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ABSTRACT

Adversarial examples have been well known as a serious threat to deep neural
networks (DNNs). To ensure successful and safe operations of DNNs on real-
world tasks, it is urgent to equip DNNs with effective defense strategies. In this
work, we study the detection of adversarial examples, based on the assumption
that the output and internal responses of one DNN model for both adversarial and
benign examples follow the generalized Gaussian distribution (GGD), but with
different parameters (i.e., shape factor, mean, and variance). GGD is a general
distribution family to cover many popular distributions (e.g., Laplacian, Gaussian,
or uniform). It is more likely to approximate the intrinsic distributions of internal
responses than any specific distribution. Besides, since the shape factor is more
robust to different databases rather than the other two parameters, we propose
to construct discriminative features via the shape factor for adversarial detection,
employing the magnitude of Benford-Fourier coefficients (MBF), which can be
easily estimated using responses. Finally, a support vector machine is trained
as the adversarial detector through leveraging the MBF features. Through the
Kolmogorov-Smirnov (KS) test (Massey Jr (1951)), We empirically verify that:
1) the posterior vectors of both adversarial and benign examples follow GGD; 2)
the extracted MBF features of adversarial and benign examples follow different
distributions. Extensive experiments in terms of image classification demonstrate
that the proposed detector is much more effective and robust on detecting adver-
sarial examples of different crafting methods and different sources, in contrast to
state-of-the-art adversarial detection methods.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved a remarkable success in many important applications,
such as image classification, face recognition, object detection, etc. In the meanwhile, DNNs have
been shown to be very vulnerable to adversarial examples. However, many real-world scenarios
have very restrictive requirements about the robustness of DNNs, such as face verification for login,
or semantic segmentation in autonomous driving. Adversarial examples are a serious threat to the
applications of DNNs to these important tasks. Since many kinds of adversarial attack methods have
been proposed to fool DNNs, it is more urgent to equip effective defensive strategies to ensure the
safety of deep models in real-world applications. However, defense seems to be more challenging
than attack, as it has to face adversarial examples from unknown crafting methods and unknown
data sources. Typical defensive strategies include adversarial training, adversarial de-noising, and
adversarial detection. Compared to the former two strategies, adversarial detection is somewhat
more cost-effective, as it often does not need to re-train or modify the original DNN model.

There are two main challenges for adversarial detection. (1) The adversarial examples are designed
to camouflage themselves to be close to the corresponding benign examples in the input space. Then,
where and how to extract the discriminative information to train the detector? (2) The data sources
and the generating methods of adversarial examples are often inaccessible to the detector. In this
case, the detector can be stably effective across different data sources and different attack meth-
ods? In other words, a good adversarial detector is required to be not only effective to distinguish
adversarial and benign examples, but also robust to different data sources and attack methods.
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To satisfy the first requirement of effectiveness, we utilize the other principle of crafting adversarial
examples that the outputs between benign and adversarial examples should be large, to encourage
the change of the final prediction. It means that the imperceptible difference between benign and
adversarial examples in the input space is enlarged along the DNN model, leading to the significant
difference in the output space. Inspired by this fact, we assume that the output or the responses
of internal layers of the DNN model should include the discriminative information for benign and
adversarial examples. A few works have attempted to extract different types of discriminative fea-
tures from the output or the internal responses, such as kernel density (KD) (Feinman et al. (2017))
and the local intrinsic dimensionality (LID) (Ma et al. (2018)), etc. To achieve the robustness, the
extracted discriminative features should model the intrinsic difference between adversarial and be-
nign examples, rather than the difference from the changes of data sources or attack methods. Many
existing methods have shown the effectiveness to some extent on detecting adversarial examples of
specific data sources and attack methods. However, their robustness, especially across different data
sources, has not been well studied and verified.

In this work, we propose a novel detection method based on the assumption that the internal
responses of both adversarial and benign examples follow the generalized Gaussian distribution
(GGD) (Varanasi & Aazhang (1989)), but with different parameters, including the shape factor,
mean, and variance. The rationale behind this assumption is that GGD covers many popular distri-
butions with varied shape factors (such as Laplacian, Gaussian, or uniform distribution), such that
GGD is more likely to approximate the intrinsic response distributions rather than one specific distri-
bution. Moreover, mean and variance of GGD may vary significantly with respect to different classes
and data sources, even for benign examples, while the shape factor is more robust. For example, the
mean and variance of two Gaussian distributions could be totally different, but their shape factors are
the same (i.e., 2). Thus, we propose to use the shape factor as an effective and robust discrimination
between adversarial and benign examples. However, it is difficult to exactly estimate the shape fac-
tor in practice. We resort to the magnitude of Benford-Fourier coefficients (Pasquini et al. (2014)),
which is a function of the shape factor. It can be easily estimated using internal responses, according
to the definition of Fourier transform. Then, the magnitudes estimated from internal responses of
different convolutional layers are concatenated as a novel representation. Finally, a support vector
machine (SVM) (Vapnik (2013)) is trained using the new representations as the adversarial detec-
tor. Extensive experiments carried out on several databases verify the effectiveness and robustness
of the proposed detection method. To further verify the rationale of our assumption, we present
the empirical analysis through the Kolmogorov-Smirnov test (KS test) (Massey Jr (1951)). The KS
test verifies that 1) the posterior vectors of both adversarial and benign examples predicted by the
CNN model follow the distribution of GGD, but with different parameters, and 2) the MBF fea-
tures of adversarial and benign examples follow different distributions, and the MBF features of
adversarial examples crafted from different attack methods follow the same distribution, as well as
that the MBF features of adversarial/benign examples from different data sources follow the same
distribution. Moreover, we visualize the statistics (i.e., mean ± standard deviation) of the extracted
MBF features for adversarial and benign examples. The visualization reveals the distinct difference
between adversarial and benign examples. These empirical analysis demonstrates the effectiveness
and robustness of the proposed MBF detector.

2 RELATED WORK

In this section we focus on reviewing existing works about adversarial detection, while those of
other adversarial defensive strategies are out of scope of this work.

The general idea of most existing detection methods is learning or constructing a new representation
to discriminate adversarial and benign examples, utilizing the outputs or immediate responses of an
original classification network. Li & Li (2017) trained a cascading classifier based on the principal
component analysis (PCA) (Pearson (1901)) statistics of responses from each convolutional layer
of the defended convolutional neural network (CNN) model. An example is recognized as benign
if all single classifiers of the cascade predict it as benign, otherwise adversarial. Lu et al. (2017)
proposed SafetyNet by adding a RBF-SVM classifier to detect adversarial examples, at the end of
the original classification network. Metzen et al. (2017) proposed a detection network along with an
original classification network, which takes the internal responses of the original network as inputs.
It shows effectiveness on detecting adversarial examples generated by simple attacks (such as FGSM
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(Goodfellow et al. (2014)) and JSMA (Papernot et al. (2016))), while performs much worse when
facing more advanced attacks (such as C&W (Carlini & Wagner (2017a))). It tells that this method
is sensitive to attack methods. Grosse et al. (2017) attempted to detect adversarial examples using
the statistical test of maximum mean discrepancy (MMD). Although above detection methods show
effectiveness on some attack methods and some databases, but a thorough evaluation presented in
Carlini & Wagner (2017b) has shown that these methods are sensitive to attack methods or databases,
and they can be somewhat easily invaded by new attacks.

Some recent works proposed to utilize neighboring samples in the same database to construct a
better representation of a current sample. Feinman et al. (2017) defined two metrics based on the
responses of the final hidden layer of the classification neural network, including kernel density
estimation (KDE) and Bayesian neural network uncertainty (BU). If the metric score of KDE/BU
is lower/higher than a pre-defined threshold, then the example is predicted as adversarial. Ma et al.
(2018) utilized the local intrinsic dimensionality (LID) to measure the characterization of adversarial
regions of DNNs. LID describes the distance between one example and its k-nearest neighboring
sample in the feature space of immediate responses of the original classification network. The
distances computed from different layers are concatenated as the example representation, which is
then used to train a shallow classifier to discriminate adversarial and benign examples. Zheng &
Hong (2018) defined the intrinsic hidden state distribution (IHSD) of the responses of the original
classification network to model different classes. The Gaussian mixture model (GMM) was used
to approximate IHSD of each class. Then, the posterior probability of one sample assigned to
GMM is computed as the metric. If the probability is lower than a pre-defined threshold, then it is
recognized as adversarial. Lee et al. (2018) computed the class-conditional Gaussian distribution
of the responses of the original classification network based on the whole training set. Then, the
Mahalanobis distance between one sample and its nearest class-conditional Gaussian distribution
is used as the metric for detection. If the distance is larger than a pre-defined threshold, then it is
detected as adversarial. Compared to some aforementioned single-representation-based detection
methods, these joint-representation-based methods showed better performances on some databases.
However, the detection cost for each example is much higher, as the responses of its neighboring
samples should also be computed. Besides, since the representation is highly dependent on the
neighbors or all training examples, the detection performance may be sensitive to data sources,
which will be studied in later experiments.

There are also some other approaches that do not construct representations from the responses of
the original classification network. Hendrycks & Gimpel (2016) adopted PCA statistics to dis-
criminate adversarial and benign images, independent of any DNN model. However, the study
presented in Carlini & Wagner (2017b) has demonstrated that this method works for MNIST but not
for CIFAR-10, and PCA statistics are not robust features to detect adversarial images. Pang et al.
(2018) proposed a novel loss called reverse cross-entropy (RCE) to train the classification network,
such that the distance measured by kernel density (Feinman et al. (2017)) between adversarial and
benign examples could be enlarged. Samangouei et al. (2018) proposed Defense-GAN to model the
distribution of benign examples using a generative adversarial network (GAN). If the Wasserstein
distance between one example and its corresponding example generated by the GAN is larger than
a pre-defined value, then it is detected as adversarial. However, these above three methods are much
more costly than other detection methods.

3 PRELIMINARIES

3.1 GENERALIZED GAUSSIAN DISTRIBUTION

Assume that a random variable X ∈ Rd follows the generalized Gaussian distribution (GGD)
(Varanasi & Aazhang (1989)). Then, its probability density function (PDF) is formulated with two
positive parameters, including the shape factor c and the standard deviation σ, as follows

PX (x) = A · e−|βx|
c

, (1)

where β = 1
σ

(Γ(3/c)
Γ(1/c)

) 1
2 and A = βc

2Γ(1/c) , with Γ(·) being the Gamma function. Note that the mean
parameter µ is omitted above, as µ has no relation with the shape of distribution and we set it as 0
without loss of generality. A nice characteristic of GGD is that it covers many popular distributions
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with varied shape factors. For example, when c = 1, then it becomes the Laplacian distribution;
when c = 2, then it is the Gaussian distribution with a variance of σ2; when c → +∞, then it is
specified as a uniform distribution on (−

√
2σ,
√

2σ).

3.2 BENFORD-FOURIER COEFFICIENTS

Although generalized Gaussian distribution (GGD) is able to cover a bunch of distributions, it is
hard to depict the exact forms of GGD precisely. To this end, we further define a random variable
Z = log10 |X | mod 1 for detecting and distinguishing different form of GGD, of which the PDF is
formulated by means of Fourier Series as Pérez-González et al. (2007), with the fundamental period
being fixed as 2π,

PZ(z) = 1 + 2

+∞∑
n=1

[An cos (2πnz) +Bn sin (2πnz)] = 1 + 2

+∞∑
n=1

|an| cos(2πnz + φn), (2)

where z ∈ [0, 1) corresponds to the domain of random variable Z , the phase of Fourier Series is
explained as φn = arctan

(
− Bn
An

)
, and the magnitude denotes |an| =

√
A2
n +B2

n. an = |an| ·ejφn
denotes the n-th Fourier coefficient of PZ(z) evaluated at 2πn, and its definition is

an =

∫ +∞

−∞
PZ(z) · e−j2πn log10 zdz =

2Ae
j2πn log β

log 10

βc
· Γ
(
−j2πn+ log 10

c log 10

)
. (3)

an is also called as Benford-Fourier coefficient. Note that an is a complex number, and its magnitude
can be calculated as follows

|an| =
( +∞∏
k=0

[
1 +

( 2πn

log 10(ck + 1)

)2]−1) 1
2

. (4)

Note that |an| gets smaller as n ∈ N increases. And, an interesting property of |an| is that it only
depends on the shape factor c, while is independent of the parameter σ. Thus, one set of the absolute
values of Benford-Fourier coefficients {|an|}n∈N correspond to one identical c, i.e., one identical
special distribution of GGD. In other words, we could use {|an|}n∈N as features or representations
to discriminate different special distributions of GGD.

However, if it is often difficult to know or even estimate the shape factor c, we cannot compute the
value of |an|. But fortunately, recalling that an is the n-th Fourier coefficient of PZ(z) evaluated
at 2πn, we can derive an easy estimation. Specifically, assume that x = {x1, . . . , xM} is a set of
M i.i.d. points sampled from GGD with the same shape factor c. Then, the corresponding Benford-
Fourier coefficients can be estimated as follows (Pasquini et al. (2014)):

ân =

∑M
m=1 e

−j2πn log10 |xm|

M
=

1

M

M∑
m=1

[
cos (2πn log10 |xm|)− j sin (2πn log10 |xm|)

]
. (5)

The gap between ân and an is analyzed in Theorem 1. It tells that ân gets closer to an as M in-
creases. For clarity, we firstly introduce a few notations: T = e−j2πn log10 |X | is a random variable
with X obeying the generalized Gaussian distribution, and ân is an observation of the random vari-
able Y = 1

M

∑M
m=1 Tm. Due to the space limit, the proof will be presented in supplementary

material.

Theorem 1 Assume that the estimation error εn = ân−an is an observation of the random variable
E = Y−an. |E| follows the Rayleigh distribution (Papoulis & Pillai (2001)), of which the probability
density function (PDF) is formulated as

P|E| (r) = 2Mre−Mr2 . (6)

And the expectation and variance are respectively shown as follows:

E
(
|E|
)

=
1

2

√
π

M
,D(

∣∣E∣∣) =
4− π
4M

,

which implies that the estimation error εn gets closer to 0 as the number of samples M increases.
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4 ADVERSARIAL DETECTION VIA BENFORD-FOURIER COEFFICIENTS

4.1 TRAINING PROCEDURE OF ADVERSARIAL DETECTOR

There are three stages to train the proposed adversarial detector, including: 1) building a training set
based on benign images; 2) extracting novel representations of the training set via Benford-Fourier
coefficients; 3) training a SVM classifier as the adversarial detector. They will be explained in details
sequentially. And, the overall training procedure is briefly summarized in Algorithm 1.

Build a training set. Firstly, we collect N clean images {x1, . . . ,xN}, which can be correctly pre-
dicted by fθ. Then, we adopt one adversarial attack method (e.g., C&W (Carlini & Wagner (2017a))
or BIM ( Kurakin et al. (2016))) to generate one adversarial image corresponding to each clean im-
age. The crafted N adversarial examples are denoted as {x̂1, . . . , x̂N}. Besides, to avoid that the
noisy image (polluted by some kind of non-malicious noises but still can be correctly predicted
by fθ) is incorrectly detected as adversarial, we also craft one noisy image by adding small random
Gaussian noises onto each clean image. TheseN noisy examples are denoted as {x̄1, . . . , x̄N}. Note
that, hereafter benign examples include both clean and Gaussian noisy examples. Consequently, we
obtain one training set with 3N examples, denoted asDtr = {(xi,−1), (x̄i,−1), (x̂i,+1)}i=1,...,N .

Extract novel representations. We firstly feed the i-th training image from Dtr into fθ. We
concatenate all response entries of the l-th layer in fθ to obtain one vector rli. Then, we estimate the
corresponding Benford-Fourier coefficients according to Eq. (5), as follows

(ân)li =
1

M l
i

M l
i∑

m=1

e−j2πn log10 |(rm)li|, (7)

where M l
i indicates the length of rli. The magnitude of (ân)li is computed as follows

|(ân)li| =
1

M l
i

M l
i∑

m=1

(
cos2 (2πn log10 |(rm)li|) + sin2 (2πn log10 |(rm)li|)

) 1
2

. (8)

Then, we extract one T -dimensional feature vector ali = [|(â1)li|, . . . , |(âT )li|] ∈ RT+ for the i-th
training image from the l-th layer. We set T = 16 in experiments, as |(ân)li| of larger n is too small
for discrimination. Finally, we concatenate the feature vectors of all layers to form a long vector
âi = [â1

i ; . . . ; â
L
i ] ∈ RTL+ , with L being the number of layers in fθ. Consequently, we obtain a

novel representation of the training set Dtr, denoted as Âtr = {(âi,±1)}i=1,...,3N , where the label
of ai (i.e., +1 or −1) is directly obtained from Dtr.

Train an adversarial detector. Finally, we train a binary SVM classifier based on Âtr. The trained
SVM classifier will serve as the adversarial detector for the CNN model fθ.

Testing. One novel testing example is firstly predicted as adversarial or not by the trained adversarial
detector . If adversarial, then it is rejected; otherwise, it is fed into fθ to predict its class label.

Remark. Note that in the derivation of an (see Eq. (3)), the mean parameter of GGD is set to 0.
In experiments, we calculate the mean values of internal-layer responses of all networks for every
image, and find that most mean values are very close to 0 (around 10−2). Thus, the derived an is
applicable to our task. Besides, according to Theorem 1, the estimation error of (ân)li is inversely
proportional toM l

i . It tells that the coefficient estimated from the larger-sized layer is more accurate.
In many neural networks (e.g., AlexNet (Krizhevsky et al. (2012))), the response sizes of high layers
get smaller, which means the less accurate estimation. However, we believe that the discrimination
between adversarial and benign examples in higher layers is more evident than that in lower layers.
There is a trade-off between estimation accuracy and discrimination. This is why we concatenate
the estimated magnitudes of all layers together to construct the novel representation.

4.2 EXPERIMENTAL SETTINGS

Databases and network architectures We conduct experiments on three databases, including
CIFAR-10 (Krizhevsky et al. (2014)), SVHN (Netzer et al. (2011)), and a subset of ImageNet (Deng
et al. (2009)). In terms of CIFAR-10 and SVHN, we adopt the same settings as the compared method

5



Under review as a conference paper at ICLR 2020

Algorithm 1 Training the adversarial detector via the magnitude of Benford-Fourier coefficients.
Require: The trained CNN model fθ with L layers, and the training set Dtr

1: for i = 1 to |Dtr| do:
2: for l = 1 to L do:
3: Compute |(ân)

l
i| as Eq. (8), with n = 1, . . . , T ;

4: Concatenate {|(ân)
l
i|}n=1,...,T to obtain a vector âl

i ;
5: end for
6: Concatenate {âl

i}l=1,...,L to obtain a long vector âi ;
7: end for
8: Build a novel representation of the training set, denoted as Âtr = {(âi,±1)}i=1,...,|Dtr| ;
9: Train a binary SVM classifier based on Âtr ;

return The trained binary SVM classifier.

LID (Ma et al. (2018)). Specifically, a 33-layer network pre-trained on the training set of CIFAR-10
achieves 82.37% accuracy on the testing set with 10, 000 benign images; a 19-layer network pre-
trained on the training set of SVHN achieves 92.6% accuracy on the testing set with 26, 032 benign
images. Then, we add a small noise drawn from N (0, σ2) on each testing image, with σ being the
similar level of the `2 norm of adversarial perturbations on the same database. If both the benign and
its noisy image can be correctly predicted by the classification network, then it is picked out for train-
ing the detection. We finally collect 8, 175 and 23, 862 benign images from CIFATR-10 and SVHN,
respectively. These images are randomly partitioned to the 80% training set and the 20% testing set,
used for the training and testing of the detector. We also collect a subset from ImageNet, including
800 benign images of 8 classes (snowbird, spoonbill, bobtail, Leonberg, hamster, proboscis monkey,
cypripedium calceolus, and earthstar). The 100 images of each class contain 50 testing images
and 50 randomly selected training images. We fine-tune the checkpoints of both AlexNet and VGG
pre-trained on ImageNet1 on these 800 images to achieve 100% accuracy. Then, 785 benign images
are kept for detection, as both their noisy images and themselves can be correctly predicted by both
the fine-tuned AlexNet and VGG models. These 785 images are then randomly partitioned to 400
training and 305 testing images used for detection. For each database, as described in Section ??,
one noisy and one adversarial image are generated for each benign image; then, all of benign, noisy,
and adversarial images are used for detection.

Attack methods We adopt four popular adversarial attack methods to craft adversarial examples,
including basic iterative method (BIM (Kurakin et al. (2016))), CarliniWagnerL2Attack (CW-L2
(Carlini & Wagner (2017a))), DeepFool (Moosavi-Dezfooli et al. (2016)), and random projected
gradient descent (R-PGD (Madry et al. (2017))). They are implemented by Foolbox2.

Compared detection methods We compare with three state-of-the-art and open-sourced adversarial
detection methods, including KD+BU3 (Feinman et al. (2017)), Mahalanobis distance4 (M-D) (Lee
et al. (2018)), and LID5 (Ma et al. (2018)). Note that another recent work called I-defender (Zheng
& Hong (2018)) is not compared, as its code is not available. To ensure the fair comparison, the
SVM classifier is trained with all compared methods, implemented by the fitcsvm6 function in MAT-
LAB. There are two important hyper-parameters in LID, i.e., the size of mini-batch and the number
of neighbors. On CIFAR-10 and SVHN, they are respectively set as 100 and 20, as suggested in Ma
et al. (2018); on ImageNet, as there are only 400 benign training images, they are respectively set as
50 and 20 in experiments. Moreover, we find that there are some unfair settings in the implementa-
tions of compared methods. For example, KD+BU utilizes the extra 50, 000 images of CIFAR-10 to
compute the kernel density of each training and testing image; M-D also uses these extra images to
compute the mean and co-variance of GMM. Since extra images of the similar distribution with the
training images are often unavailable, we believe that extra images should not be used to ensure the
fair comparison. Thus, extra images are not used for KD+BU and M-D in our experiments. Besides,
LID utilizes other benign testing images as neighborhoods to extract features for each testing image.

1https://pytorch.org/docs/robust/torchvision/models.html
2https://foolbox.readthedocs.io/en/latest/
3 https://github.com/rfeinman/detecting-adversarial-samples/
4 https://github.com/pokaxpoka/deepMahalanobisdetector/
5 https://github.com/xingjunm/lidadversarialsubspacedetection/
6https://www.mathworks.com/help/stats/fitcsvm.html
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Table 1: Detection results in the non-transfer case.
database Detector AUROC (%) Accuracy (%)

BIM CW-L2 DeepFool R-PGD BIM CW-L2 DeepFool R-PGD

CIFAR-10
KD+BU (Feinman et al. (2017)) 79.0 82.8 80.6 77.7 74.2 73.0 71.7 72.6
M-D (Lee et al. (2018)) 51.7 48.4 53.7 52.0 66.7 66.7 66.7 66.7
LID (Ma et al. (2018)) 87.9 87.4 86.6 82.7 72.6 78.5 78.0 70.2
MBF 99.6 99.6 96.9 99.4 98.8 98.3 91.8 98.5

SVHN
KD+BU (Feinman et al. (2017)) 81.5 85.1 84.1 82.5 78.6 80.0 79.3 78.6
M-D (Lee et al. (2018)) 49.7 50.0 49.6 50.1 66.7 66.7 66.7 66.7
LID (Ma et al. (2018)) 91.7 88.7 92.2 90.5 83.3 80.8 84.0 81.5
MBF 99.7 99.9 99.3 99.5 98.8 98.3 91.8 98.5
KD+BU (Feinman et al. (2017)) 50.8 52.6 51.1 51.5 34.4 36.8 34.9 35.3

ImageNet- M-D (Lee et al. (2018)) 48.1 60.1 46.5 54.1 66.7 66.6 66.8 66.7
AlexNet LID (Ma et al. (2018)) 71.7 70.9 71.9 72.3 68.7 60.5 65.8 68.3

MBF 99.9 99.6 99.9 99.8 98.6 97.8 98.8 98.4
KD+BU (Feinman et al. (2017)) 57.1 57.7 56.2 58.6 42.8 43.6 41.7 44.8

ImageNet- M-D (Lee et al. (2018)) 63.7 64.8 45.9 66.9 67.1 65.6 66.7 67.4
VGG16 LID (Ma et al. (2018)) 82.6 84.2 89.5 84.2 77.8 76.7 83.3 76.4

MBF 99.8 100.0 100.0 100.0 99.6 99.6 100.0 100.0

Table 2: Detection results evaluated by AUROC (%) in the attack-transfer case.
database Test attack→ BIM CW-L2 DeepFool R-PGD

Train attack ↓ KD+BU (Feinman et al. (2017)) / M-D (Lee et al. (2018)) / LID (Ma et al. (2018)) / MBF

CIFAR-10

BIM 79.0 / 51.7 / 87.9 / 99.6 78.1 / 52.2 / 85.7 / 99.4 76.4 / 52.4 / 86.4 / 87.8 78.6 / 50.9 / 87.6 / 99.4
CW-L2 83.4 / 47.9 / 90.3 / 99.6 82.8 / 48.4 / 87.4 / 99.6 80.3 / 46.5 / 87.0 / 88.6 82.9 / 48.2 / 88.9 / 99.5

DeepFool 83.6 / 53.5 / 89.7 / 99.3 83.1 / 51.4 / 86.1 / 99.1 80.6 / 53.7 / 86.6 / 96.9 83.1 / 53.6 / 87.9 / 98.9
R-PGD 78.1 / 51.5 / 86.1 / 99.6 77.3 / 51.9 / 84.5 / 99.5 75.8 / 52.4 / 84.9 / 88.3 77.7 / 52.1 / 82.7 / 99.4

SVHN

BIM 81.5 / 49.7 / 91.7 / 99.7 83.1 / 51.0 / 88.3 / 99.7 80.1 / 48.8 / 91.9 / 97.5 81.5 / 50.4 / 90.7 / 99.5
CW-L2 83.6 / 50.8 / 91.6 / 99.7 85.1 / 50.0 / 88.7 / 99.9 82.5 / 49.7 / 92.0 / 97.3 83.6 / 49.1 / 90.8 / 99.7

DeepFool 85.0 / 50.0 / 91.6 / 99.7 86.3 / 50.0 / 87.9 / 99.8 84.1 / 49.6 / 92.2 / 99.3 85.0 / 49.4 / 90.8 / 99.6
R-PGD 82.5 / 49.9 / 91.2 / 99.6 84.0 / 49.5 / 87.8 / 99.6 81.2 / 50.2 / 91.6 / 97.4 82.5 / 50.1 / 90.5 / 99.5

BIM 50.8 / 48.1 / 71.7 / 99.9 50.8 / 44.9 / 70.8 / 99.6 50.4 / 49.7 / 72.1 / 99.8 50.7 / 50.4 / 70.8 / 99.8
ImageNet- CW-L2 52.3 / 50.7 / 69.7 / 99.8 52.6 / 60.1 / 70.9 / 99.7 51.2 / 52.1 / 66.0 / 99.7 52.2 / 55.8 / 69.8 / 99.8
AlexNet DeepFool 51.8 / 53.6 / 71.3 / 99.9 51.9 / 53.5 / 69.7 / 99.7 51.2 / 46.5 / 71.9 / 99.9 51.8 / 51.2 / 71.2 / 99.8

R-PGD 51.6 / 52.4 / 72.5 / 99.8 51.3 / 50.4 / 72.3 / 99.6 50.3 / 50.5 / 72.2 / 99.7 51.5 / 54.1 / 72.3 / 99.8
BIM 57.1 / 63.7 / 82.6 / 99.8 57.1 / 57.2 / 84.3 / 99.5 53.8 / 54.4 / 90.4 / 100.0 57.1 / 65.4 / 84.2 / 100.0

ImageNet- CW-L2 57.3 / 64.3 / 81.9 / 100.0 57.7 / 64.8 / 84.2 / 100.0 53.8 / 56.6 / 90.2 / 100.0 57.5 / 67.6 / 84.3 / 100.0
VGG-16 DeepFool 58.7 / 45.5 / 80.2 / 99.7 59.4 / 46.1 / 79.1 / 99.3 56.2 / 45.9 / 89.5 / 100.0 59.0 / 44.0 / 80.9 / 99.7

R-PGD 58.6 / 62.3 / 81.1 / 100.0 58.9 / 60.8 / 83.7 / 100.0 55.3 / 54.4 / 90.8 / 100.0 58.6 / 66.9 / 84.2 / 100.0

Table 3: Detection results evaluated by accuracy (%) in the attack-transfer case.
database Test attack→ BIM CW-L2 DeepFool R-PGD

Train attack ↓ KD+BU (Feinman et al. (2017)) / M-D (Lee et al. (2018)) / LID (Ma et al. (2018)) / MBF

CIFAR-10

BIM 74.2 / 66.7 / 72.6 / 98.8 73.0 / 66.7 / 66.9 / 97.4 71.7 / 66.7 / 70.2 / 87.3 73.8 / 66.7 / 61.3 / 96.8
CW-L2 74.2 / 66.7 / 80.3 / 98.1 73.0 / 66.7 / 78.5 / 98.3 71.7 / 66.7 / 77.9 / 89.5 73.8 / 66.7 / 73.6 / 98.2

DeepFool 74.0 / 66.7 / 80.4 / 95.2 72.8 / 66.7 / 77.4 / 95.2 71.7 / 66.7 / 78.0 / 91.8 73.4 / 66.7 / 74.8 / 95.4
R-PGD 73.1 / 66.7 / 77.7 / 98.6 71.9 / 66.7 / 75.1 / 98.5 71.0 / 66.7 / 75.4 / 89.7 72.6 / 66.7 / 70.2 / 98.5

SVHN

BIM 78.6 / 66.7 / 83.3 / 98.7 80.5 / 66.7 / 79.4 / 98.9 77.7 / 66.7 / 83.5 / 95.8 78.6 / 66.7 / 82.9 / 98.2
CW-L2 78.2 / 66.7 / 83.5 / 98.0 80.0 / 66.7 / 80.8 / 99.2 77.1 / 66.7 / 84.0 / 95.9 78.1 / 66.7 / 80.7 / 97.3

DeepFool 79.8 / 66.7 / 83.9 / 98.0 81.8 / 66.7 / 79.9 / 98.4 79.3 / 66.7 / 84.0 / 97.3 79.9 / 66.7 / 80.7 / 98.0
R-PGD 78.6 / 66.7 / 83.6 / 98.6 80.5 / 66.7 / 79.9 / 98.9 77.7 / 66.7 / 83.8 / 96.5 78.6 / 66.7 / 81.5 / 98.8

BIM 34.4 / 66.7 / 68.7 / 98.6 34.4 / 66.6 / 68.6 / 97.3 34.1 / 66.7 / 66.7 / 98.5 34.3 / 66.7 / 65.0 / 98.4
ImageNet- CW-L2 36.5 / 66.2 / 64.6 / 98.0 36.8 / 66.6 / 60.6 / 97.8 35.0 / 66.1 / 60.7 / 98.1 36.4 / 66.1 / 62.6 / 98.0
AlexNet DeepFool 36.0 / 66.7 / 69.4 / 98.8 36.0 / 66.8 / 65.8 / 97.9 34.9 / 66.8 / 65.8 / 98.8 35.9 / 66.6 / 68.3 / 98.6

R-PGD 35.4 / 66.7 / 67.5 / 98.5 35.2 / 66.7 / 67.7 / 97.6 34.1 / 66.7 / 67.0 / 98.3 35.3 / 66.7 / 68.3 / 98.4
BIM 42.8 / 67.1 / 77.8 / 98.6 42.8 / 66.8 / 74.5 / 97.3 38.4 / 66.0 / 82.7 / 98.5 42.7 / 67.9 / 76.9 / 98.4

ImageNet- CW-L2 43.1 / 64.8 / 75.2 / 98.0 43.6 / 65.6 / 76.7 / 97.8 38.4 / 62.5 / 82.5 / 98.1 43.3 / 67.2 / 73.9 / 98.0
VGG-16 DeepFool 45.4 / 66.7 / 76.2 / 98.8 46.1 / 66.7 / 72.9 / 97.9 41.8 / 66.7 / 83.3 / 98.8 45.8 / 66.7 / 74.4 / 98.6

R-PGD 44.8 / 66.3 / 76.3 / 98.5 45.4 / 66.6 / 74.1 / 97.6 40.6 / 64.9 / 82.4 / 98.3 45.8 / 67.4 / 76.4 / 98.4

It is unfair to utilize the information of benign or adversarial for neighboring testing images. In our
experiments, we use benign training images as neighborhoods for each testing image.

Three comparison cases and evaluation metrics We conduct experiments of three cases, includ-
ing: 1) non-transfer, both training and testing adversarial examples are crafted by the same attack
method; 2) attack-transfer, both training and testing adversarial examples are crafted by different
attack methods; 3) data-transfer, both training and testing adversarial examples are crafted by the
same attack method, but the data sources of training and testing benign examples are different. Two
widely used metrics are used to evaluate the detection performance, including area under the re-
ceiver operating characteristics (AUROC), and detection accuracy, which is the diagonal summation
of the confusion matrix, using 0.5 as the threshold of the posterior probability. Higher values of both
metrics indicate better performance.

4.3 RESULTS

Detection results in the non-transfer case are shown in Table 1. The proposed MBF method shows
the best performance in all cases, and is much superior to all compared methods. LID performs
the second-best in most case. KD+BU gives somewhat good detection performance on CIFAR-10
and SVHN, but performs very poor on ImageNet. It tells that KD+BU is very sensitive to different
databases and networks. M-D gives almost the degenerate results. Note that the results of M-D on
CIFAR-10 and SVHN reported in (Lee et al. (2018)) are very high, but their networks (i.e., ResNet
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Table 4: Detection results evaluated by AUROC score (%) in the data-transfer case. All detectors are
trained on the train set, and tested on the out-of-sample set (including 365 images) of the ImageNet
database. The best results are highlighted in bold.

ImageNet-AlexNet ImageNet-VGG-16
Detector BIM CW-L2 DeepFool R-PGD BIM CW-L2 DeepFool R-PGD
KD+BU 66.3 69.4 64.7 68.8 84.0 85.0 79.9 85.2

M-D 48.7 49.2 50.0 51.0 54.5 50.0 50.4 56.1
LID 69.1 67.6 72.9 71.4 84.2 88.4 89.2 83.7
MBF 99.1 99.0 99.6 99.4 99.3 99.5 99.3 99.5

Table 5: Attack Failure Rates (%) of adaptive attacks with different detectors. See context for details.
Original CW-L2 LID MBF

CIFAR-10 0.0 88.4 100.0
SVHN 0.0 85.6 92.9

(He et al. (2016)) and DenseNet (Huang et al. (2017)) are different from that used in our experiments.
It implies that M-D may be suitable for very deep neural networks, but not for shallower networks.

Detection results in the attack-transfer case evaluated by AUROC and accuracy are presented in
Tables 2 and 3, respectively. MBF still shows much better performance in all transfer cases than all
compared methods, and the changes among detecting different attacks are very small. It verifies the
robustness of MBF to different attacks.

We also conduct a data-transfer experiment on ImageNet. Specifically, we collect extra 365 images
of 8 classes (same with the classes used for the detection training, see Section 4.2) through searching
the class names in Baidu and Facebook. These 365 benign and their noisy images can be correctly
predicted by both the fine-tuned AlexNet and VGG models. The results on these images are shown
in Table 4. MBF still shows the best performance. And, compared to the corresponding results in
Table 1, the AUROC/accuracy scores of MBF on detecting different attacks change very gently. It
verifies the robustness of MBF to different data sources.

4.4 ADAPTIVE ATTACK AGAINST ADVERSARIAL DETECTION

Similar to Carlini & Wagner (2017b) and Ma et al. (2018), we also present an adaptive white-box
attack, of which the goal is not only to fool the classifier, but also to evade the adversarial detector.
It measures how easy to bypass the detector. Specifically, by combining the CW-L2 attack (Carlini
& Wagner (2017a)) and the proposed MBF detector, the adaptive attack is formulated as follows:

arg min
xadv∈[0,1]

‖x− xadv‖22 + α ·
[
− l(fθ(xadv), y) + ‖D(fθ(xadv))−D(fθ(x))‖1

]
, (9)

where x denotes the clean input, y indicates the ground-truth label. l(xadv, y) is the Hinge loss.
D(fθ(xadv)) represents the extracted features by the the detectorD (specified later), from fθ(xadv).
The minimization of the `1 term ‖D(fθ(xadv))−D(fθ(x))‖1 encourages the detection features of
adversarial and benign examples to be close, such that the detector could be evaded.

We conduct the above adaptive attack on both CIFAR-10 and SVHN. Specifically, 1000 clean ex-
amples are randomly selected from the test set of each database. For each generated adversarial
example, if it fails to fool the classifier fθ, we record 1. The attack failure rate over all 1000 adver-
sarial examples is computed as the metric. The higher rate indicates that it is more difficult to evade
the detector. Since LID performs much better than KD+BU and M-D in above experiments, here we
only compare LID and the proposed MBF detector. For clarity, the detection features are only ex-
tracted from the soft-max layer for both LID and MBF. The original CW-L2 attack (i.e., without the
`1 term) is also presented as the baseline. With the same setting in (Ma et al. (2018)), the trade-off
parameter α is determined by binary search within the range

[
10−3, 106

]
. The results are shown in

Table 5. The attack failure rates of MBF on both databases are much higher than those of LID. It
tells that it is more difficult to evade MBF than LID.

4.5 HYPOTHESIS TEST VIA KOLMOGOROV-SMIRNOV TEST

Kolmogorov-Smirnov test (KS test) (Massey Jr (1951)) is a non-parametric test method in statis-
tics, to test whether a sample follows a reference probability distribution (one-sample KS test), or
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Table 6: The p-value of KS hypothesis test among clean samples, noisy samples, and adversarial
samples crafted by four methods, respectively, on ImageNet-AlexNet.

ImageNet-VGG-16 clean noisy BIM CW-L2 DeepFool R-PGD
train set 0.114 0.114 0.236 0.228 0.240 0.235
test set 0.114 0.114 0.231 0.228 0.239 0.232

Table 7: The p-value of two-sample KS test among MBF coefficients of different types of examples.
ImageNet-VGG-16 (clean, noisy) (clean, BIM) (BIM, DeepFool) (CW-L2, R-PGD)

train set 0.998 0.000 0.000 0.236
test set 1.000 0.000 0.000 0.225

Table 8: The p-value of KS hypothesis test among MBF coefficients of different data sources.
ImageNet-VGG-16 clean noisy BIM CW-L2 DeepFool R-PGD
(train set, test set) 0.839 0.858 0.368 0.842 0.246 0.221

(train set, out-of-sample set) 0.049 0.054 0.094 0.407 0.737 0.088

whether two samples follow the same distribution (two-sample KS test). Specifically, in one-sample
KS test, the distance between the empirical distribution function of one sample and the cumulative
distribution function of the reference probability distribution is measured. Then, the p-value corre-
sponding to the obtained distance is computed. If the p-value is larger than the significance level α
(here we set α = 0.05), then the null hypothesis that the sample follows the reference distribution
is accepted; otherwise, rejected. Similarly, in two-sample KS test, the distance between the empir-
ical distribution functions of two samples is computed. If the corresponding p-value is larger than
α, then it accepts that two samples follow the same distribution. The KS test conducted below is
implemented by the python function scipy.stats.ks 2samp7.

Hypothesis test 1. Here we verify that whether the posterior vectors of both adversarial and benign
examples follow GGD. We denote the posterior vector of one adversarial example as padv, and that
of one benign example as pben. The distribution of GGD is denoted as PGGD. Then, we conduct two
one-sample KS tests, including:

• H1.1 The test of adversarial examples: H0: padv ∼ PGGD-adv; H1: padv 6∼ PGGD-adv.
• H1.2 The test of benign examples: H0: pben ∼ PGGD-ben; H1: pben 6∼ PGGD-ben.

In H1.1, the reference distribution PGGD-adv is firstly estimated from padv, using the estimated
method proposed in (Lasmar et al. (2009)). To alleviate the uncertainty of the estimation, we draw
500 samples from the estimated PGGD-adv. Then, we conduct the two-sample KS test between padv
and these 500 samples respectively. The average p-value over 1000 tests is recorded. The mean of
the average p-values over the whole database is reported. H1.2 is conducted similarly. The results
tested on ImageNet-AlexNet are shown in Table 6. Due to the space limit, results on other databases
and models will be presented in the supplementary material. In all cases, the p-values are larger
than the significance level 0.05. Hence, we can conclude that the posterior vectors of both adver-
sarial and benign examples follow GGD. However, note that the parameters of their corresponding
GGD are different, which will be verified in the following test.

Hypothesis test 2. Here we verify that whether the extracted MBF features of adversarial and
benign examples follow the same empirical distribution. We denote the MBF feature vector of one
adversarial example as madv, and the corresponding empirical distribution is denoted as P̂adv-MBF.
Similarly, we define mben and P̂ben-MBF for benign examples. Then, we conduct the following four
two-sample KS tests:

• H2.1 The test between adversarial and benign examples: H0: P̂adv-MBF = P̂ben-MBF; H1:
P̂adv-MBF 6= P̂ben-MBF.
• H2.2 The test between adversarial examples crafted from different attack methods: H0:
P̂attack-1

adv-MBF = P̂attack-2
adv-MBF; H1: P̂attack-1

adv-MBF 6= P̂attack-2
adv-MBF.

• H2.3 The test between adversarial examples from different data sources (i.e., train, test and
out-of-sample set): H0: P̂ source-1

adv-MBF = P̂ source-2
adv-MBF; H1: P̂ source-1

adv-MBF 6= P̂ source-2
adv-MBF.

7https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks 2samp.html

9



Under review as a conference paper at ICLR 2020

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(a) clean

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(b) noisy

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(c) BIM

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(d) CW-L2

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(e) DeepFool

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(f) R-PGD

Figure 1: Statistics (mean± standard deviation) of MBF coefficients on train (top row), test (median
row), and out-of-sample (bottom row) set of ImageNet-VGG-16.

• H2.4 The test between benign examples from different data sources (i.e., train, test and
out-of-sample set): H0: P̂ source-1

ben-MBF = P̂ source-2
ben-MBF; H1: P̂ source-1

ben-MBF 6= P̂ source-2
ben-MBF.

In above four two-sample KS tests, we test on the 16-dimensional MBF features extracted from the
soft-max layer. Since the implementation scipy.stats.ks 2samp cannot compare two vectors, we
compare the feature of each dimension separately, then report the average p-value over all dimen-
sions. Specifically, when comparing two sets of samples, we firstly concatenate the feature of each
dimension across all samples in the same set, leading to 16 long vectors for each set. Then, each pair
of two long vectors corresponding to the same dimension from two sets is compared by KS test. The
average p-value over all 16 dimensions is reported. The p-values of H2.1 are shown in Table 7 (see
the column “(clean, BIM)”). The p-values on both train and test set are 0. Thus, the hypothesis H0

is rejected, i.e., the MBF features of adversarial and benign examples follow different distributions.
The p-values of H2.2 are shown in Table 7. We pick two groups of attack methods, i.e., (BIM,
DeepFool) and (CW-L2, R-PGD). The p-values of (BIM, DeepFool) are 0, while the p-values of
(CW-L2, R-PGD) are larger than 0.05. It demonstrates that the distributions of adversarial examples
crafted from different attack methods are possible to be different. The p-values of H2.3 are shown
in Table 8. The p-values of all types of adversarial examples exceed 0.05. Thus, the MBF features
of adversarial examples from different data sources follow the same distribution. The p-values of
H2.4 are shown in Table 8. Only the p-value of “(train set, out-of-sample set)” of clean examples is
slightly lower than 0.05, while the values of other cases exceed 0.05. Thus, in most cases, the MBF
features of benign examples from different data sources follow the same distribution.

From above analysis, we obtain the following conclusions: 1) The extracted MBF features of adver-
sarial and benign examples follow different empirical distributions. It explains why MBF features
are effective for detecting adversarial and benign examples; 2) The extracted MBF features of ad-
versarial/benign examples from the train, test and out-of-sample sets follow the same empirical
distribution. Although the extracted MBF features of adversarial examples crafted from different
attack methods may not follow the same empirical distribution, the significant difference between
benign and different adversarial distributions can still lead to the good detection performance in the
attack-transfer case. It explains why MBF features are robust across different attack methods and
different data sources. Moreover, we visualize the statistics of each dimension of MBF features, i.e.,
mean and standard deviation, as shown in Fig. 1. These visualizations also support above conclu-
sions. Due to space limit, more KS tests and visualizations on different databases and networks will
be presented in the supplementary material.

5 CONCLUSION

This work has proposed a novel adversarial detection method, dubbed MBF. The assumption behind
is that the internal responses of the classification network of both adversarial and benign examples
follow the generalized Gaussian distribution (GGD), but with different shape factors. The magni-
tude of Benford-Fourier coefficient is a function w.r.t. the shape factor, and can be easily estimated
based on responses. Thus, it can serve as the discriminative features between adversarial and be-
nign examples. The extensive experiments conducted on several databases, as well as the empirical
analysis via KS test, demonstrate the superior effectiveness and robustness to different attacks and
different data sources of the proposed MBF method, over state-of-the-art detection methods.

10



Under review as a conference paper at ICLR 2020

REFERENCES

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy, pp. 39–57. IEEE, 2017a.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Nathaniel R Goodman. Statistical analysis based on a certain multivariate complex gaussian distri-
bution (an introduction). The Annals of mathematical statistics, 34(1):152–177, 1963.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On
the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images. arXiv preprint
arXiv:1608.00530, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online:
http://www.cs.toronto.edu/kriz/cifar.html, 55, 2014.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Nour-Eddine Lasmar, Youssef Stitou, and Yannick Berthoumieu. Multiscale skewed heavy tailed
model for texture analysis. In 2009 16th IEEE International Conference on Image Processing
(ICIP), pp. 2281–2284. IEEE, 2009.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Process-
ing Systems, pp. 7167–7177, 2018.

Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5764–
5772, 2017.

Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. In Proceedings of the IEEE International Conference on Computer Vision, pp.
446–454, 2017.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality. In International Conference on Learning Representations, 2018.

11



Under review as a conference paper at ICLR 2020

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. In International Conference on Learning Representations, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial exam-
ples. In Advances in Neural Information Processing Systems, pp. 4579–4589, 2018.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy, pp. 372–387. IEEE, 2016.

A. Papoulis and S.U. Pillai. Probability, Random Variables, and Stochastic Processes. McGraw-
Hill Series in Electrical and Computer Engineering. McGraw-Hill, 2001. ISBN 9780072817256.
URL https://books.google.com.hk/books?id=Mal4OgAACAAJ.
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Fernando Pérez-González, Greg L Heileman, and Chaouki T Abdallah. Benford’s lawin image
processing. In 2007 IEEE International Conference on Image Processing, volume 1, pp. I–405.
IEEE, 2007.

Murray Rosenblatt. A central limit theorem and a strong mixing condition. Proceedings of the
National Academy of Sciences of the United States of America, 42(1):43, 1956.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Mahesh K Varanasi and Behnaam Aazhang. Parametric generalized gaussian density estimation.
The Journal of the Acoustical Society of America, 86(4):1404–1415, 1989.

Zhihao Zheng and Pengyu Hong. Robust detection of adversarial attacks by modeling the intrinsic
properties of deep neural networks. In Advances in Neural Information Processing Systems, pp.
7913–7922, 2018.

12

https://books.google.com.hk/books?id=Mal4OgAACAAJ


Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof 1 Assume that all the variables {Tm}m=1,...,M are independent and identically distributed.
Applying the central limit theorem Rosenblatt (1956) to the real and imaginary parts of Y , we can
obtain that both parts asymptotically follow the Gaussian distribution

Y =
1

M

M∑
m=1

Tm ∼ N
(
E(T1),

1

M
D(T1)

)
, (10)

where

E(T1) = E
(
e−j2πn log10|X1|

)
=

∫ +∞

−∞
PX1

(x) · e−j2πn log10|x|dx = an, (11)

D(T1) = E
(
|T1|2

)
− |E (T1)|2 = E

( ∣∣∣e−j2πn log10|X1|
∣∣∣2 )− |an|2 = 1− |an|2. (12)

The PDF of Y can be rewritten as follows:

Y ∼ N (an,
1− |an|2

M
). (13)

Thus, we obtain

E ∼ N (0,
1− |an|2

M
). (14)

Besides, the pseudo variance Goodman (1963) of T1 is

JT1,T1 = E(T 2
1 )− E(T1)2 = E

(
e−j2πn log10|X 2

1 |)− a2
n = a2n − a2

n. (15)
Correspondingly,

JE,E =
1

M
JT1,T1 =

a2n − a2
n

M
. (16)

Since (a2n−a2
n) is bounded, we have limM→∞ JE,E = 0. Thus, we obtain that the random variable

E follows circularly-symmetric complex Gaussian distribution, because the sufficient and necessary
condition is that mean value and pseudo variance equal zero Goodman (1963). It implies that both
the real and imaginary part of E follow the same Gaussian distribution and they are independent.
Thus, the magnitude of this complex random variable follows the Rayleigh distribution Papoulis &
Pillai (2001), and the probability density function of |E| can be formulated as

P|E| (r) =
r

s2
e−r

2/2s2 , (17)

where s is the scale parameter. Knowing the properties of the Rayleigh distributionPapoulis & Pillai
(2001), we have:

s2 =
1

2
D(E) =

1− |an|2

2M
. (18)

Utilizing the fact that |an|2 is close to 0 when n is a modest number, we obtain that D (E) ≈ 1
M ,

leading to s2 = 1
2M . Then, we obtain

E
(
|E|
)

=
1

2

√
π

M
,D
(
|E|
)

=
4− π
4M

. (19)

It is easy to observe that both E
(
|E|
)

and D
(
|E|
)

are close to zero when the number of samples M
increases. It implies that the estimation error εn gets closer to 0 as M increases.

A.2 ADDITIONAL EMPIRICAL ANALYSIS

Here we present additional empirical analysis on more databases and networks, as shown in Tables 9,
10 and 11. The p-values in most cases also supports the conclusions obtained in the main manuscript.
We also present more visualizations in Figs. 2, 3 and 4. These visualizations also demonstrate the
distinct difference of MBF features between adversarial and benign examples.
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Table 9: The p-value of KS hypothesis test among clean samples, noisy samples, and adversarial
samples crafted by four methods, respectively.

clean noisy BIM CW-L2 DeepFool R-PGD

CIFAR-10 train set 0.074 0.074 0.158 0.139 0.155 0.159
test set 0.072 0.072 0.158 0.138 0.216 0.216

SVHN train set 0.104 0.104 0.249 0.194 0.222 0.245
test set 0.106 0.106 0.249 0.193 0.219 0.239

ImageNet-AlexNet train set 0.116 0.116 0.253 0.235 0.242 0.253
test set 0.117 0.117 0.261 0.236 0.243 0.259

ImageNet-VGG-16 train set 0.114 0.114 0.236 0.228 0.240 0.235
test set 0.114 0.114 0.231 0.228 0.239 0.232

Table 10: The p-value of two-sample KS test among MBF coefficients of different types of examples.
(clean, noisy) (clean, BIM) (BIM, DeepFool) (CW-L2, R-PGD)

CIFAR-10 train set 0.640 0.000 0.000 0.003
test set 0.764 0.000 0.030 0.000

SVHN train set 0.559 0.000 0.030 0.000
test set 0.685 0.000 0.000 0.000

ImageNet-AlexNet train set 1.000 0.000 0.002 0.134
test set 0.993 0.000 0.477 0.000

ImageNet-VGG-16 train set 0.998 0.000 0.000 0.236
test set 1.000 0.000 0.000 0.225

Table 11: The p-value of KS test among MBF coefficients from different data sources.
clean noisy BIM CW-L2 DeepFool R-PGD

CIFAR-10 (train set, test set) 0.120 0.188 0.333 0.456 0.584 0.223
SVHN (train set, test set) 0.494 0.708 0.523 0.147 0.491 0.645

ImageNet- (train set, test set) 0.153 0.148 0.370 0.605 0.410 0.386
AlexNet (train set, out-of-sample) 0.000 0.000 0.169 0.101 0.206 0.158

ImageNet- (train set, test set) 0.839 0.858 0.368 0.842 0.246 0.221
VGG-16 (train set, out-of-sample) 0.049 0.054 0.094 0.407 0.737 0.088
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Figure 2: Statistics (mean ± standard deviation) of MBF coefficients on train (top row) and test
(bottom row) set of CIFAR-10.
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Figure 3: Statistics (mean ± standard deviation) of MBF coefficients on train (top row) and test
(bottom row) set of SVHN.
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Figure 4: Statistics (mean ± standard deviation) of MBF coefficients on train (top row) and test
(median row), and out-of-sample (bottom row) set of ImageNet-AlexNet.
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