− t2. Therefore, for these high dimensional embedding vectors, we do not specifically
treat them as euclidean vectors.

Figure 3: Illustration of the method for generating
node features. In the walk based approach, a biased
random walk on hypergraphs is used to produce walk-
ing samples which are further used to train a skip-
gram model for features. In the encoder based ap-
proach, the output of the encoder for the correspond-
ing row of the adjacency matrix is used as the feature.

Our network essentially aims to build the
correlation of the average “distance” of the
static/dynamic embedding pairs with the proba-
bility of the node group forming a hyperedge.
Since the dynamic embedding is the weighted
sum of features (with potential non-linear trans-
formation) from neighbors within the tuple, this
“distance” reflects how well the static embedding
of each node can be approximated by the features
of their neighbor within that tuple. This design
strategy shares some similarities with the CBOW
model in natural language processing (Mikolov
et al., 2013), where the model tries to predict
the target word given its context. In principle,
we could still include the ~αii term to obtain the
embedding ~d∗i . Alternatively, we can directly
pass ~d∗i through a fully connected layer to pro-
duce p∗i while the rest remains the same. How-
ever, we argue that our proposed model would be
able to produce si that can be directly used for
tasks such as node classification while the alter-
native approach is unable to achieve that (see Ap-
pendix A.4 for detailed analysis).

3.3 APPROACHES FOR GENERATING FEATURES

In an inductive learning setting with known attributes for the nodes, ~xi can just be the attributes of
the node. However, in a transductive learning setting without knowing attributes of the nodes, we
have to generate the ~xi based on the graph structure solely. Here we use two existing strategies to
generate the features ~xi. As shown in Fig. 3, the first approach is the random walk based method.
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We designed a biased random walk scheme for nodes in hypergraphs and used that to sample walks.
Then, similar to node2vec, a skip-gram model is trained to generate features. The second approach
is the encoder based approach where the corresponding row of the adjacency matrix is used as
the features. The features are further passed through an autoencoder-like structure to reduce the
dimensionality with the output of the hidden layer used as the features. The detailed description of
these two approaches can be found in Appendix A.1.

4 RESULTS

We focused on comparing Hyper-SAGNN with the state-of-the-art method DHNE as it has already
been demonstrated with superior performance over the previous algorithms such as DeepWalk,
LINE, and HEBE. We also did not compare our Hyper-SAGNN with hyper2vec (Huang et al., 2019)
for the following reasons: (1) hyper2vec cannot be directly used for the hyperedge prediction task;
and (2) for a k-uniform hypergraphs like the four datasets used in DHNE or the IMDb dataset used
in the hyper2vec paper (Huang et al., 2019), it is equivalent to the standard node2vec.

We first used the same four datasets in the DHNE paper to have a direct comparison. The details
on these four datasets can be found in the Appendix A.2. The details on the parameters used in this
section for both Hyper-SAGNN and other methods can also be found in the Appendix A.3.

4.1 PERFORMANCE COMPARISON WITH EXISTING METHODS

We evaluated the effectiveness of our embedding vectors and the learned function with the network
reconstruction task. We compared our Hyper-SAGNN using the encoder based approach and also
the model using the random walk based pre-trained embeddings against DHNE and the baseline
node2vec. We first trained the model and then used the learned embeddings to predict the hyperedge
of the origin network. We sampled the negative samples to be 5 times the amount of the posi-
tive samples following the same setup of DHNE. We evaluated the performance based on both the
AUROC score and the AUPR score.

Table 1: AUC and AUPR values for network reconstruction. Models trained with the random walk based
approach and encoder based approach is marked as Hyper-SAGNN-W and Hyper-SAGNN-E, respectively.

GPS MOVIELENS DRUG WORDNET
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

node2vec-mean 0.572 0.188 0.557 0.197 0.668 0.246 0.613 0.215
node2vec-min 0.570 0.187 0.535 0.186 0.682 0.257 0.576 0.201
DHNE 0.959 0.836 0.974 0.878 0.952 0.873 0.989 0.953
Hyper-SAGNN-E 0.971 0.877 0.991 0.952 0.977 0.916 0.989 0.950
Hyper-SAGNN-W 0.976 0.857 0.998 0.986 0.988 0.945 0.994 0.956

As shown in Table 1, Hyper-SAGNN can capture the network structure better than DHNE over all
datasets either using the encoder based approach or random walk based approach.
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Figure 4: Performance of classification on MovieLens and wordnet datasets. Hyper-SAGNN trained with
the random walk based approach and encoder based approach are marked as Hyper-SAGNN-W, Hyper-
SAGNN-E, respectively. The models trained with a mix of edges and hyperedges are denoted with “(mix)”.

We further tested the performance of Hyper-SAGNN on the hyperedge prediction task. We randomly
split the hyperedge set into training and test set by a ratio of 4:1. The way to generate negative sam-
ples is the same as the network reconstruction task. As shown in Table 2, our model again achieves
significant improvement over DHNE for predicting the unseen hyperedges. The most significant
improvement is observed on the wordnet dataset, which is about a 24.6% increase on the AUPR
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score. For network reconstruction and hyperedge prediction tasks, the difference between random
walk based Hyper-SAGNN and encoder based Hyper-SAGNN is minor.

In addition to the tasks related to the prediction of hyperedges, we also evaluated whether the learned
node embeddings are effective for node classification tasks. A multi-label classification experiment
and a multi-class classification experiment were carried on the MovieLens dataset and wordnet
dataset, respectively. We used Logistic Regression as the classifier. The portion of training data was
chosen to be from 10% to 90% for the MovieLens dataset, and 1% to 10% for the wordnet dataset.
We used averaged Mirco-F1 and Macro-F1 to evaluate the performance. The results are in Fig. 4.
We observed that Hyper-SAGNN consistently achieved both higher Micro-F1 and Macro-F1 scores
over DHNE for different fractions of the training data. Also, Hyper-SAGNN based on the random
walk generally achieved the best performance (Hyper-SAGNN-W in Fig. 4).

4.2 PERFORMANCE ON NON-k-UNIFORM HYPERGRAPH

Next, we evaluated Hyper-SAGNN using the non-k-uniform heterogeneous hypergraph. For the
above four datasets, we decomposed each hyperedge into 3 pairwise edges and added them to the
existing graph. We trained our model to predict both the hyperedges and the edges. We then eval-
uated the performance for link prediction tasks for both the hyperedges and the edges (i.e., non-
hyperedges). We also performed the node classification task following the same setting as above.
The results for link prediction are in Table 2. Fig. 4 shows the results for the node classification task.

Table 2: Performance evaluation based on AUROC and AUPR for hyperedge/edge prediction. Methods
with annotation (mix) represent Hyper-SAGNN trained with a mixture of edges and hyper-edges. Datasets
marked with “(2)” represents the performance on pair-wise edge prediction.

GPS MOVIELENS DRUG WORDNET
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

node2vec - mean 0.563 0.191 0.562 0.197 0.670 0.246 0.608 0.213
node2vec - min 0.570 0.185 0.539 0.186 0.684 0.258 0.575 0.200
DHNE 0.910 0.668 0.877 0.668 0.925 0.859 0.816 0.459
Hyper-SAGNN-E 0.952 0.798 0.926 0.793 0.961 0.895 0.890 0.705
Hyper-SAGNN-W 0.922 0.722 0.930 0.810 0.955 0.892 0.880 0.706
Hyper-SAGNN-E (mix) 0.950 0.795 0.928 0.799 0.956 0.887 0.881 0.694
Hyper-SAGNN-W (mix) 0.920 0.720 0.929 0.811 0.950 0.889 0.884 0.684

GPS (2) MOVIELENS (2) DRUG (2) WORDNET (2)
AUC AUPR AUC AUPR AUC AUPR AUC AUPR

Hyper-SAGNN-E (mix) 0.921 0.899 0.971 0.967 0.981 0.973 0.891 0.897
Hyper-SAGNN-W (mix) 0.931 0.910 0.999 0.999 0.999 0.999 0.923 0.916

We observed that Hyper-SAGNN can preserve the graph structure on different levels. Compared
to training the model with hyperedges only, including the edges into the training would not cause
obvious changes in performance for hyperedge predictions (about a 1% fluctuation for AUC/AUPR).

We then further assessed the model in a new evaluation setting where there are adequate edges but
only a few hyperedges presented. We asked whether the model can still achieve good performance
on the hyperedge prediction based on this dataset. This scenario is possible in the real world es-
pecially when the dataset is combined from different sources. For example, in the drug dataset, it
is possible that, in addition to the (user, drug, reaction) hyperedges, there are also extra edges that
come from other sources, e.g., (drug, reaction) edges from the drug database, (user, drug) and (user,
reaction) edges from the medical record. Here for each dataset that we tested, we used about 50% of
the edges and only 5% of the hyperedges in the network to train the model. The results are in Fig. 5.

When using only the edges to train the model, our method still achieves higher AUROC and AUPR
score for hyperedge prediction as compared to node2vec (Table 2). We found that when the model
is trained with both the downsampled hyperedge dataset and the edge dataset, it would be able to
reach higher performance or suffer less from overfitting than being trained with each of the datasets
individually. This demonstrates that our model can capture the consensus information on the graph
structure across different sizes of hyperedges.

4.3 OUTSIDER IDENTIFICATION

Besides the standard network reconstruction, including link prediction and node classification, we
further formulated a new task called the outsider identification task. Previous methods like DHNE
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Figure 5: AUROC and AUPR scores of Hyper-SAGNN for hyperedge prediction on the downsampled
dataset over training epochs.

can answer the question of whether a specific tuple of nodes (v1, v2, ..., vk) form a hyperedge. How-
ever, in many settings, we might also want to know the reason why this group of nodes will not form
a hyperedge. We first define the outsider of a group of nodes as follows. Node vi is the outsider of
the node group (v1, v2, ..., vk) if it satisfies:

∃e ∈ E, (v1, v2, ..., vi−1, ..., vi+1, ..., vk) ∈ e (8)
@e ∈ E, s.t. ∃j ∈ {1, 2, .., k}, j 6= i, (vi, vj) ∈ e (9)

We speculate that Hyper-SAGNN can answer this question by analyzing the probability score p1 to
pk (defined in Eqn. 7). We assume that the node vi with the smallest pi would be the outsider. We
then set the evaluation as follows. We first train the model as usual, but at the final stage, we replace
the average pooling layer with min pooling layer and fine tune the model for several epochs. We then
feed the generated triplets with known outsider node into the trained model and calculate the top-k
accuracy of the outsider node matching the node with the smallest probability. Because this task is
based on the prediction results of the hyperedges, we only test this task on the dataset that achieves
the best hyperedge prediction results, i.e., the drug dataset. We found that we have 81.9% accu-
racy for the smallest probability and 95.3% accuracy for the top-2 smallest probability. Our results
showed that by switching the pooling layer we would have better outsider identification accuracy
(from 78.5% to 81.9%) with the cost of slightly decreased hyperedge prediction performance (AUC
from 0.955 to 0.935). This result suggests that our model is able to accurately predict the outsider
within the group even without further labeled information. Moreover, the performance of outsider
identification can be further improved if we include the cross-entropy between pi and the label of
whether vi is an outsider for all applicable triplets in the loss term. These results demonstrate the
advantage of Hyper-SAGNN in terms of the interpretability of hyperedge prediction.

4.4 APPLICATION TO SINGLE-CELL HI-C DATASETS

We next applied Hyper-SAGNN to the recently produced single-cell Hi-C (scHi-C) datasets (Ra-
mani et al., 2017; Nagano et al., 2017). Genome-wide mapping of chromatin interactions by Hi-
C (Lieberman-Aiden et al., 2009; Rao et al., 2014) has enabled the comprehensive characterization
of the 3D genome organization that reveals patterns of chromatin interactions between genomic
loci. However, unlike bulk Hi-C data where signals are aggregated from cell populations, scHi-
C provides information about chromatin interactions at single-cell resolution, thus allowing us to
study cell-to-cell variation of the 3D genome organization. Specifically, scHi-C makes it possible
to model the cell-to-cell variation of chromatin interaction as a hyperedge, i.e., (cell, genomic lo-
cus, genomic locus). For the analysis of scHi-C, the most common strategy would be revealing the
cell-to-cell variation by embedding the cells based on the contact matrix and then applying the clus-
tering algorithms such as K-means clustering or hierarchical clustering on the embedded vectors.
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We performed the following evaluation to assess the effectiveness of Hyper-SAGNN on learning the
embeddings of cells by representing the scHi-C data as hypergraphs.

We tested Hyper-SAGNN on two datasets. The first one consists of scHi-C from four human cell
lines: HAP1, GM12878, K562, and HeLa (Ramani et al., 2017). The second one includes the scHi-
C that represents the cell cycle of the mouse embryonic stem cells (Nagano et al., 2017). We refer
to the first dataset as Ramani et al. data, and the second as Nagano et al. data for abbreviation.
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Figure 6: (A) and (B): Visualization of the learned embedding based on Hyper-SAGNN for the Ramani
et al. data. (C) and (D): Visualization of the learned embedding based on Hyper-SAGNN for the Nagano
et al. data. Embedding vectors are projected to two dimensional space using either UMAP or PCA. (E):
Quantitative evaluation of the Hyper-SAGNN on two scHi-C datasets

We trained Hyper-SAGNN with the corresponding datasets. Due to the large average degree of cell
nodes, the random walk approach takes an extensive amount of time to sample the walks. Thus, we
only tested the encoder version of our method. We visualize the learned embeddings by reducing
them to 2 dimensions with PCA and UMAP (McInnes et al., 2018) (Fig. 6A-D).

We quantified the effectiveness of the embeddings by applying K-means clustering on the first
dataset and evaluating with Adjusted Rand Index (ARI). In addition, we also assessed the effective-
ness of the embeddings with a supervised scenario. We used Logistic Regression as the classifier
with 10% of the cell as training samples and evaluated the multi-class classification task with Micro-
F1 and Macro-F1. We did not run K-means clustering on the second dataset as it represents a state
of continuous cell cycle phenomenon which is not suitable for a clustering task. We instead used the
metrics ACROC (Average Circular ROC) developed in the HiCRep/MDS paper (Liu et al., 2018) to
evaluate the performance of the three methods on the second dataset. We compared the performance
with two other computational methods based on dimensionality reduction of the contact matrix,
HiC-Rep/MDS (Liu et al., 2018) and scHiCluster (Zhou et al., 2019). Because Hyper-SAGNN is
not a deterministic method for generating embeddings for scHi-C, we repeated the training process
5 times and averaged the score. All these results are in Fig. 6E.

For the first dataset (Fig. 6A-B), the visualization of the embedding vectors learned by Hyper-
SAGNN exhibits clear patterns that cells with the same cell type are clustered together. Moreover,
cell line HAP1, GM12878, and K562 are all blood-related cell lines, which are expected to be more
similar to each other in terms of 3D genome organization as compared to HeLa. Indeed, we ob-
served that they are also closer to each other in the embedding space. Quantitative results in Fig. 6E
are consistent with the visualization as our method achieves the highest ARI, Micro-F1, Macro-F1
score among all three methods. For the second dataset, as shown in Fig. 6C-D, we found that the
embeddings exhibit a circular pattern that corresponds to the cell cycle. Also, both HiC-Rep/MDS
and Hyper-SAGNN achieve high ACROC score. All these results demonstrated the effectiveness of
representing the scHi-C datasets as hypergraphs using Hyper-SAGNN, which has great potential to
provide insights into the cell-to-cell variation of higher-order genome organization.
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5 CONCLUSION

In this work, we have proposed a new graph neural network model called Hyper-SAGNN for the
representation learning of general hypergraphs. The framework has the flexible ability to deal with
homogeneous and heterogeneous, and uniform and non-uniform hypergraphs. We demonstrated that
Hyper-SAGNN is able to improve or match state-of-the-art performance for hypergraph represen-
tation learning while addressing the shortcomings of prior methods like incapability of predicting
hyperedges for non-k-uniform heterogeneous hypergraphs. Hyper-SAGNN is computationally effi-
cient as the size of input to the graph attention layer is bounded by the maximum hyperedge size as
as opposed to the number of first-order neighbors.

One potential improvement of Hyper-SAGNN as future work would be allowing information aggre-
gation over all the first-order neighbors before calculating the static/dynamic embeddings for a node
with additional computational cost. With this design, the static embedding for a node would still
satisfy our constraint that it is fixed for a known hypergraph with varying input tuples. This would
allow us to incorporate previously developed methods on graphs, such as GraphSAGE (Hamilton
et al., 2017a) and GCN (Kipf & Welling, 2016), into this framework and extend the application of
Hyper-SAGNN to semi-supervised learning.
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A APPENDIX

A.1 DETAILS OF THE STRATEGIES FOR GENERATING FEATURE VECTORS

We first define the functions used in the subsequent sections as follows: a hyperedge e with weight
w(e) is incident with a vertex v if and only if v ∈ e. We denote the indicator function that represents
the incident relationship between v and e by h(v, e), which equals 1 when e is incident with v. The
degree of vertex and the size of hyperedge are defined as follows:

d(v) ,
∑
e∈E

h(v, e)w(e) (10)

δ(e) ,
∑
v∈V

h(v, e) = |e| (11)

A.1.1 ENCODER BASED APPROACH

The first approach is referred to as the encoder based approach, which is similar to the structure
used in DHNE (Tu et al., 2018). We first obtain the incident matrix of the hypergraphH ∈ R|V |×|E|
with entries h(v, e) = 1 if v ∈ e and 0 otherwise. We also calculate the diagonal degree matrix
Dv containing the vertex degree d(v) =

∑
e∈E h(v, e). We thus have the adjacency matrix A =

HHT −Dv , of which the entries a(vi, vj) denote the concurrent times between each pair of nodes
(vi, vj). The i-th row of A, denoted by ~ai, shows the neighborhood structures of the node vi, which
then passes through a one-layer neural network to produce xi:

~xi = tanh
(
Wenc · ~ai +~benc

)
(12)

In DHNE, a symmetric structure was introduced where there are corresponding decoders to trans-
form the ~xi back to ~ai. Tu et al. (2018) remarked that including this reconstruction error term
would help DHNE to learn the graph structure better. We also included the reconstruction error term
into the loss function, but with tied-weights between encoder and decoder to reduce the number of
parameters need to be trained.

A.1.2 RANDOM WALK BASED APPROACH

Besides the encoder based approach described above, we also utilized a random walk based frame-
work to generate the feature vectors ~xi. Just like the biased 2nd-order random walks proposed in
node2vec (Grover & Leskovec, 2016), we extend the model to generalize to hypergraphs. For a walk
from v to x then to t, the strategies are described as the following.

The 1st-order random walk strategy given the current vertex v is to randomly select a hyperedge e
incident with v based on the weight of e and then to choose the next vertex x from e uniformly (Zhou
et al., 2007). Therefore, the 1st-order transition probability is defined as:

π1(x|v) ,
∑
e∈E

w(e)
h(v, e)h(x, e)

δ(e)
(13)

We then generalize the 2nd-order bias αpq from ordinary graph to hypergraph for a walk from t to v
to x as:

αp,q(t, x) =

{
1/p, if ∃e ∈ E, s.t. t, v, x ∈ e
1, else if ∃e ∈ E, s.t. t, x ∈ e
1/q, o.w.

(14)

where the parameters p and q are to control the tendencies that encourage outward exploration and
obtain a local view.

Now adding up the above terms to set the biased 2nd-order transition probability as:

π(x|v, t) =
{

π1(x|v)·αpq(t,x)
Z , if ∃e ∈ E, s.t. v, x ∈ e

0, o.w.
(15)

where Z is a normalizing factor.
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With the well-defined 2nd-order transition probability π(x), we simulate a random walk of fixed
length l through a 2nd-order Markov process marked by P (ci = x|ci−1 = v, ci−2 = t) = π(x|v, t),
where ci is the i-th node in the walk. A Skip-Gram model (Mikolov et al., 2013; Mikolov et al.,
2013) is then used to extract the node features from sampled walks such that nodes that appear in
similar contexts would have similar embeddings.

A.2 DETAILS OF THE DATASETS USED IN THIS WORK

The four datasets used in the first part of our evaluation are:

• GPS (Zheng et al., 2010): GPS network. The hyperedges are based on (user, location,
activity) relations.

• MovieLens (Harper & Konstan, 2015): Social network. The hyperedges are based on (user,
movie, tag) relations, describing peoples’ tagging activities.

• drug: Medicine network from FAERS1. The hyperedges are based on (user, drug, reaction)
relations.

• wordnet (Bordes et al., 2013): Semantic network from WordNet 3.0. The hyperedges are
based on (head entity, relation, tail entity), expressing the relationships between words.

Details of the datasets are shown in Table A1.

Table A1: Datasets used in this work. Note that the columns under “#(V)” correspond to the columns under
“node type” for each dataset.

DATASETS NODE TYPE #(V) #(E)
GPS user location activity 146 70 5 1,436
MovieLens user movie tag 2,113 5,908 9,079 47,957
drug user drug reaction 12 1,076 6,398 171,756
wordnet head relation tail 40,504 18 40,551 145,966

A.3 PARAMETER SETTING

We downloaded the source code of DHNE from its GitHub repository. The structure of the neural
network of DHNE is set to be the same as what the authors described in the original paper (Tu et al.,
2018). We tuned parameters such as the α term and the learning rate following the same procedure.
We also tried adding dropout between representation vectors and the fully connected layer for better
performance of DHNE. All these parameters were tuned until it was able to replicate or even improve
the performance reported in the original paper. To make a fair comparison, for all the results below,
we made sure that the training and validation data setups were the same across different methods.

For node2vec, we decomposed the hypergraph into pairwise edges and ran node2vec on the decom-
posed graph. When using it for the hyperedge prediction task, we first used the learned embedding
to predict pairwise edges. Then we used the mean or min of the pairwise similarity as the probability
for the tuple to form into a hyperedge. We set the window size as 10, walk length as 40, number of
walks per-vertex as 10, which are the same parameters used in DHNE for node2vec. However, we
found that for the baseline method node2vec, when we tuned the hyper-parameter p, q and also used
larger walk length, window size and walks per vertex (120, 20, 80 instead of 40, 10, 10), it would
achieve comparable performance for node classification task as DHNE. This observation is consis-
tent for our designed biased hypergraph random walk. But this would result in a longer time for
sampling the walks and training the skip-gram model. We therefore kept the parameters consistent
with what is used in DHNE paper.

For our Hyper-SAGNN, we set the representation size to be 64 which is the same as DHNE. When
using the encoder based approach to calculate xi, we set the encoder structure to be the same as
the encoder part in DHNE. When using the random walk based approach, we decomposed the hy-
pergraph into a graph just as described above. We set the window size as 10, walk length as 40,
number of walks per-vertex as 10 to allow time-efficient generating of feature vector ~xi. The results
in Section 4.1 showed that even when the pre-trained embeddings are not so ideal, Hyper-SAGNN
can still capture the structure of the graph well.

1http://www.fda.gov/Drugs/
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A.4 COMPARISON OF HYPER-SAGNN VS. THE VARIANTS

As mentioned above, unlike the standard GAT model, we exclude the αii term in the self-attention
mechanism. To test whether this constraint would help or decrease the model’s ability to learn, we
implemented a variant of our model (referred to as variant type I) by including this term. Also, as
mentioned in the Method section, another potential variant of our model would be directly using the
~d∗i to calculate the probability score p∗i . We refer to this variant as variant type II. For variant type
II, on node classification task, since it does not have a static embedding, we used WT

v xi. The rest of
the parameters and structure of the neural network remain the same.

We then compared the performance of Hyper-SAGNN and two variants in terms of the AUC and
AUPR value for network reconstruction task and hyperedge link prediction task on the following
4 datasets: MovieLens, wordnet, drug, and GPS. We also compared the performance in terms of
the Micro F1 score and Macro F1 score on the node classification task on the MovieLens and the
wordnet dataset. For the MovieLens dataset, we used 90% nodes as training data while for wordnet,
we used 1% of the nodes as training data. All the test setup is the same as described in the main
text. To avoid the effect of the randomness of the neural network training, we repeated the training
process for each experiment 5 times and made the line plot of the score versus the epoch number.
To illustrate the differences more clearly, we started the plot at epoch 3 for the random walk based
approach and epoch 12 for the encoder based approach. The performance of the model when using
the random walk based approach is shown in Fig. A1 to Fig. A4. The performance of the model
when using the encoder based approach is shown in Fig. A5 to Fig. A8.

For models with the random walk based approach. Hyper-SAGNN is the best in terms of all metrics
for the GPS, MovieLens and wordnet dataset. On the drug dataset, Hyper-SAGNN achieves higher
AUROC and AUPR score on the network reconstruction task than two variants, but slightly lower
AUROC score for the link prediction task (less than 0.5%).

Then for models with the encoder based approach, the advantage is not that obvious. All 3 methods
achieve similar performance in terms of all metrics for the GPS and the drug dataset. For the Movie-
Lens and wordnet dataset, Hyper-SAGNN performs similar to variant type I, higher than variant
type II on the network reconstruction and link prediction task. However, our model achieves slightly
higher accuracy on the node classification task than variant type I.

Therefore, these evaluations demonstrated that the choice of the structure of Hyper-SAGNN can
achieve higher or at least comparable performance than the 2 potential variants over multiple tasks
on multiple datasets.
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Figure A1: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (GPS)
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Figure A2: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (MovieLens)
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Figure A3: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (drug)
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Figure A4: Performance comparison of Hyper-SAGNN – Walk and Variant Type I, II (wordnet)
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Figure A6: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (MovieLens)
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Figure A7: Performance comparison of Hyper-SAGNN – Encoder and Variant Type I, II (drug)
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