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ABSTRACT

By maximizing an information theoretic objective, a few recent methods empower
the agent to explore the environment and learn useful skills without supervision.
However, when considering to use multiple consecutive skills to complete a spe-
cific task, the transition from one to another cannot guarantee the success of the
process due to the evident gap between skills. In this paper, we propose to learn
transitional skills (LTS) in addition to creating diverse primitive skills without a
reward function. By introducing an extra latent variable for transitional skills, our
LTS method discovers both primitive and transitional skills by minimizing the dif-
ference of mutual information and the similarity of skills. By considering various
simulated robotic tasks, our results demonstrate the effectiveness of LTS on learn-
ing both diverse primitive skills and transitional skills, and show its superiority in
smooth transition of skills over the state-of-the-art baseline DIAYN.

1 INTRODUCTION

Deep reinforcement learning (DRL) has shown its great effectiveness in learning various reward-
driven skills in wide domains, such as performing robotic manipulation tasks (Levine et al. (2016)),
playing video games (Mnih et al. (2015)), playing adversarial board games (Silver et al. (2016))
and implementing robot navigation in complex environments (Wang et al. (2018)). Nevertheless,
for the majority of real applications, there is no reward in a long term until the agent reaches a goal
state (Wu & Chen (2007)), especially in unseen environments. In such cases, DRL has difficulty in
carrying out the tasks.

By observing the human intelligence that can explore their surroundings and learn valuable skills
without reward, a couple of prior works have been recently proposed to generate useful skills with-
out supervision by embedding the intrinsic motivation into DRL methods (Barto (2013),Ryan &
Deci (2000)). Diverse skills can be autonomously acquired without reward by maximizing an in-
formation theoretic objective using a maximum entropy policy (DIAYN (Eysenbach et al. (2018));
VIC (Gregor et al. (2016)); DAS (Sharma et al. (2019))). Discovered useful skills may help the
exploration in complex environments, and can also serve as primitive skills for hierarchical DRL.

Although discovered useful skills are both distinguishable and diverse, it is still an exceedingly chal-
lenge to integrate such skills for a complex task that requires smooth transitions between skills (Lee
et al. (2018)). Take the basketball as an example: learning the passing, catching and shooting skills
in an isolated way cannot guarantee a score due to the possible failure in the process of transitions
between skills. To address this problem, we propose to further learn transitional skills (LTS) with-
out a reward function, where discovered primitive skills that are the same as prior works are also
distinguishable and as diverse as possible (Eysenbach et al. (2018)).

More concretely, our LTS method learns both primitive and transitional skills by optimizing an
information theoretic objective, where an extra controller of transitional skills is defined except
the primitive skill’s controller. In such case, the information theoretic objective is the difference of
mutual information and the similarity of skills. On four simulated robotic tasks, experimental results
show that our LTS can discover both primitive skills and transitional skills, successfully perform
the transition between primitive skills that are distinguishable, and achieve a better peformance in
comparison to the state-of-the-art baseline DIAYN.
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The main contributions of our work are as follows: (1) our proposed LTS can learn both primitive
and transitional skills without extrinsic reward, where the primitive skills are distinguishable and
diverse, and the transitional skills can accomplish smooth transitions between primitive skills; (2)
The discovered skills are in a continuous space rather than a discrete space, which indicates that
arbitrary useful skills might be acquired for specific requirements. (3) Extensive experiments are
conducted, which demonstrates the effectiveness of our LTS method in learning two categories of
skills, performing the transition between primitive skills.

2 PRELIMINARIES

RL: In the standard RL setup, an agent interacts with an environment over discrete time. At time
step t, the agent observes the current state st and selects an action at according to a policy π(at|st).
Then, the agent receives a reward rt and comes to the next state st+1. The objective of learning is
to maximize the discounted return R =

∑∞
t=0 γ

trt of the policy π, where γ ∈ [0, 1] is a discount
factor.

Learn Skills with RL: Using the notation from information theory: we introduce two random
variables S and A for states and actions, respectively. To discover diverse skills, a latent variable
Ω ∈ p(ω) is introduced such that the policy is denoted by π(at|st, ωi), where at and st denote the
action and observation state at time stamp t respectively, and ωi is a sample form distribution p(ω).
We denote that the policy conditioned on a fixed Ω, ωi, as a ”skill”. A different ω is input in the
policy π to allow the agent to follow different behavioral strategy. Prior works have shown that
maximizing the mutual information between the states S and the skills Ω results in distinguishable
and diverse skills.

By primarily maximizing the mutual information between the final states Sf and the skills Ω given
the initial states S0,

I(Sf ; Ω|S0)1, (1)

the variational intrinsic control (VIC) (Gregor et al. (2016)) shows the success of acquiring distin-
guishable skills from the final states.

Furthermore, in order to enhance the diversity of skills as much as possible, DIAYN primarily
maximizes the mutual information between the states S at all the time stamps and the skills Ω
(Eysenbach et al. (2018)),

I(St; Ω) + H[A|S,Ω]2, (2)

which indicates that different skills visit different states and such diverse skills can be identified
distinguishably.

Both VIC and DIAYN successfully discover primitive skills by maximizing the mutual information
between the states and the skills. To carry out a complex task that requires a smooth transition
between skills, we propose the LTS scheme in this paper to learn both primitive and transitional
skills by using an information theoretic objective.

3 METHODOLOGY

In this section, we elaborate our proposed LTS method to discover both primitive and transitional
skills without extrinsic reward. We use the same notation as mentioned above: S, A and Ω are
random variables for states, actions and primitive skills, respectively. And we define N as the
number of primitive skills in this paper, i.e. ω0, ω2, ..., ωN−1. Besides, we introduce an extra latent
variable Zi,j following the distribution p(zi,j |ωi, ωj), on which we condition our transitional policy
and we refer to a the policy conditioned on a fixed Zi,j as a ”transitional skill” from the primitive
skill ωi to ωj .

1The mutual information is denoted as the formation of conditional probability and contains the initial
observation s0: I(Sf ; Ω|S0) = −

∑
sf

p(sf |s0) +
∑

ω,sf
pJ(sf |s0, ω) log pJ(sf |s0, ω). The controllability

distribution pC(ω|s0) maximizes the behavior diversity.
2The second term suggests that each skill should act as randomly as possible, aiming improving the explo-

ration.
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As in Figure 1, denote by Spi and Spj the states of the primitive skills ωi and ωj . The whole transi-
tional process from one primitive skill ωi to ωj is divided into K − 1 transitions so that the sets of
transition states are obtained as Sti,j,1, S

t
i,j,2, ..., S

t
i,j,K−1 , where each set of transition states Sti,j,k,

1 ≤ k ≤ K − 1, corresponds to a transitional skill zi,j,k, as shown in Figure 1. By controlling zi,j,k
between ωi and ωj , we expect to accomplish the smooth state transition. Sti,j,0 (or Spi ) corresponds
to the starting primitive skill wi, and Sti,j,K (or Spj ) corresponds to the ending primitive skill wj . For
convinence, define by SP = {S|S = Spi ∪ Si,j,k, for all i,j,k} all states corresponding to primitive
and transitional skills.

Primitive States Primitive StatesTransition States

... ...

Figure 1: Block diagram of primitive and transition states, and their corresponding skills.

In order to learn both diverse primitive skills and transitional skills, the mutual information be-
tween the states Si,j,k ∈ SP from zi,j,k and the states Spi from the primitive skill Ωi, denoted by
I(Si,j,k;Spi |zi,j,k, ωi, ωj), will be large at the begining of transition with a small k (e.g. close to 0);
conversely, this mutual information will be small at the end of transition with a large k (e.g. close to
K).

By defining the similarity fsi,j,k between ωi and zi,j,k, which is large with a small k but small with a
large k, i.e. the same tendency as the muture information I(Si,j,k;Spi |zi,j,k, ωi, ωj), the objective of
our learning problem is to minimize the difference between the mutual information and the similarity

L(θ) , E
[
| I(Si,j,k;Spi |zi,j,k, ωi, ωj)− f

s
i,j,k|

]
≈ E ωi∼p(ω),zi,j,k∼p(zi,j |ωi,ωj),st∼π(zi,j,k)

[
| log p(ωi|st)− log p(spi )− f

s
i,j,k|

]
, (3)

where conditional probability p(spi |sti,j,k) is converted to p(ωi|st) for the reason that the approach
could learning diverse primitive skills which means different primitive skills indicate different prim-
itive states. This objective function enables the log-conditional probability log p(ωi|st) and the
preprocessed similarity fsi,j,k are of proportional relation. When zi,j,k = ωi or zi,j,k = ωj , diverse
primitive skills will be discovered. Otherwise, the transitional skills will be learned for smooth tran-
sition from ωi to ωj . By defining the degree of divergence fdi,j,k =

1−α·fs
i,j,k

α (α is a scaling factor)
between ωi and zi,j,k, we could transfer minimizing L(θ) into maximizing F(θ)3:

F(θ) , E Ω∼p(ω),zi,j,k∼p(zi,j |ωi,ωj),st∼π(zi,j,k)

[
log p(ωi|st) + fdi,j,k

]
. (4)

Furthermore, Jensen’s Inequality tells us that replacing p(ωi|st) with qφ(ωi|st) gives us a variational
lower bound G(θ, φ) on our objective L(θ) (seed Appendix A.3 for derivation):

F(θ) ≥ E Ω∼p(ω),zi,j,k∼p(zi,j |ωi,ωj),st∼π(zi,j,k)

[
log qφ(ωi|st) + fsi,j,k

]
, G(θ, φ),

(5)

The second term brings the probability of inferring current ωi into correspondence with the diver-
gence between ωi and zi,j,k. When zi,j,k is close to primitive skills ωi, the discriminator qφ has a
large probability to correctly infer ωi given st with related to zi,j,k, and vice versa.

3See Appendix A.1 for further analysis.
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4 IMPLEMENTATION

4.1 ONE-HOT ENCODING AND HINDSIGHT

In the previous section, we derived a theoretical algorithm for learning transitional skills. In imple-
mentation, there are several problems with the use of transition skills Zi,j .

One of these is that when ωi 6= ωj (i 6= j), the discriminator will face with a dilemma: the intersec-
tion of transition states and primitives states are not empty, i.e. STi,j ∩ SP 6= �, leading to a conflict
between diversity and transition. An alternative is to use one-hot encoding for primitive skills. In
such case, the transitional skill ẑi,j,k also has a different expression. Further analysis could be found
in Appendix B.

On the other hand, along with the growth of the number of primitive skills N and transitional skills
K−1, we have a high training complexity. For improving the efficiency, we utilize the hindsight ex-
perience reply mechanism to allow sample-based learning from the sparse reward. In our approach,
we calculate the conditional probability given by the discriminator instead of using a single value
because qφ(ωi|st) can just guarantee the consistency of zi,j,k with ωi but ignore the relation with
other primitive skills. So we change qφ(ωi|st) to the conditional probability:

qφ(Ω, st) = [qφ(ω0|st), qφ(ω1|st), ..., qφ(ωN−1|st)]T. (6)

By doing so, we consider all primitive skills. Correspondingly, we change the criterion of fdi,j,k into
fdi,k:

fdi,k = [fdi,1,k, f
d
i,2,k, ..., f

d
i,N−1,k]T. (7)

Consequently, the overall objective takes the form:

G(θ, φ) =
1

N
· Eωi∼p(ω),st∼π(zi,k)(‖qφ(Ω|st) + fdi,k‖2), (8)

where zi,k ∼ pz(z|ωi) = {zi,k|zi,k = zi,j,k, 0 ≤ j ≤ N − 1, zi,j,k ∈ p(zi,j |ωi, ωj)}. Basically, we
convert the classification problem (i.e. learning discrete primitive skills) into a regress problem (i.e.
learning continuous primitive and transitional skills). When zi1,k = ωi2 , the regression problem is
simplified as a classification problem to learn primitive skills.

Algorithm 1 Learning Transitional Skills (LTS)
1: while NOT converged do
2: Sample ωi ∼ p(ω)
3: Sample a skill z ∼ pz(z|ωi) and an initial state s0 ∼ p0(s)
4: for t← 1 to steps per episode do
5: Sample an action at ∼ πθ(at|st, z);
6: Interact with the environment: st+1 ∼ p(st+1|st, at);
7: Compute Dt = ‖qφ(Ω|st+1) + fdi,k‖ with the discriminator (φ);
8: Set the reward for current skill: rt = Dt.
9: By using SAC, update the policy (θ) to maximize the discounted returnR =

∑∞
t=0 γ

trt;
10: Update the discriminator (φ) to maximize Dt with SGD.
11: end for
12: end while

4.2 ALGORITHM

Using the discriminator for distinguishing primitive and transitional states, we summarize our LTS
method in Algorithm 1. At each roll-out, we sample a skill z from a fixed skill distribution pz(z|ωi)
given ωi. After the agent interacts with the environment at time step t, the discriminator calculates
the discriminability as

Dt = ‖qφ(Ω|st+1) + fdi,k‖. (9)
As mentioned above, we encode primitive skills using one-hot encoding. And we also constrain∑
zi,j,k = 1 so that the similarity fsi,k = zi,j,k. To improve the exploration, we adopt soft actor

critic (SAC) algorithm to train our policy, adding the regularization Ei,j [ H[A|S,Zi,j ] |] to maximize
the policy’s entropy over actions given states and skills. (see Appendix D for the hyperparameters.)
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5 RELATED WORK

Real-world tasks often require diverse behaviors. Wang et al. (2017) notes that building versatile em-
bodied agents capable of performing a wide and diverse set of behaviors is one of the long-standing
challenges of AI. And learning continuous control of diverse behaviors in locomotion (Merel et al.
(2017); Heess et al. (2017); Peng et al. (2017)) and robotic manipulation (Ghosh et al. (2018);
Gu et al. (2017)) is an active research area. In this scenario, although some complex tasks can
be solved through extensive reward engineering, undesired behaviors often emerge because of the
sparse nature of reward (Riedmiller et al. (2018)). Moreover, training complex skills from scratch is
not computationally practical. These issues can be addressed by use of intrinsic motivation (Barto
(2013); Chentanez et al. (2005); Singh et al. (2010)), which is a reward-free learning method. His-
torically, the intrinsic motivation comes from the tendency of organisms to play and explore their
environment without any reward (Ryan & Deci (2000), White (1959)).

Another line of work that is conceptually close to our method copes with information theories that
are used to drive the agent’s exploration. The information gain is a reward based on the reduction
of uncertainty on environment’s dynamics (Little & Sommer (2013); Oudeyer & Kaplan (2007)),
which can also be assimilated to learning progress (Frank et al. (2013); Oudeyer & Kaplan (2007)).
This can push agents into unknown areas on the one hand, and prevent them from being attracted to
random areas on the other.

Recent work has also applied information theory for skill discovery. VIC (Gregor et al. (2016)) is
an optional discovery technique by optimizing a variational lower bound on the mutual information
between the context and the final state in a trajectory, conditioned on the initial state. Furthermore,
DIAYN (Eysenbach et al. (2018)) maximizes the mutual information between states and skill to
achieve diversity and shows the interest as a pre-training for hierarchical reinforcement learning
or as an initialization for learning a task. While discriminative embedding reward networks (DIS-
CERN) (Warde-Farley et al. (2018) aim to simultaneously learn a goal-conditioned policy and a
goal achievement reward function by maximizing the mutual information between the goal state and
the achieved state. Let us notice that the skill space here is discrete, with just one or multiple poli-
cies. However, we considered the relationship between different skills during the training process
and finally formed a continuous skill space, likely because of inducing a novel latent variable for
transitional skills.

In addition, it is important to point out that our skills are transitional with an intrinsically driven ap-
proach, which is very different from numerous previous works. While Sharma et al. (2019) discovers
predictable behaviors to let the single skill more predictable, it need an external model-predictive-
control (MPC) paradigm (Garcia et al. (1989)) to connect skills. Peng et al. (2019) learns reusable
motor primitives that can be composed to produce a continuous spectrum of skills. To bridge the gap
between skills, Lee et al. (2018) propose a transition policy to get a new smooth skill. In compar-
ison, our method captures intrinsic transition, which is independent from external tasks, and could
eliminate the extra fine-tuning process.

6 EXPERIMENTS

In our experiments, we aim to demonstrate the effectiveness of our approach for learning primitive
and transitional skills. We evaluate LTS and compare it to prior works.

6.1 DIVERSITY AND TRANSITIONAL SKILLS

In this section, we provide visualizations and quantitative analysis for our LTS method. Using the
MuJoCo (Todorov et al. (2012)) environments from the OpenAI gym 4 as our test bed, we use LTS
to address multiple control issues, such as CartPole, MountainCar and Pendulum.

To evaluate different skills in different environment, we extract features from the observation of the
agent, e.g. in the MountainCar environment, where we use the variance of the car’s altitude as the
feature. For more details on the features in other environments, please refer to Appendix C.

4http://gym.openai.com/
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(a) Trajectories of 4 skills.
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(b) Box-plots of 4 skills.

Figure 2: Primitive skills (ω0, ω1, ω2, ω3) in MountainCar environment.

Figure 2 illustrates the discovered primitive skills in the MountainCar environment. As shown in
Figure 2(a), all four skills moves in an periodic manner. Corresponding to all 4 skills in Figure
2(a), the statistical values of features are shown in Figure 2(b) using Box-plot. It is observed that,
these four skills have different movement patterns so that these skills are easy to be distinguished.
Moreover, we consider a different number of primitive skills and different environments (CarPole,
MountainCar and Pendulum) as in Appendix E, from which it is observed that all primitive skills
have an evident difference in feature statistics and are easy to be distinguished.
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(a) Trajectory of transition.

Transition from 0 to 1.
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(b) Box-plots of transition.

Figure 3: Transition from skill ω0 to ω1 in Mountain-Car.

Transition. Furthermore, we use the transitional skill z0,1,k to show the performance of transition
from one primitive skill ω0 = [1, 0, 0, 0]) to another ω1 = [0, 1, 0, 0]), where the number of transition
skills is set as 9.

Figure 3(a) shows the transition of the trajectory, where 9 transition skills are uniformly distributed
along the horizontal axis from Step 0 to 5500. Figure 3(b) shows the transition of feature statistics,
where the features of two primitive skills and 9 transitional skills are included.

It is observed that the primitive skill ω0 smoothly changes to ω1 via 9 transitional skills. More
specifically, there exists a slight increment on the amplitude of features in the first three skills,
which is followed by consecutive declines until the ending primitive skill ω1 is discovered. More
experiments on skill transition are given in Appendix F. This demonstrates the effectiveness of our
LTS method on discovering transitional skills and accomplishing the successful transition between
two primitive skills.
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6.2 COMPARISON WITH DIAYN

In DIAYN (Eysenbach et al. (2018)), the information regularization implies that learned useful skills
could dictate the states that agent visits, by maximizing I(S;Z). In this subsection, we compare
our LTS method with the state-of-the-art DIAYN in terms of learning diverse primitive skills and
transitional skills. Experimental results show that LTS achieves an approximate performance on
diversity of primitive skills, and a much better performance on skill transition.
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Figure 4: Comparison of diversity of primitive skills between LTS and DIAYN.

Diversity: Different skills have different means or variances from their own trajectories. In this
subsection, we use (1) variance of means and (2) mean of variances of the features as metrics to
evaluate the diversity of learned primitive skills using LTS and DIAYN.

Figure 4(a) shows the variance of means while Figure 4(b) shows the mean of variances, where the
black perpendicular line represents the range of values from a single experiment and we collect all
trajectories of various primitive skills. In Figure 4(a), the height of this line depicts the range of
variance of means by considering all trajectories of primitive skills. As shown, LTS obtains a lower
variance of means in compare to DIAYN because the learned transitional skills from LTS affect the
variance of learned primitive skills.

The lower variance of means does not degrade the diversity of learned primitive skills, which can be
observed from Figure 4(b). Although there is a large difference between experiments with random
seeds, LTS has generally a similar mean of variance as DIAYN, indicating that our method performs
similar with the baseline in terms of learning diverse primitive skills.
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Figure 5: Comparison of skill transition.

Transition: We also conduct experiments to
evaluate the skill transition of LTS and DIAYN,
where we use identical encoding scheme for
both and the number of transitional skills is set
as 8.

Figure 5 shows the complete trajectory of skill
transition, where the value denotes the mean of
features like the middle bar in Figure 3(b). It
is observed that LTS achieves a smooth tran-
sition from one primitive skill to another while
the transition in DIAYN suffers from one sharp-
rising phase and two steady phases indicating a
rigid transition process. We control the transi-
tion in LTS from ω0 to ω1 as in Figure 2(b). However, DIAYN learned different primitive skills so
that we cannot select the same starting and ending primitive skills as LTS.

A more comprehensive study including the real path of movement and statistical characteristics is
conducted and the results are reported in Appendix G.
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6.3 GENERALIZATION
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Figure 6: Transition with related to 2 different
number transition skills.

Our LTS method suffers from the high training
complexity to learn transitional skills. A rea-
sonable approach to tackle this problem is to
use a fixed number of transitional skills. In this
experiment, we set this number as 3, indicating
that the nonzero element of zi,j,k is from the set
{0.25, 0.50, 0.75} in the training phase.

Figure 6 shows the skill transition, where the
test phase considers 3 and 50 transitional skills
and 50 transitional skills are used for evaluat-
ing the generalization of our LTS method. It is
observed that the transition in blue suffers from
severe declines, possibly leading to the failure
of the process in practice; fortunately, the tran-
sition in red goes through a steady and smooth process from one primitive skill to another. This
experiment demonstrate the great capability of LTS in generalization that guarantees the sucess of
the skill transition.
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Figure 7: Skill space of DIAYN and LTS.

6.4 EQUIP THE AGENT WITH MORE TRANSITIONAL SKILLS

Figure 7 shows much more skills and corresponding transitions between them, where each small
square denotes a different skill, the number of primitive skills is 2 and the number of transitional
skills is 98. Two primitive skills [1, 0, 0, 0] and [0, 1, 0, 0] locate at the lower left and upper right
squares.

It is observed that our LTS method is able to accomplish a smooth transition between two arbitrary
skills, whatever primitive skills or transitional skills defined in this paper; however, DIAYN suffers
from a rigid transition in most cases. Furthermore, these results provide us a deep insight that LTS
has the ability to learn a larger continuous skill space. The agent equipped with such numerous skills
is expected to become much more powerful.

7 CONCLUSION

In this paper, we introduce a novel LTS method to learn transitional skills without extrinsic reward
by using an extra latent varible. As a result, LTS can discover both primitive skills and transitional
skills. Furthermore, LTS achieves a great success in the smooth transition from one primitive skill to
another and exhibits its potential in learning a large continuous skill space. Extensive experiments
demonstrate the effectiveness of our LTS in the discovery of diverse skills and the smooth transition
between skills.
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Appendices

A METHODOLOGY

A.1 THE OBJECTIVE FUNCTION

We define f̂si,j,k = α · fsi,j,k + c, where a and c are induced to constrain 0 < f̂si,j,k < 1. Based on
f̂di,j,k = 1− f̂si,j,k, we have

α · L(θ) = E
i,j,k

[
|α · I(Si,j,k;Spi |zi,j,k, ωi, ωj)− f̂

s
i,j,k + c)|

]
= E
i,j,k

[
|α log p(spi |st)− α log p(spi )− f̂

s
i,j,k + c|

]
≈ E
i,j,k

[
|α log p(ωi|st)− α log p(spi )− f̂

s
i,j,k + c|)|

]
= E
i,j,k

[
|1− (f̂di,j,k + α log p(ωi|st)− α log p(spi ) + c)|

]
,

(10)

Noting that conditional probability p(spi |sti,j,k) is converted to p(ωi|st). The reason for this approx-
imation is that the approach could learn the diverse primitive skills. This means different primi-
tive skills represent different primitive states. This objective enables the log-conditional probability
log p(ωi|st) and the similarity f̂si,j,k are of proportional relation. When (zi,j,k−ωi)·(zi,j,k−ωj) = 0,
we could learn the diverse primitive skills. When f̂si,j,k · (f̂si,j,k − 1) 6= 0, we evaluate the discrimi-
nation p(ωi|st) using the similarity f̂si,j,k.

With the help of scaling factor α and constant c, we could keep f̂di,j,k+α log p(ωi|st)−α log p(spi )+

c < 1, so minimizing L(θ) is equivalent to maximizing

F(θ) , E
i,j,k

[
f̂di,j,k + α log p(ωi|st) + c

]
, (11)

where we ignore H[Spi ].

Defining fdi,j,k = 1
α · (f̂

d
i,j,k + c), we have

F = α · ( E
i,j,k

[
log p(ωi|st) + fdi,j,k

]
), (12)

where the scaling factor could be obtained in the learning rate. So we have

fdi,j,k =
1− α · fsi,j,k

α
. (13)

A.2 REMARK

There exists a misleading optimization goal:

F(θ) = E
i,j,k

(|I(Ω;Si,j,k)− fsi,j,k|)

= E
i,j,k

(|H[Ω]− H[Ω|Si,j,k]− fsi,j,k|)

6= E(ωi,ωj)∼Ω,zi,j,k∼C(ωi,ωj),st∼π(zi,j,k)(| log p(ωi)− log p(ωi|st)− fsi,j,k|).

(14)

A.3 DERIVATION OF THE VARIATION BOUND ON MUTUAL INFORMATION

Here we derive the variational bound:

Eωi∼Ω(log p(ωi|st)) = Eωi∼Ω(log qφ(ωi|st)) + αKL(p(ωi|st)|qφ(ωi|st))
≥ Eωi∼Ω(log qφ(ωi|st))

(15)
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B IMPLEMENTATION

B.1 HINDSIGHT AND ONE-HOT ENCODING

We compare the conditional probability given by the discriminator qφ(ωi|st) and the divergence
between zi,j,k and specific ωi. If we want to compare the probability qφ(ωi1 |st) and qφ(ωi2 |st)
in terms of the same transition state st controlled by the same skill z (z = zi1,j1,k1 = zi2,j2,k2)
and two different primitive skills ωi1 and ωi2, we must wait for the next time step to sample the
same z and a different ω in the experience. The efficiency is relatively low. So we utilize the
hindsight experience reply mechanism to allow sample-efficient learning form sparse rewards. In our
approach, we calculate a distribution of the conditional probability given by the discriminator instead
of a single value because that qφ(ωi|st) just constrain the consistency of zi,j,k and ωi which ignores
the consistency to other primitive skills. So we change qφ(ωi|st) to the conditional probability
distribution:

qφ(Ω, st) = [qφ(ω0|st), qφ(ω1|st), ..., qφ(ωN−1|st)]T. (16)

By doing this, we could simultaneously constrain the similarity probability distribution given by the
discriminator with related to all primitive skills.

+

Figure 8: The space of primitive skills and transitional skills.

Moreover, we change the criterion of fdi,j,k into fdi,k:

fdi,k = [fdi,1,k, f
d
i,2,k, ..., f

d
i,N−1,k]T. (17)

Considering transferring two skills from ωi to ωj (ωi 6= ωj), the former categorical encoding
will cause extra consumption: if ωi − ωj 6= ±1, primitive states with related to primitive skills
{ω|ω ∈ [ωi, ωj ] or [ωj , ωi]} will occur in the transition states. Assuming zi,j,k = ωi for all
zi,j,k ∼ p(zi,j,k|ωi, ωj) and zj,i,k = ωj for all zj,i,k ∈ p(zi,j,k|ωj , ωi), f̂si,j,k = 1 for all k and
f̂sj,i,k = 1 for all k, and the optimization L(θ) = 1 − α · I(Ω;S) + c. Minimizing F(θ) is equal
to maximizing I(Ω;S), which is fully in accordance with DIAYN. Different ω represents different
primitive skills because p(ωi|st) = 0 for all ωi 6= ω, where st ∼ π(ω). For the optimal discrim-
inator, there should be q∗φ(ωi3 |s

′

t) = 0 (s
′

t ∼ π(ωi1)) and q∗φ(ωi3 |s
′′

t ) = 0 (s
′′

t ∼ π(ωi2)). While
if ωi1 < ωi3 < ωi2 , q∗φ(ω3|s

′

t) = 1 − (ωi3 − ωi1) and q∗φ(ω3|s
′′

t ) = 1 − (ωi2 − ωi3), which is in
contrast to the conditional probability of 0. So, we encode ω ∼ p(ω) with one-hot way:

ω0 = [1, 0, 0, ..., 0];

ω1 = [0, 1, 0, ..., 0];

...

ωN−1 = [0, 0, 0, ..., 1].

(18)
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And we denote primitive skills and transitional skills as a set Z+
i,j :

Z+
i,j = [ωi, zi,j,1, ..., zi,j,k, ..., zi,j,K−1, ωj ]

T

=


0 ... 1 ... 0 ... 0
0 ... 1− 1

K ... 1
K ... 0

....
0 ... 1− k

K ... k
K ... 0

...
0 ... 0 ... 1 ... 0


(K+1)×N

,
(19)

where the value of i-th and j-th column keeps decreasing and increasing respectively. Other column
always keep 0, which could constrain the incoherence between transition states and other primi-
tive skills. Without causing any misunderstanding, following z(i, j, k) all comes from Z+

i,j . For
transition, we assure that the change of zi,j,k only happens on the corresponding dimension, which
overcomes the conflict caused by categorical encoding. As show in Fig.8, all transition skills in Z3,1

and primitive skills ω3 are orthogonal. The transition only reflects on the plane defined by the cor-
responding primitive skills. In fact, there is more than one transitional path, which can be a directed
line or any directed curve. As in Figure 7(b), we can find more than one transitional pathes.

B.2 REWARD OCCUPIED WITH KL DIVERGENCE

Because that diverse skills (primitive skills) play a vital role, we also add KL divergence (
DKL(qφ(fsi,k||Ω|st)) ) in the optimization. So the occupied reward is expressed as

rt = δ · ‖qφ(Ω|st+1) + fdi,k‖ − (1− δ) · DKL(·qφ(Ω|st+1)||fsi,k), (20)

where δ is a scaling factor for controlling the effect of the MSE term and KL divergence, both
of them guarantee that the discriminator can distinguish the divergence or similarity between the
primitive skills Ω and the states. Because we encode ω with one-hot way and constrain

∑
zi,j,k = 1,

so the similarity fsi,k = zi,j,k.

C EXPERIMENTAL ENVIRONMENT

The experiments were carried out over three opened reinforcement learning environments (Cart-
Pole5, MountainCar6, and Pendulum7).

C.1 CARTPOLE

In this environment, a pole is attached by an un-actuated joint to a cart, which moves along a fric-
tionless track. The system is controlled by applying a force of +1 or -1 to the cart. The pendulum
starts upright, and the goal is to prevent it from falling over by increaseing and reducing the cart’s
velocity. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves
more than 2.4 units from the center.

C.2 MOUNTAINCAR

A car is on a one-dimensional track, positioned between two ”mountains”. The goal is to drive up
the mountain on the right; however, the car’s engine is not strong enough to scale the mountain in a
single pass. Therefore, the only way to succeed is to drive back and forth to build up momentum.

C.3 PENDULUM

The inverted pendulum swingup problem is a classic problem in the control literature. The problem
of the pendulum starts in a random position, and the goal is to swing it up so it stays upright.

5https://gym.openai.com/envs/CartPole-v0/
6https://gym.openai.com/envs/MountainCar-v0/
7https://gym.openai.com/envs/Pendulum-v0/
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D HYPERPARAMETERS

For all RL algorithm in our experiments, we use the SAC (Haarnoja et al. (2018)) as implementation
framework. The hyperparameters are summed up in the Table 1 and we use ADAM (Kingma & Ba
(2014)) optimizer.

Table 1: Parameter setting
Parameters Description Value
H hidden state size 32
layer layer count 3
epoch eposide size 12
vf lr value network learning rate 1e-5
dc lr discriminator network learning rate 5e-4
pi lr policy network learning rate 3e-4

E VISUALIZING PRIMITIVE SKILLS

In order to better represent the distinction between skills, we did various experiments and finally
determined some optimal observations as feature vector for each skill (see Table 2). The following
experiments show that it makes sense to calculate the statistical characteristics of skills’ character-
istics to represent a skill. Three experiments’ performance was shown in Figure 9, Figure 10 and
Figure 11.

Table 2: Selection of skill feature.
RL enviroment Observations Selected as skill feature
CartPole 0: Cart Position;

1: Cart Velocity
2: Pole Angle
3: Pole Velocity at Tip

2: Pole Angle

MountainCar 0: Position
1: Velocity

0: Position

Pendulum 0: cos(Angle)
1: sin(Angle)
2: speed

1: sin(Angle)

F VISUALIZING TRANSITION PROCESS

For all Cartpole, MountainCar, and Pendulum, we get 4 primitives skills, and control variant z only
takes some fixed values (0.25 0.5 0.75) during training. However, at the test phase of transition, z
is taken every 0.1. So we can obtain 9 transition skills between any two primitive skills( z = [0, 1])
(See Figure 12, Figure 13, and Figure 14,).

G TRANSITION COMPARISON

Comprehensive study including motion trail and statistical characteristics on MountainCar was re-
ported in Figure 15.
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Figure 9: Cartpole primitive skills. (a) - (j) stand for 10 random trials with 4 primitive skills for
each, and different skills are distinguished by Boxplot. (k) shows the skill in time domain from just
one trial.
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Figure 10: Mountain Car primitive skills. (a) - (j) stand for 10 random trials with 4 primitive skills
for each, and different skills are distinguished by Boxplot. (k) shows the skill in time domain from
just one trial.
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Figure 11: Pendulum primitives skills. (a) - (j) stand for 10 random trials with 4 primitive skills
for each, and different skills are distinguished by Boxplot. (k) shows the skill in time domain from
just one trial.
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Figure 12: Mountain Car transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different
4 trials respectively. Each transition skill holds 500 steps and then transfers the final state to the next
skill.
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Figure 13: Pendulum transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different 4
trials respectively. Each transition skill holds 500 steps and then transfers the final state to the next
skill.
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Figure 14: Cartpole transition process. (a) (e), (b) (f), (c) (g), and (d) (g) are from different 4 trials
respectively. Each transition skill holds 500 steps and then transfers the final state to the next skill.
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Figure 15: Transition comparison on MountainCar. The subgraphs (a),(b),(c),(d) represent the
mean of features in terms of the transition skills, and subgraphs (e),(f),(g),(h) represent the variance
of features. Compared to DIAYN, LTS performs a continuous transition.
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