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ABSTRACT

Individuals with type 1 diabetes (T1D) lack the ability to produce the insulin their
bodies need. As a result, they must continually make decisions about how much
insulin to self-administer in order to adequately control their blood glucose lev-
els. Longitudinal data streams captured from wearables, like continuous glucose
monitors, can help these individuals manage their health, but currently the majority
of the decision burden remains on the user. To relieve this burden, researchers
are working on closed-loop solutions that combine a continuous glucose monitor
and an insulin pump with a control algorithm in an ‘artificial pancreas.’ Such
systems aim to estimate and deliver the appropriate amount of insulin. Here, we de-
velop reinforcement learning (RL) techniques for automated blood glucose control.
Through a series of experiments, we compare the performance of different deep RL
approaches to non-RL approaches. We highlight the flexibility of RL approaches,
demonstrating how they can adapt to new individuals with little additional data.
On over 21k hours of simulated data across 30 patients, RL approaches outperform
baseline control algorithms (increasing time spent in normal glucose range from
71% to 75%) without requiring meal announcements. Moreover, these approaches
are adept at leveraging latent behavioral patterns (increasing time in range from
58% to 70%). This work demonstrates the potential of deep RL for controlling
complex physiological systems with minimal expert knowledge.

1 INTRODUCTION

Type 1 diabetes (T1D) is a chronic disease affecting 20-40 million people worldwide (You &
Henneberg, 2016), and its incidence is increasing (Tuomilehto, 2013). People with T1D cannot
produce insulin, a hormone that signals cells to uptake glucose in the bloodstream. Without insulin,
the body must metabolize energy in other ways that, when relied on repeatedly, can lead to life-
threatening conditions (Kerl, 2001). Tight glucose control improves both short- and long-term
outcomes for people with diabetes, but can be difficult to achieve in practice (Diabetes Control and
Complications Trial Research Group, 1995). Typically, blood glucose is controlled by a combination
of basal insulin (to control baseline blood glucose levels) and bolus insulin (to control glucose spikes
after meals). To control blood glucose levels, individuals with T1D must continually make decisions
about how much basal and bolus insulin to self-administer. This requires careful measurement of
glucose levels and carbohydrate intake, resulting in at least 15-17 data points a day. If the individual
uses a continuous glucose monitor (CGM), this can increase to over 300 data points, or a blood
glucose reading every 5 minutes (Coffen & Dahlquist, 2009).

Combined with an insulin pump, a wearable device that automates the delivery of insulin, CGMs
present an opportunity for closed-loop control. Such a system, known as an ‘artificial pancreas’ (AP),
automatically anticipates the amount of required insulin and delivers the appropriate dose. This
would be life-changing for individuals with T1D. For many years, researchers have worked towards
the creation of an AP for blood glucose control (Kadish, 1964; Bequette, 2005; Bothe et al., 2013).
Though the technology behind CGMs and insulin pumps has advanced, there remains significant
room for improvement when it comes to the control algorithms (Bothe et al., 2013; Pinsker et al.,
2016). Current approaches often fail to maintain sufficiently tight glucose control and require meal
announcements.
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In this work, we investigate the utility of a deep reinforcement learning (RL) based approach for
blood glucose control (Bothe et al., 2013). Deep RL is particularly well-suited for this task because
it: i) makes minimal assumptions about the structure of the underlying process, allowing the same
system to adapt to different individuals or to changes in individuals over time, ii) can learn to leverage
latent patterns such as regular meal times, and iii) scales well in the presence of large amounts of
training data. Finally, it can take advantage of existing FDA-approved simulators for model training.
Despite these potential benefits, we are not aware of any previously published work that has rigorously
explored the feasibility of deep RL for blood glucose control. Thus, we present the first large scale
evaluation of such an approach, demonstrating that, despite a number of technical challenges, deep
RL can be used to learn good AP algorithms.

2 BACKGROUND AND RELATED WORKS

In recent years, researchers have started to explore RL in healthcare. Examples include matching
patients to treatment in the management of sepsis (Weng et al., 2017; Komorowski et al., 2018) and
mechanical ventilation (Prasad et al., 2017). In addition, RL has been explored to provide contextual
suggestions for behavioral modifications (Klasnja et al., 2019). Despite its success in other problem
settings, RL has yet to be fully explored as a solution for a closed-loop AP system (Bothe et al.,
2013). RL is a promising solution to this problem, as it is well-suited to learning complex behavior
that readily adapts to changing domains (Clavera et al., 2018). Moreover, unlike many other disease
settings, there exist credible simulators for the glucoregulatory system (Visentin et al., 2014). The
presence of a credible simulator alleviates many common concerns of RL applied to problems in
health (Gottesman et al., 2019).

2.1 CURRENT AP ALGORITHMS AND RL FOR BLOOD GLUCOSE CONTROL

Among recent commercial AP products, proportional-integral-derivative (PID) control is one of the
most common backbones (Trevitt et al., 2015). The simplicity of PID controllers make them easy to
use, and in practice they achieve strong results. For example, the Medtronic Hybrid Closed-Loop
system, one of the few commercially available, is built on a PID controller (Garg et al., 2017; Ruiz
et al., 2012). In this setting, a hybrid closed-loop controller automatically adjusts basal insulin
rates, but still requires human-directed insulin boluses to adjust for meals. The main weakness of
PID controllers, in the setting of blood glucose control, is their reactivity. As they only respond
to current glucose values (including a derivative), often they cannot respond fast enough to meals
to satisfactorily control postprandial excursions without meal announcements (Garg et al., 2017).
And, without additional safety modifications can overcorrect for these spikes, triggering postprandial
hypoglycemia (Ruiz et al., 2012). In contrast, we hypothesize that an RL approach will be able to
leverage patterns associated with meal times, resulting in better policies that do not require meal
announcements. Moreover, such approaches can take advantage of existing simulators for training
and evaluation (described in more detail later).

Weng et al. (2017) use RL to learn policies that set blood glucose targets for septic patients, but do
not learn policies to achieve these targets. Most similar to our own work, De Paula et al. (2015)
develop a kernelized Q-learning framework for closed loop glucose control (De Paula et al., 2015).
They make use of Bayesian active learning for on-the-fly personalization. This work tackles a similar
problem to our own, but uses a simple two-compartment model for the glucoregulatory system and a
fully deterministic meal routine. In our simulation environment, we found that such a Q-learning did
not lead to satisfactory closed-loop performance and instead we examine deep actor-critic algorithms
for continuous control.

2.2 GLUCOSE MODELS AND SIMULATION

Models of the glucoregulatory system have long been important to the development and testing of an
AP (Cobelli et al., 1982). Current models are based on a combination of rigorous experimentation
and expert knowledge of the underlying physiological phenomena. Typical models consist of a
multi-compartment model, with various sources and sinks corresponding to physiological phenomena,
involving often dozens of patient-specific parameters. One such simulator, the one we use in our
experiments, is the UVA/Padova model (Kovatchev et al., 2009). Briefly, this simulator models the
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glucoregulatory system as a nonlinear multi-compartment system, where glucose is generated through
the liver and absorbed through the gut and controlled by externally administered insulin. A more
detailed explanation can be found in (Kovatchev et al., 2009). We use an open-source version of the
UVA/Padova simulator that comes with 30 virtual patients, each of which consists of several dozen
parameters fully specifying the glucoregulatory system (Xie, 2018). The patients are divided into
three classes: children, adolescents, and adults, each with 10 patients.

3 METHODS

The use of deep RL for blood glucose control presents several challenges. Through extensive
experimentation, we found that the choice of state representation, action space, and reward function
have significant impact on training and validation performance. Additionally, the high sample
complexity of standard RL approaches for continuous control tasks can make the application of these
methods in real-world settings infeasible. We address these challenges in turn, developing a learning
pipeline that achieves strong performance across 30 different patients with the same architecture and
hyperparameters without requiring meal announcements. Finally, we demonstrate how such policies
can be transferred across patients in a data-efficient manner.

We begin by formalizing the problem. We then describe deep RL approaches that vary in terms of
architecture and state representation, and present several baselines: an analogue to human-control in
the form of a basal-bolus controller and variants on a PID controller.

3.1 PROBLEM SETUP

We frame the problem of blood glucose control as a Markov decision process (MDP) consisting of
the 4-tuple (S,A, P,R). Our precise formulation of this problem varies depending on the method
and setting. Here, we describe the standard formulation, and explain further differences as they arise.
States st ∈ S consist of the previous 4 hours of blood glucose and insulin data at the resolution of
5-minute intervals: st = [bt, it] where:

bt = [bt−47, bt−46, . . . bt], i
t = [it−47, it−46, . . . it]

and bt ∈ N40:400, it ∈ R≥0, t ∈ N1:288 and represents a time index for a day at 5-minute resolution.
We explored both longer (24 hours) and shorter (1-2 hours) length history as input, but after tuning
on the validation data found that 4 hours struck a good balance between time to convergence and
strong performance. We use an update resolution of 5 minutes to mimic the sampling frequency of
many common continuous glucose monitors.

Actions at ∈ R≥0 are real positive numbers, denoting the size of the insulin bolus in medication
units. We experimented with discritized action spaces (as is required by Q-learning approaches), but
found such an approach lacked robustness across different discretization schemes. The transition
function P consists of two elements: i) G : (at, ct)→ (bt+1, it+1), where ct ∈ R≥0 is the amount of
carbohydrates input at time t and G is a model of the glucoregulatory system, its behavior is defined
in accordance with the UVA/Padova simulator (Kovatchev et al., 2009), ii) M : t→ ct is the meal
schedule, and is defined in Appendix A.1.

The reward function R is defined as negative risk −risk(bt) where risk is the asymmetric blood
glucose risk function defined as:

risk(b) = 10 ∗ (1.509 ∗ log(b)1.084 − 5.381)

shown in Figure 1, and is an established tool for computing glucose risk (Clarke & Kovatchev, 2009).
We investigated using other reward functions, such as time in range or distance from a target blood
glucose value, but found that optimizing for this reward function consistently led to better control.

3.2 SOFT ACTOR CRITIC

Our RL controller is trained using the Soft Actor Critic algorithm (Haarnoja et al., 2018). This
algorithm is a natural choice for an AP algorithm, as it has been shown to be a reasonably sample
efficient and well-performing algorithm when learning continuous control policies. This approach,
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Figure 1: The risk function proposed in (Clarke & Kovatchev, 2009). The mapping between blood
glucose values (in mg/dL, x-axis) and Risk values (y-axis). The hypo- and hyperglycemic thresholds
are shown as shaded regions. The risk at the threshold of each region is approximately 7.75.

a member of the Actor-Critic family of algorithms, trains a stochastic policy network (or actor)
parameterized by φ via to maximize the Maximum Entropy RL objective function:

J(π) =

T∑
0

E(st,at)∼P (st−1,πφ(st−1))[R(st, at) + αH(πφ(·|st))],

where the entropy regularization term, H , added to the expected cumulative reward improves
exploration and robustness. This objective function is optimized by minimizing the KL divergence
between the action distribution and the distribution induced by state-action values:

Jπ(φ) = Est∼D

[
DKL

(
πφ (·|st) ‖

exp (Qθ (st, ·))
Zθ (st)

)]
where D is a replay buffer containing previously seen (st,at, rt, st+1) tuples, Zθ is a partition

function, and Qθ is the state-action value function parameterized by a neural network (also called a
critic) and trained by minimizing the temporal difference loss:

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)− Q̂ (st,at)

)2]
,

Q̂ (st,at) = r (st,at) + γEst+1∼p

[
Vψ (st+1)

]
.

Vψ is the soft value function parameterized by a third neural network, trained to minimize:

JV (ψ) = Est∼D

[
1

2

(
Vψ (st)− Eat∼πρ [Qθ (st,at)− log πφ (at|st)]

)2]
,

and Vψ is the running exponential average of the weights of Vψ over training (a continuous variant
of the hard target network replication in (Mnih et al., 2015)). Additional details of this approach,
including the gradient calculations, are given in (Haarnoja et al., 2018). Note that we replace the
MSE temporal difference loss with Huber loss, as we find this improves convergence.

3.2.1 RECURRENT ARCHITECTURE

Our proposed approach takes as input only the past 4 hours of CGM and insulin data, mimicking
real-world applications without human input (i.e., no meal announcements). To extract useful state
information from the noisy CGM and insulin history, we parameterize Qθ, Vψ, and πφ using GRU
networks (Cho et al., 2014), as these types of architectures have successfully been used to model to
blood glucose data in the past (Fox et al., 2018; Zhu et al., 2018). The GRU in πφ maps states to a
normal distribution N(µ, log(σ)), from which actions are sampled.

Given that one of the main disadvantages of RL approaches is their sample efficiency, we sought to
explore transfer learning techniques that could allow networks trained from scratch to be efficiently
transferred to new patients. We refer to our method trained from scratch as SAC-GRU, and the
transfer approach as SAC-GRU-Trans. For SAC-GRU-Trans, we initialize Qθ, Vψ, πφ for each class
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of patients (children, adolescents, and adults) using fully trained networks from one randomly selected
member of that source population (e.g., Child/Adolescent/Adult 1). We then fine-tune these networks
on data collected from the target patient. This provides a simple approach for training policies with
potentially far less data per-patient.

Our GRU networks are two layers and have a hidden state size of 128, followed by a fully-connected
output layer. Actions are squashed using a tanh function, and scaled by a parameter ωb = 43.2 ∗ bas
where bas is the suggested basal insulin rate (which varies per-person). This scaling ensures that the
maximum amount of insulin deliverable over a five minute interval is roughly equal to a normal meal
bolus (Kuroda et al., 2011).

3.2.2 ORACLE ARCHITECTURE

A deep RL approach to learning AP algorithms requires that: i) the representation learned by the
network contain sufficient information to control the system, and ii) an appropriate control algorithm
be learned through interaction with the glucoregulatory system. As we are working with a simulator,
we can explore the difficulty of task (ii) in isolation, by replacing the state st with the ground-truth
state of the simulator s∗t , a 13-dimensional vector with real-valued elements representing glucose,
carbohydrate, and insulin values in different compartments of the body. Though unavailable in real-
world settings, this representation decouples the problem of learning a policy from that of learning a
good state representation. Here, Qθ, Vψ, and πφ are fully-connected with two hidden layers, each
with 256 units. The network uses ReLU nonlinearities and BatchNorm (Ioffe & Szegedy, 2015).

3.3 BASELINES

We examine three baseline methods for control: basal-bolus (BB), PID control, and PID with meal
announcements. BB reflects typical human-in-the-loop control strategies, PID reflects a common
control strategy used in preliminary fully closed loop AP applications, PID with meal announcements
is based on current AP technology, and requires regular human intervention.

3.3.1 BASAL-BOLUS BASELINE

This baseline is designed to mimic human control and is typical of how an individual with T1D
currently controls their blood glucose. In this setting, we modify the standard state representation
st to include a carbohydrate signal and a cooldown signal (explained below), and to remove all
non-current measurements st = [bt, it, ct, cooldown]. Note that the inclusion of a carbohydrate
signal, or meal announcement, places the burden of providing accurate and timely estimates of
meals on the person with diabetes. Each virtual patient in the simulator comes with the parameters
necessary to calculate optimal basal insulin rate bas, a correction factor CF , and carbohydrate ratio
CR. These three parameters, together with a glucose target bg define a clinician-recommended policy
π(st) = bas + (ct > 0) ∗ ( ctCR + cooldown ∗ bt−bgCF ) where cooldown is 1 if there have been no
meals in the past three hours, otherwise it is 0. This ensures that each meal is only corrected for
once, otherwise meals close in time could lead to over-correction and hypoglycemia. These three
parameters can be estimated by endocrinologists using previous glucose and insulin information
(Walsh et al., 2011). The parameters for our virtual patient population are set according to Xie (2018).

3.3.2 PID BASELINE

Variants of PID controllers are already used in commercial AP applications (Garg et al., 2017). A
PID controller operates by setting the control variable, here at, to the weighted combination of three
terms at = kPP (bt)+kII(bt)+kDD(bt) such that the process variable bt (where t is again the time
index) remains close to a specified setpoint bg . The terms are calculated as follows: i) the proportional
term P (bt) = max(0, bt − bg) increases the control variable proportionally to the distance from
the setpoint, ii) the integral term I(bt) =

∑t
j=0(bj − bg) acts to correct long-term deviations from

the setpoint, and iii) the derivative term D(bt) = |bt − bt−1| acts to control a basic estimate of the
future, here approximated by the rate of change. The set point and the weights (also called gains)
kP , kD, kI are hyperparameters. To compare to the strongest PID controller possible, we tuned these
hyperparameters extensively using multiple iterations of grid-search with exponential refinement
per-patient. Our final parameters are presented in Appendix A.2
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Table 1: Average risk, and percent of time Eu/Hypo/Hyperglycemic over 10 days of simulation, 3 runs
each for 30 patients (± standard deviation). Hybrid and Non-closed loop approaches (requiring meal
announcements) are indicated with *. The approach with the best average score is underlined, the best
approach that does not require meal announcements is bolded. Among the approaches that do not
require meal announcements, SAC-GRU-Trans achieves the lowest risk and most time Euglycemic.

Risk Euglycemia (%) Hypoglycemia (%) Hyperglycemia (%)
BB* 21.37 ± 70.70 53.81 ± 12.41 3.15 ± 11.27 43.04 ± 11.39
PID 9.10 ± 6.14 71.03 ± 11.30 2.29± 3.52 26.67 ± 11.07
PID-MA* 6.15 ± 3.57 75.78 ± 14.48 7.32 ± 8.18 16.89 ± 10.47
SAC-Oracle* 3.21 ± 2.03 86.52 ± 9.40 1.42 ± 2.11 12.07 ± 8.32
SAC-GRU 16.77 ± 54.09 71.43 ± 17.17 9.66 ± 10.16 18.91 ± 14.17
SAC-GRU-Trans 6.14± 2.86 75.04± 11.12 6.80 ± 4.55 18.15± 9.14

PID with Meal Announcements. This baseline, which is designed to be similar to commercially
available hybrid closed loop systems (Garg et al., 2017; Ruiz et al., 2012), combines the BB with
the PID algorithm into a control algorithm which we call PID with meal announcements (PID-MA).
During meals, insulin boluses are calculated and applied as in the BB approach, but instead of
using a predetermined fixed basal insulin rate, the PID algorithm controls the basal rate, allowing
for adaptation between meals. We similarly tune the gain parameters for the PID algorithm using
sequential grid search with exponential refinement.

3.4 EXPERIMENTAL SETUP & EVALUATION

To measure the utility of deep RL for the task of blood glucose control, we learned policies using the
approaches described above, and tested these policies on simulated data with different random seeds
across 30 different individuals.

We trained our models (from scratch) for 300 epochs (batch size 256, epoch length 20 days) with an
experience replay buffer of size 1e6 and a discount factor of 0.99. We trained our RL models using
automatic entropy tuning and sampling actions for exploration (Haarnoja et al., 2018). We optimized
the Q, V and π losses using Adam with a learning rate of 10−3. All network hyperparameters were
optimized on training seeds on a subset of the virtual patients. Our networks were initialized using
PyTorch defaults. When fine-tuning models transferred across patients we then train for 50 epochs
with a learning rate of 10−4. All of our code will be made publicly available to allow for replication.
For the purpose of anonymous peer-review, we have made our code available on an anonymous
google drive account 1.

We measured the performance (average risk) of the policy networks on 10 days of validation data
after each epoch. After training, we selected the model that performed the best on these validation
runs for testing, also on 10 continuous days of data. We evaluated potential control algorithms using
average risk, time spent euglycemic, and time hypo/hyperglycemic. The random seeds controlling
noise and meals in the environment were different between training, validation, and test runs. We ran
the pipeline three times for each virtual patient.

4 EXPERIMENTS AND RESULTS

We investigate the performance of several different classes of policies under different settings. We
compare the performance of the BB controller, the PID with and without meal announcements, and
the SAC approaches with the Oracle and learned representation across the thirty virtual patients. In
follow-up experiments, we demonstrate the efficiency of transferring learned policies across patients
relative to training from scratch, and examine the ability of the RL approach to leverage latent
behavioral patterns.

Baseline Models vs. SAC. Results comparing the BB, PID, and PID-MA baselines to the SAC-
GRU-Trans network are given in Figure 2. Each point represents a different policy, resulting from a
different initialization. Despite the variation across individuals, a clear tread emerges: closed-loop
control algorithms that can deliver frequent small doses of insulin can significantly outperform a BB

1https://tinyurl.com/y6e2m68b

6

https://tinyurl.com/y6e2m68b


Under review as a conference paper at ICLR 2020

ch
ild

#0
01

ch
ild

#0
02

ch
ild

#0
03

ch
ild

#0
04

ch
ild

#0
05

ch
ild

#0
06

ch
ild

#0
07

ch
ild

#0
08

ch
ild

#0
09

ch
ild

#0
10

ad
lsc

nt
#0

01
ad

lsc
nt

#0
02

ad
lsc

nt
#0

03
ad

lsc
nt

#0
04

ad
lsc

nt
#0

05
ad

lsc
nt

#0
06

ad
lsc

nt
#0

07
ad

lsc
nt

#0
08

ad
lsc

nt
#0

09
ad

lsc
nt

#0
10

ad
ul

t#
00

1
ad

ul
t#

00
2

ad
ul

t#
00

3
ad

ul
t#

00
4

ad
ul

t#
00

5
ad

ul
t#

00
6

ad
ul

t#
00

7
ad

ul
t#

00
8

ad
ul

t#
00

9
ad

ul
t#

01
0

Person

0

10

20

30

40

Ri
sk

Method
BB
PID
PID-MA
SAC-GRU-Trans

Figure 2: The average risk over 10 days from different methods applied to different simulated patients.
Each point corresponds to a different random seed, that controls initialization, the meal schedule, and
randomness in training. On average, the SAC and PID-MA methods perform best.

controller. This suggests that, in addition to relieving decision burden, AP systems could lead to
overall better blood glucose control. The SAC-GRU-Trans achieved a significantly lower risk than
the pure PID (using an independent t-test, p < 10−4), and matched the performance of the PID-MA
algorithm without requiring meal announcements.

The average risk for many individuals is above the risk threshold for hyper/hypoglycemia of 7.75.
This is far from the optimal level of control. However, it is not the case that all time is spent
hypo/hyperglycemic. Across patients, approximately 60-80% of time is spent euglycemic, compared
with 52% ± 19.6% observed in real human control (AyanoTakahara et al., 2015). If insulin is not
given well in advance of meals, glucose can increase significantly for a brief period of time, leading to
elevated average/mean risk. This skews the distribution of risk towards hyperglycemia and therefore
increased risk.

We examine additional models and metrics in the results presented in Table 1. We observe that the
SAC-Oracle approach is the best across all metrics. This demonstrates an advantage of RL-based
control schemes, when given additional information it is simple to improve performance. Among
more realistic approaches, PID-MA and SAC-GRU-Trans are comparable in terms of performance.
Interestingly, SAC-GRU performs worse on average compared to SAC-GRU-Trans. This is due
to occasional catastrophic errors in the policy trained from scratch, where final performance is
dangerously poor (5 runs across 3 patients resulted glucose traces with a mean risk of more than 25).
The process of transferring and fine-tuning policies eliminates these all of these failures.

Efficient Policy Transfer. While SAC-GRU-Trans achieves stronger performance than SAC-GRU
with less patient-specific data, it still requires a large amount for any one individual in a non-simulation
setting. In Figure 3a, we show the average policy performance by epoch of target training. We
see that, in the median case, far less training is required to achieve good performance. For half the
individuals, we outperform the PID controller within 3 epochs of fine-tuning (or 60 days). However,
without a significant number of update epochs, the learned policies may still result in catastrophic
failures which lowers mean performance. With our current approach approximately 10 epochs of
updating are required to eliminate these catastrophic failures.

Ability to Adapt to Meals. We hypothesize that one of the potential advantages of RL is its ability
to exploit underlying behavioral patterns. To investigate this potential benefit, we explored changing
the meal schedule generation procedure outlined in Algorithm 1 for Adult 1. We removed the ‘snack’
meals (those with occurrence probabilities of 0.3) and set all meal occurrence probabilities to 1 and
meal amount standard deviations to 0 (i.e., each day Adult 1 consumes an identical set of meals). We
then evaluated both the PID model and the SAC-GRU model on 3 variations of this environment,
characterized by the standard deviation of the meal times (either 0.5, 1, or 2 hours). This tests
the ability of each method to take advantage of latent patterns in the environment. The results are
presented in Figure 3b. We observe that, while SAC-GRU achieves lower risk than PID under all
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Figure 3: a) The impact of fine-tuning SAC-GRU-Trans; performance reported across all patients.
While median performance rapidly surpasses the PID (within 3 epochs of fine-tuning), it takes 10
epochs for mean performance to surpass the PID due to catastrophic failures after initial transfer. b)
Average risk over 10 days for Adult 1 using different meal schedules. As meal times become more
predictable (lower standard deviation), SAC-GRU performs better.

settings, the difference becomes more pronounced as the standard deviation of meal times becomes
smaller (and thus meal timing becomes more predictable). This demonstrates that SAC-GRU is better
able to leverage latent meal patterns.

5 DISCUSSION AND CONCLUSION

In this work, we develop and explore deep RL algorithms to learn automated blood glucose control
policies. When given information about the ground truth state, a soft actor-critic (SAC-Oracle)
convincingly outperformed baseline approaches. Without access to the ground-truth state, or even
meal announcements, a recurrent SAC outperformed both the BB and PID baselines, matching the
performance of a PID with meal announcements. Moreover, this approach was able to significantly
improve performance in the presence of a predictable meal schedule.

The use of policy transfer was found to be important in stabilizing performance for the SAC-GRU.
Beyond the performance of the learned policies, across our experiments, we found that thousands of
days of simulation data were required when training our deep approaches from scratch. However, by
transferring policies across individuals and fine-tuning, we were able to learn with far less data (and
indeed, such transfer performs better on average than training from scratch).

While these results are encouraging, there are several limitations. First, our results are based on
simulation. While the simulator in question is a highly credible one, it may not adequately capture
variation across patients or changes in the glucoregulatory system over time. However, as an FDA-
approved substitute for animal trials (Kovatchev et al., 2009), success in this simulator is a nontrivial
accomplishment. Second, we define a reward function based on risk. Though optimizing this risk
function should lead to tight glucose control, it could lead to excess insulin utilization (as its use
is unpenalized). Future work could consider resource-aware variants of this reward. Finally, we
emphasize that blood glucose control is a safety-critical application. An incorrect dose of insulin
could lead to life-threatening situations. Importantly, the proposed approach, though promising, is
not ready for deployment. As shown by the worst-case performance of the SAC-GRU method in
Table 1, deep approaches can fail catastrophically. Going forward, there are several approaches that
could be investigated to guarantee acceptable worst-case performance. Using the notion of ‘shielding’
from (Alshiekh et al., 2018), hard limits on insulin informed by blood glucose levels could prevent
catastrophic hypoglycemia. Though this, in turn, could limit controller effectiveness in response
to rapidly increasing glucose levels. Additionally, approaches that incrementally modify existing
safe policies can limit worst-case performance and lead to safer control (Berkenkamp et al., 2017).
Despite these limitations, our results clearly demonstrate that deep RL is a promising approach for
learning truly closed-loop algorithms for blood glucose control.
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A APPENDIX

A.1 MEAL GENERATION ALGORITHM

Algorithm 1 Generate Meal Schedule

Input: body weight w, number of days n
MealOcc = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3]
TimeLowerBounds = [5, 9, 10, 14, 16, 20] ∗ 12
TimeUpperBounds = [9, 10, 14, 16, 20, 23] ∗ 12
TimeMean = [7, 9.5, 12, 15, 18, 21.5] ∗ 12
TimeStd = [1, .5, 1, .5, 1, .5] ∗ 12
AmountMean = [0.7, 0.15, 1.1, 0.15, 1.25, 0.15] ∗ w
AmountStd = AmountMean ∗ 0.15
Days = []
for i ∈ [1, . . . , n] do
M = [0]288j=1

for j ∈ [1, . . . , 6] do
m ∼ Binomial(MealOcc[j])
lb = TimeLowerBounds[j]
ub = TimeUpperBounds[j]
µt = TimeMean[j]
σt = TimeStd[j]
µa = AmountMean[j]
σa = AmountStd[j]
if m then
t ∼ Round(TruncNormal(µt, σt, lb, ub))
c ∼ Round(max(0, Normal(µa, σa)))
M [t] = c

end if
end for
Days.append(M)

end for
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A.2 PID AND PID-MA PARAMETERS

kp ki kd
child#001 -1.00E-05 -3.68E-08 -7.59E-04
child#002 -3.49E-05 -3.49E-07 -3.98E-03
child#003 -6.31E-05 -2.23E-08 -1.00E-03
child#004 -3.49E-05 -3.49E-07 -1.00E-03
child#005 -1.00E-04 -6.31E-07 -2.87E-03
child#006 -6.31E-05 -2.87E-08 -1.00E-03
child#007 -1.00E-05 -3.49E-07 -2.51E-03
child#008 -1.93E-08 -4.72E-08 -1.00E-03
child#009 -1.00E-05 -3.98E-07 -1.00E-03
child#010 -4.98E-07 -3.49E-07 -2.09E-03
adolescent#001 -2.87E-06 -1.00E-06 -1.00E-02
adolescent#002 -5.53E-09 -4.54E-12 -1.00E-02
adolescent#003 -1.00E-04 -3.49E-07 -3.98E-03
adolescent#004 -6.74E-08 -6.74E-10 -1.00E-02
adolescent#005 -4.54E-10 -2.87E-08 -1.00E-02
adolescent#006 -1.93E-08 -3.49E-06 -6.31E-03
adolescent#007 -1.07E-07 -1.00E-07 -6.31E-03
adolescent#008 -6.74E-08 -8.21E-09 -1.00E-02
adolescent#009 -2.35E-07 -1.00E-06 -3.98E-03
adolescent#010 -1.58E-09 -1.00E-07 -1.00E-02
adult#001 -8.32E-05 -1.00E-07 -1.00E-02
adult#002 -3.02E-04 -1.00E-07 -1.00E-02
adult#003 -2.87E-06 -6.07E-08 -1.00E-02
adult#004 -2.87E-05 -3.49E-07 -3.98E-03
adult#005 -1.00E-04 -1.00E-07 -1.00E-02
adult#006 -1.00E-04 -5.75E-07 -1.00E-02
adult#007 -1.35E-06 -1.58E-07 -1.00E-02
adult#008 -4.72E-06 -1.00E-07 -1.00E-02
adult#009 -1.00E-04 -1.00E-07 -1.00E-02
adult#010 -6.31E-05 -1.00E-07 -1.00E-02

Table 2: PID parameters
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kp ki kd
child#001 -3.63E-05 -3.98E-07 -6.31E-04
child#002 -3.98E-05 -1.00E-06 -2.51E-03
child#003 -4.72E-06 -2.87E-08 -1.00E-03
child#004 -6.31E-05 -1.00E-06 -1.58E-03
child#005 -1.58E-04 -4.79E-07 -2.51E-03
child#006 -3.49E-05 -1.00E-07 -1.00E-03
child#007 -2.29E-04 -3.88E-09 -2.51E-03
child#008 -1.00E-05 -1.00E-07 -1.00E-03
child#009 -2.51E-05 -4.37E-07 -4.37E-04
child#010 -6.39E-07 -3.98E-07 -1.00E-03
adolescent#001 -4.54E-10 -4.54E-12 -1.00E-02
adolescent#002 -4.54E-10 -1.00E-07 -1.00E-03
adolescent#003 -1.91E-05 -5.75E-07 -1.74E-03
adolescent#004 -2.23E-06 -6.31E-07 -2.51E-03
adolescent#005 -4.54E-10 -1.00E-06 -3.02E-03
adolescent#006 -4.54E-10 -1.00E-05 -2.51E-03
adolescent#007 -4.54E-10 -4.79E-07 -3.49E-03
adolescent#008 -4.54E-10 -1.00E-07 -1.00E-03
adolescent#009 -4.54E-10 -6.92E-07 -1.58E-03
adolescent#010 -6.31E-05 -6.31E-07 -6.31E-03
adult#001 -1.00E-05 -1.00E-07 -3.49E-03
adult#002 -4.54E-10 -6.31E-07 -6.31E-03
adult#003 -4.54E-10 -4.37E-07 -1.00E-03
adult#004 -1.74E-06 -6.31E-07 -1.00E-03
adult#005 -4.98E-07 -1.00E-07 -1.00E-03
adult#006 -4.54E-10 -1.00E-06 -2.87E-03
adult#007 -3.73E-07 -6.92E-07 -2.75E-03
adult#008 -1.00E-04 -3.49E-07 -3.49E-03
adult#009 -4.54E-10 -1.00E-07 -3.49E-03
adult#010 -4.54E-10 -1.00E-07 -1.00E-03

Table 3: PID-MA parameters
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