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ABSTRACT

Deep Neural Networks (DNNs) are vulnerable to adversarial attacks, especially
white-box targeted attacks. This paper studies the problem of how aggressive
white-box targeted attacks can be to go beyond widely used Top-1 attacks. We
propose to learn ordered Top-k attacks (k ≥ 1), which enforce the Top-k pre-
dicted labels of an adversarial example to be the k (randomly) selected and or-
dered labels (the ground-truth label is exclusive). Two methods are presented.
First, we extend the vanilla Carlini-Wagner (C&W) method and use it as a strong
baseline. Second, we present an adversarial distillation framework consisting
of two components: (i) Computing an adversarial probability distribution for any
given ordered Top-k targeted labels. (ii) Learning adversarial examples by min-
imizing the Kullback-Leibler (KL) divergence between the adversarial distribu-
tion and the predicted distribution, together with the perturbation energy penalty.
In computing adversarial distributions, we explore how to leverage label seman-
tic similarities, leading to knowledge-oriented attacks. In experiments, we test
Top-k (k = 1, 2, 5, 10) attacks in the ImageNet-1000 val dataset using two pop-
ular DNNs trained with the clean ImageNet-1000 train dataset, ResNet-50 and
DenseNet-121. Overall, the adversarial distillation approach obtains the best re-
sults, especially by large margin when computation budget is limited. It reduces
the perturbation energy consistently with the same attack success rate on all the
four k’s, and improve the attack success rate by large margin against the modified
C&W method for k = 10.

1 INTRODUCTION

Despite the recent dramatic progress, deep neural networks (DNNs) (LeCun et al., 1998; Krizhevsky
et al., 2012; He et al., 2016; Szegedy et al., 2016) trained for visual recognition tasks (e.g., image
classification) can be easily fooled by so-called adversarial attacks which utilize visually imper-
ceptible, carefully-crafted perturbations to cause networks to misclassify inputs in arbitrarily chosen
ways in the close set of labels used in training (Nguyen et al., 2015; Szegedy et al., 2014; Athalye &
Sutskever, 2017; Carlini & Wagner, 2016), even with one-pixel attacks (Su et al., 2017). The exis-
tence of adversarial attacks hinders the deployment of DNNs-based visual recognition systems in a
wide range of applications such as autonomous driving and smart medical diagnosis in the long-run.

In this paper, we are interested in learning visually-imperceptible targeted attacks under the white-
box setting in image classification tasks. In the literature, most methods address targeted attacks in
the Top-1 manner, in which an adversarial attack is said to be successful if a randomly selected label
(not the ground-truth label) is predicted as the Top-1 label with the added perturbation satisfying to
be visually-imperceptible. One question arises,

• The “robustness” of an attack method itself : How far is the attack method able to push the
underlying ground-truth label in the prediction of the learned adversarial examples?

Table 1 shows the evaluation results of the “robustness” of different attack methods. The widely
used C&W method (Carlini & Wagner, 2016) does not push the GT labels very far, especially when
smaller perturbation energy is aimed using larger search range (e.g., the average rank of the GT
label is 2.6 for C&W9×1000). Consider Top-5, if the ground-truth labels of adversarial examples
still largely appear in the Top-5 of the prediction, we may be over-confident about the 100% ASR,
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Table 1: Results of showing where the ground-truth (GT) labels are in the prediction of learned adversarial
examples for different attack methods. The test is done in ImageNet-1000 val dataset using a pretrained
ResNet-50 model (He et al., 2016). Please see Sec. 4 for detail of experimental settings.

Method ASR Proportion of GT Labels in Top-k (smaller is better) Average Rank of GT
Labels (larger is better)Top-3 Top-5 Top-10 Top-50 Top-100

C&W9×30 (Carlini & Wagner, 2016) 99.9 36.9 50.5 66.3 90.0 95.1 20.4
C&W9×1000 (Carlini & Wagner, 2016) 100 71.9 87.0 96.1 99.9 100 2.6
FGSM (Goodfellow et al., 2015) 80.7 25.5 37.8 52.8 81.2 89.2 44.2
PGD10 (Madry et al., 2018) 100 3.3 6.7 12 34.7 43.9 306.5
MIFGSM10 (Dong et al., 2018) 99.9 0.7 1.9 6.0 22.5 32.3 404.4

especially when some downstream modules may rely on Top-5 predictions in their decision making.
But, the three untargeted attack approaches are much better in terms of pushing the GT labels since
they are usually move against the GT label explicitly in the optimization, but their perturbation
energies are usually much larger. As we shall show, more “robust” attack methods can be developed
by harnessing the advantages of the two types of attack methods. In addition, the targeted Top-1
attack setting could limit the flexibility of attacks, and may lead to less rich perturbations.

To facilitate explicit control of targeted attacks and enable more “robust” attack methods, one natural
solution, which is the focus of this paper, is to develop ordered Top-k targeted attacks which
enforce the Top-k predicted labels of an adversarial example to be the k (randomly) selected and
ordered labels (k ≥ 1, the GT label is exclusive). In this paper, we present two methods of learning
ordered Top-k attacks. The basic idea is to design proper adversarial objective functions that result
in imperceptible perturbations for any test image through iterative gradient-based back-propagation.
First, we extend the vanilla Carlini-Wagner (C&W) method (Carlini & Wagner, 2016) and use it
as a strong baseline. Second, we present an adversarial distillation (AD) framework consisting
of two components: (i) Computing an adversarial probability distribution for any given ordered
Top-k targeted labels. (ii) Learning adversarial examples by minimizing the Kullback-Leibler (KL)
divergence between the adversarial distribution and the predicted distribution, together with the
perturbation energy penalty.

The proposed AD framework can be viewed as applying the network distillation frameworks (Hinton
et al., 2015; Bucila et al., 2006; Papernot et al., 2016) for “the bad” induced by target adversarial
distributions. To compute a proper adversarial distribution for any given ordered Top-k targeted
labels, the AD framework is motivated by two aspects: (i) The difference between the objective
functions used by the C&W method and the three untargeted attack methods (Table 1) respectively.
The former maximizes the margin of the logits between the target and the runner-up (either GT or

Top-k Attack Success Rate
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Figure 1: The average case using
ResNet-50. AD is better than the mod-
ified C&W method (CW∗). The thick-
ness represents the `2 energy (thinner
is better). Please see Sec. 4 for detail
of experimental settings.

not), while the latter maximizes the cross-entropy between the
prediction probabilities (softmax of logits) and the one-hot dis-
tribution of the ground-truth. (ii) The label smoothing meth-
ods (Szegedy et al., 2015; Pereyra et al., 2017), which are often
used to improve the performance of DNNs by addressing the
over-confidence issue in the one-hot vector encoding of labels.
More specifically, we explore how to leverage label seman-
tic similarities in computing “smoothed” adversarial distribu-
tions, leading to knowledge-oriented attacks. We measure
label semantic similarities using the cosine distance between
some off-the-shelf word2vec embedding of labels such as the
pretrained Glove embedding (Pennington et al., 2014). Along
this direction, another question of interest is further investi-
gated: Are all Top-k targets equally challenging for an attack
approach?

In experiments, we test Top-k (k = 1, 2, 5, 10) in the
ImageNet-1000 (Russakovsky et al., 2015) val dataset using
two popular DNNs trained with clean ImageNet-1000 train
dataset, ResNet-50 (He et al., 2016) and DenseNet-121 (Huang
et al., 2017) respectively. Overall, the adversarial distillation approach obtains the best results. It
reduces the perturbation energy consistently with the same attack success rate on all the four k’s,
and improve the attack success rate by large margin against the modified C&W method for k = 10
(see Fig. 1). We observe that Top-k targets that are distant from the GT label in terms of either label
semantic distance or prediction scores of clean images are actually more difficulty to attack. In sum-
mary, not only can ordered Top-k attacks improve the “robustness” of attacks, but also they provide
insights on how aggressive adversarial attacks can be (under affordable optimization budgets).
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Our Contributions. This paper makes three main contributions to the field of learning adversarial
attacks: (i) The problem in study is novel. Learning ordered Top-k adversarial attacks is an impor-
tant problem that reflects the robustness of attacks themselves, but has not been addressed in the
literature. (ii) The proposed adversarial distillation framework is effective, especially when k is
large (such as k = 5, 10). (iii) The proposed knowledge-oriented adversarial distillation is novel. It
worth exploring the existing distillation framework for a novel problem (ordered Top-k adversarial
attacks) with some novel modifications (knowledge-oriented target distributions as “teachers”).

2 RELATED WORK

The growing ubiquity of DNNs in advanced machine learning and AI systems dramatically increases
their capabilities, but also increases the potential for new vulnerabilities to attacks. This situation has
become critical as many powerful approaches have been developed where imperceptible perturba-
tions to DNN inputs could deceive a well-trained DNN, significantly altering its prediction. Assum-
ing full access to DNNs pretrained with clean images, white-box targeted attacks are powerful ways
of investigating the brittleness of DNNs and their sensitivity to non-robust yet well-generalizing
features in the data.

Distillation. The central idea of our proposed AD method is built on distillation. Network distilla-
tion (Bucila et al., 2006; Hinton et al., 2015) is a powerful training scheme proposed to train a new,
usually lightweight model (a.k.a., the student) to mimic another already trained model (a.k.a. the
teacher). It takes a functional viewpoint of the knowledge learned by the teacher as the conditional
distribution it produces over outputs given an input. It teaches the student to keep up or emulate
by adding some regularization terms to the loss in order to encourage the two models to be similar
directly based on the distilled knowledge, replacing the training labels. Label smoothing (Szegedy
et al., 2015) can be treated as a simple hand-crafted knowledge to help improve model performance.
Distillation has been exploited to develop defense models (Papernot et al., 2016) to improve model
robustness. Our proposed adversarial distillation method utilizes the distillation idea in an oppo-
site direction, leveraging label semantic driven knowledge for learning ordered Top-k attacks and
improving attack robustness.

Adversarial Attack. For image classification tasks using DNNs, the discovery of the existence
of visually-imperceptible adversarial attacks (Szegedy et al., 2014) was a big shock in develop-
ing DNNs. White-box attacks provide a powerful way of evaluating model brittleness. In a
plain and loose explanation, DNNs are universal function approximator (Hornik et al., 1989) and
capable of even fitting random labels (Zhang et al., 2016) in large scale classification tasks as
ImageNet-1000 (Russakovsky et al., 2015). Thus, adversarial attacks are generally learnable pro-
vided proper objective functions are given, especially when DNNs are trained with fully differen-
tible back-propagation. Many white-box attack methods focus on norm-ball constrained objective
functions (Szegedy et al., 2014; Kurakin et al., 2017; Carlini & Wagner, 2016; Dong et al., 2018).
The C&W method investigates 7 different loss functions. The best performing loss function found
by the C&W method has been applied in many attack methods and achieved strong results (Chen
et al., 2017; Madry et al., 2018; Chen et al., 2018). By introducing momentum in the MIFGSM
method (Dong et al., 2018) and the `p gradient projection in the PGD method (Madry et al., 2018),
they usually achieve better performance in generating adversarial examples. In the meanwhile, some
other attack methods such as the StrAttack (Xu et al., 2018) also investigate different loss functions
for better interpretability of attacks. Our proposed method leverages label semantic knowledge in
the loss function design for the first time.

3 PROBLEM FORMULATION

In this section, we first briefly introduce the white-box attack setting and the widely used C&W
method (Carlini & Wagner, 2016) under the Top-1 protocol, to be self-contained. Then we define
the ordered Top-k attack formulation. To learn ordered Top-k attacks, we present detail of a modified
C&W method as a strong baseline and the proposed AD framework.

3.1 BACKGROUND ON WHITE-BOX TARGETED ATTACK UNDER THE TOP-1 SETTING

We focus on classification tasks using DNNs. Denote by (x, y) a pair of a clean input x ∈ X and
its ground-truth label y ∈ Y . For example, in the ImageNet-1000 classification task, x represents a
RGB image defined in the lattice of 224×224 and we have X , R3×224×224. y is the category label
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and we have Y , {1, · · · , 1000}. Let f(·; Θ) be a DNN pretrained on clean training data where
Θ collects all estimated parameters and is fixed in learning adversarial examples. For notation
simplicity, we denote by f(·) a pretrained DNN. The prediction for an input x from f(·) is usually
defined using softmax function by,

P = f(x) = softmax(z(x)), (1)
where P ∈ R|Y| represents the estimated confidence/probability vector (Pc ≥ 0 and

∑
c Pc = 1)

and z(x) is the logit vector. The predicted label is then inferred by ŷ = arg maxc∈[1,|Y|] Pc.

The traditional Top-1 protocol of learning targeted attacks. For an input (x, y), given a target label
t 6= y, we seek to compute some visually-imperceptible perturbation δ(x, t, f) using the pretrained
and fixed DNN f(·) under the white-box setting. White-box attacks assume the complete knowledge
of the pretrained DNN f , including its parameter values, architecture, training method, etc. The
perturbed example is defined by,

x′ = x+ δ(x, t, f), (2)
which is called an adversarial example of x if t = ŷ′ = arg maxc f(x′)c and the perturbation
δ(x, t, f) is sufficiently small according to some energy metric.

The C&W Method (Carlini & Wagner, 2016). Learning δ(x, t, f) under the Top-1 protocol is posed
as a constrained optimization problem (Athalye & Sutskever, 2017; Carlini & Wagner, 2016),

minimize E(δ) = ||δ||p, (3)
subject to t = arg max

c
f(x+ δ)c,

x+ δ ∈ [0, 1]n,
where E(·) is defined by a `p norm (e.g., the `2 norm) and n the size of the input domain (e.g., the
number of pixels). To overcome the difficulty (non-linear and non-convex constraints) of directly
solving Eqn. 3, the C&W method expresses it in a different form by designing some loss functions
L(x′) = L(x + δ) such that the first constraint t = arg maxc f(x′)c is satisfied if and only if
L(x′) ≤ 0. The best loss function proposed by the C&W method is defined by the hinge loss,

LCW (x′) = max(0,max
c6=t

z(x′)c − z(x′)t). (4)

which induces penalties when the logit of the target label is not the maximum among all labels.

Then, the learning problem is formulated by,
minimize ||δ||p + λ · L(x+ δ), (5)
subject to x+ δ ∈ [0, 1]n,

which can be solved via back-propagation with the constraint satisfied via introducing a tanh layer.
For the trade-off parameter λ, a binary search will be performed during the learning (e.g., 9×1000).

3.2 THE PROPOSED ORDERED TOP-k ATTACK SETTING

It is straightforward to extend Eqn. 3 for learning ordered Top-k attacks (k ≥ 1). Denote by
(t1, · · · , tk) the ordered Top-k targets (ti 6= y). We have,

minimize E(δ) = ||δ||p, (6)
subject to ti = arg max

c∈[1,|Y|],c/∈{t1,··· ,ti−1}
f(x+ δ)c, i ∈ {1, · · · , k},

x+ δ ∈ [0, 1]n.

Directly solving Eqn. 6 is a difficulty task and proper loss functions are entailed, similar in spirit
to the approximation approaches used in the Top-1 protocol, to ensure the first constraint can be
satisfied once the optimization is converged (note that the optimization may fail, i.e., attacks fail).

3.3 LEARNING ORDERED TOP-k ATTACKS

3.3.1 A MODIFIED C&W METHOD

We can modify the loss function (Eqn. 4) of the C&W method accordingly to solve Eqn. 6. We have,

L
(k)
CW (x′) =

k∑
i=1

max

(
0, max

j /∈{t1,··· ,ti}
z(x′)j − min

j∈{t1,··· ,ti}
z(x′)j

)
. (7)

which covers the vanilla C&W loss (Eqn. 4), i.e., when k = 1, LCW (x′) = L
(1)
CW (x′). The C&W

loss function does not care where the underlying GT label will be as long as it is not in the Top-k.
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On the one hand, it is powerful in terms of attack success rate. On the other hand, the GT label may
be very close to the Top-k, leading to over-confident attacks (see Tabel. 1). In addition, it is generic
for any given Top-k targets. As we will show, they are less effective if we select the Top-k targets
from the sub-set of labels which are least like the ground-truth label in terms of label semantics.

3.3.2 A KNOWLEDGE-ORIENTED ADVERSARIAL DISTILLATION FRAMEWORK

To overcome the shortcomings of the C&W loss function and In our adversarial distillation frame-
work, we adopt the view of point proposed in the network distillation method (Hinton et al., 2015)
that the full confidence/probability distribution summarizes the knowledge of a trained DNN. We hy-
pothesize that we can leverage the network distillation framework to learn the ordered Top-k attacks
by designing a proper adversarial probability distribution across the entire set of labels that satisfies
the specification of the given ordered Top-k targets, and facilitates explicit control of placing the GT
label, as well as top-down integration of label semantics.

Consider a given set of Top-k targets, {t1, · · · , tk}, denoted by PAD the adversarial probability
distribution in which PAD

ti > PAD
tj (∀i < j) and PAD

ti > PAD
l (∀l /∈ {t1, · · · , tk}). The space

of candidate distributions are huge. We present a simple knowledge-oriented approach to define
the adversarial distribution. We first specify the logit distribution and then compute the probability
distribution using softmax. Denote by Z the maximum logit (e.g., Z = 10 in our experiments). We
define the adversarial logits for the ordered Top-k targets by,

zAD
ti = Z − (i− 1)× γ, i ∈ [1, · · · , k], (8)

where γ is an empirically chosen decreasing factor (e.g., γ = 0.3 in our experiments). For the
remaining categories l /∈ {t1, · · · , tk}, we define the adversarial logit by,

zAD
l = α× 1

k

k∑
i=1

s(ti, l) + ε, (9)

where 0 ≤ α < zAD
tk

is the maximum logit that can be assigned to any j, s(a, b) is the semantic
similarity between the label a and label b, and ε is a small position for numerical consideration (e.g.,
ε = 1e-5). We compute s(a, b) using the cosine distance between the Glove (Pennington et al.,
2014) embedding vectors of category names and −1 ≤ s(a, b) ≤ 1. Here, when α = 0, we discard
the semantic knowledge and treat all the remaining categories equally. Note that our design of PAD

is similar in spirit to the label smoothing technique and its variants (Szegedy et al., 2015; Pereyra
et al., 2017) except that we target attack labels and exploit label semantic knowledge. The design
choice is still preliminary, although we observe its effectiveness in experiments. We hope this can
encourage more sophisticated work to be explored.

With the adversarial probability distribution PAD defined above as the target, we use the KL di-
vergence as the loss function in our adversarial distillation framework as done in network distilla-
tion (Hinton et al., 2015) and we have,

L
(k)
AD(x′) = KL(f(x′)||PAD), (10)

and then we follow the same optimization scheme as done in the C&W method (Eqn. 5).

4 EXPERIMENTS

In this section, we evaluate ordered Top-k attacks with k = 1, 2, 5, 10 in the ImageNet-1000 bench-
mark (Russakovsky et al., 2015) using two pretrained DNNs, ResNet-50 (He et al., 2016) and
DenseNet-121 (Huang et al., 2017) from the PyTorch model zoo 1. We implement our method
using the AdverTorch toolkit 2. Our source code will be released.

Data. In ImageNet-1000 (Russakovsky et al., 2015), there are 50, 000 images for validation. To
study attacks, we utilize the subset of images for which the predictions of both the ResNet-50 and
DenseNet-121 are correct. To reduce the computational demand, we randomly sample a smaller
subset, as commonly done in the literature. We first randomly select 500 categories to enlarge the
coverage of categories, and then randomly chose 2 images per selected categories, resulting in 1000
test images in total.

Settings. We follow the protocol used in the C&W method. We only test `2 norm as the energy
penalty for perturbations in learning (Eqn. 5). But, we evaluate learned adversarial examples in

1https://github.com/pytorch/vision/tree/master/torchvision/models
2https://github.com/BorealisAI/advertorch
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terms of three norms (`1, `2 and `∞). We test two search schema for the trade-off parameter λ
in optimization: both use 9 steps of binary search, and 30 and 1000 iterations of optimization are
performed for each trial of λ. In practice, computation budget is an important factor and less com-
putationally expensive ones are usually preferred. Only α = 1 is used in Eqn. 9 in experiments for
simplicity due to computational demand. We compare the results under three scenarios proposed in
the C&W method (Carlini & Wagner, 2016): The Best Case settings test the attack against all incor-
rect classes, and report the target class(es) that was least difficult to attack. The Worst Case settings
test the attack against all incorrect classes, and report the target class(es) that was most difficult to
attack. The Average Case settings select the target class(es) uniformly at random among the labels
that are not the GT.

4.1 RESULTS FOR RESNET-50
We first test ordered Top-k attacks using ResNet-50 for the four selected k’s. Table. 2 summarizes
the quantitative results and comparisons. For Top-10 attacks, the proposed AD method obtains
significantly better results in terms of both ASR and the `2 energy of the added perturbation. For
example, the proposed AD method has relative 362.3% ASR improvement over the strong C&W
baseline for the worst case setting. For Top-5 attacks, the AD method obtains significantly better
results when the search budget is relatively low (i.e., 9 × 30). For Top-k (k = 1, 2) attacks, both
the C&W method and the AD method can achieve 100% ASR, but the AD method has consistently
lower energies of the added perturbation, i.e., finding more effective attacks and richer perturbations.
Fig. 2 shows some learned adversarial examples of ordered Top-10 and Top-5 attacks.

Table 2: Results and comparisons under the ordered Top-k targeted attack protocol using randomly selected
and ordered 10 targets (GT exclusive) in ImageNet using ResNet-50. For Top-1 attacks, we also compare with
three state-of-the-art untargeted attack methods, FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018)
and MIFGSM (Dong et al., 2018). 10 iterations are used for both PGD and MIFGSM.

Protocol Attack Method Best Case Average Case Worst Case

ASR `1 `2 `∞ ASR `1 `2 `∞ ASR `1 `2 `∞

Top-10

C&W∗9×30 0 N.A. N.A. N.A. 0 N.A. N.A. N.A. 0 N.A. N.A. N.A.
AD9×30 0.8 2579 8.18 0.096 0.16 2579 8.18 0.096 0 N.A. N.A. N.A.

C&W∗9×100 43.4 2336 7.83 0.109 11.8 2330 7.82 0.109 0.1 2479 8.26 0.119
AD9×100 91.8 1677 5.56 0.088 51.2 1867 6.14 0.098 5.6 2021 6.62 0.110

C&W∗9×1000 97.7 1525 5.26 0.092 64.5 1742 5.99 0.103 20.4 1898 6.61 0.120
AD9×1000 99.8 678 2.45 0.060 98.4 974 3.45 0.081 94.3 1278 4.48 0.103

Improvement 2.1 (3.0%) 2.81 (53.4%) 33.9 (52.6%) 2.54 (42.4%) 73.9 (362.3%) 1.13 (17.1%)

Top-5

C&W∗9×30 75.8 2370 7.76 0.083 29.34 2425 7.94 0.086 0.7 2553 8.37 0.094
AD9×30 96.1 1060 3.58 0.056 80.68 1568 5.13 0.070 49.8 2215 7.07 0.087

C&W∗9×1000 100 437 1.59 0.044 100 600 2.16 0.058 100 779 2.77 0.074
AD9×1000 100 285 1.09 0.034 100 359 1.35 0.043 100 456 1.68 0.055

Top-2

C&W∗9×30 99.9 1002 3.40 0.037 99.36 1504 4.95 0.050 97.9 2007 6.52 0.065
AD9×30 99.9 308 1.12 0.028 99.5 561 1.94 0.037 98.4 873 2.92 0.049

C&W∗9×1000 100 185 0.72 0.025 100 241 0.91 0.033 100 303 1.12 0.042
AD9×1000 100 137 0.56 0.022 100 174 0.70 0.028 100 220 0.85 0.035

Top-1

C&W9×30 100 209.7 0.777 0.022 99.92 354.1 1.273 0.031 99.9 560.9 1.987 0.042
AD9×30 100 140.9 0.542 0.018 99.9 184.6 0.696 0.025 99.9 238.6 0.880 0.032

C&W9×1000 100 95.6 0.408 0.017 100 127.2 0.516 0.023 100 164.1 0.635 0.030
AD9×1000 100 81.3 0.380 0.016 100 109.6 0.472 0.023 100 143.9 0.579 0.029

FGSM 2.3 9299 24.1 0.063 0.46 9299 24.1 0.063 0 N.A. N.A. N.A.
PGD10 99.6 4691 14.1 0.063 88.1 4714 14.2 0.063 57.1 4748 14.3 0.063

MIFGSM10 100 5961 17.4 0.063 99.98 6082 17.6 0.063 99.9 6211 17.9 0.063

4.2 ARE ALL TOP-k TARGETS EQUALLY DIFFICULT TO ATTACK?
Intuitively, we understand that they should not be equally difficult. We conduct some experiments
to test this hypothesis. In particular, we test whether the label semantic knowledge can help identify
the weak spots of different attack methods, and whether the proposed AD method can gain more in
those weak spots. We test Top-5 using ResNet-50 3. Table. 3 summarizes the results. We observe
that for the 9× 30 search budget, attacks are more challenging if the Top-5 targets are selected from
the least-like set in terms of the label semantic similarity (see Eqn. 9), or from the lowest-score set
in terms of prediction scores on clean images.

4.3 RESULTS FOR DENSENET-121
To investigate if the observations from ResNets hold for other DNNs, we also test DenseNet-
121 (Huang et al., 2017) in ImageNet-1000. We test two settings: k = 1, 5 4. Overall, we obtain
similar results. Table. 4 summarizes the results.

3More results on other k’s and pretrained DNNs will be tested.
4Due to computation demand and limited computing resources, we will add results for other k’s.
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Top-1 Attack:
Norfolk Terrier à
1) Volleyball

ℓ2 norm of perturbation:

Top-1 Attack:
Volleyball à
1) Norfolk Terrier 

Failure 14.35 17.75 0.77 0.63 0.61 0.53ℓ2 norm of perturbation:

Figure 2: Learned adversarial examples for ordered Top-10 (top), Top-5 (middle) and Top-1 (bottom) attacks
using ResNet-50 (He et al., 2016). The proposed AD method has smaller perturbation energies and “cleaner”
(lower-entropy) prediction distributions. Note that for Top-10 attacks, the 9× 30 search scheme does not work
(see Table. 2).
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Table 3: Results of ordered Top-5 targeted attacks with targets being selected based on (Top) label similarity,
which uses 5 most-like labels and 5 least-like labels as targets respectively, and (Bottom) prediction score of
clean image, which uses 5 highest-score labels and 5-lowest score labels. In both cases, GT labels are exclusive.

Protocol Similarity Method ASR `1 `2 `∞

Label similarity

Most like

C&W∗9×30 80 1922 6.30 0.066
AD9×30 96.5 1286 4.20 0.054

C&W∗9×1000 100 392 1.43 0.042
AD9×1000 100 277 1.05 0.035

Least like

C&W∗9×30 27.1 2418 7.90 0.085
AD9×30 77.1 1635 5.35 0.072

C&W∗9×1000 100 596 2.15 0.060
AD9×1000 100 370 1.39 0.045

Prediction Score

Highest

C&W∗9×30 93 1546 4.98 0.042
AD9×30 99.9 1182 3.78 0.039

C&W∗9×1000 100 205 0.75 0.025
AD9×1000 100 170 0.65 0.023

Lowest

C&W∗9×30 13.4 2231 7.30 0.082
AD9×30 68.6 1791 5.86 0.077

C&W∗9×1000 100 621 2.25 0.064
AD9×1000 100 392 1.47 0.047

Table 4: Results and comparisons using DenseNet-121 Huang et al. (2017) under the ordered Top-5 and
Top-1 targeted attack protocol using randomly selected and ordered 5 targets (GT exclusive). For Top-1 at-
tacks, we also compare with three state-of-the-art untargeted attack methods, FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018) and MIFGSM (Dong et al., 2018). 10 iterations are used for both PGD and MIFGSM.

Protocol Method Best Case Average Case Worst Case

ASR `1 `2 `∞ ASR `1 `2 `∞ ASR `1 `2 `∞

Top-5

C&W∗9×30 96.6 2161 7.09 0.071 73.68 2329 7.65 0.080 35.6 2530 8.28 0.088
AD9×30 97.7 6413 2.14 0.043 92.66 1063 3.57 0.057 83.3 1636 5.35 0.072

C&W∗9×1000 100 392 1.42 0.040 100 527 1.89 0.052 100 669 2.37 0.065
AD9×1000 100 273 1.05 0.033 100 344 1.29 0.042 100 425 1.57 0.052

Top-1

C&W9×30 99.9 188.6 0.694 0.019 99.9 279.4 1.008 0.028 99.9 396.5 1.404 0.037
AD9×30 99.9 136.4 0.523 0.017 99.9 181.8 0.678 0.024 99.9 240.0 0.870 0.031

C&W9×1000 100 98.5 0.415 0.016 100 132.3 0.528 0.023 100 174.8 0.657 0.030
AD9×1000 100 83.8 0.384 0.016 100 115.9 0.485 0.023 100 158.69 0.610 0.030

FGSM 6.4 9263 24.0 0.063 1.44 9270 24.0 0.063 0 N.A. N.A. N.A.
PGD10 100 4617 14.2 0.063 97.2 4716 14.2 0.063 87.6 4716 14.2 0.063

MIFGSM10 100 5979 17.6 0.063 100 6095 17.6 0.063 100 6218 17.9 0.063

5 CONCLUSIONS AND DISCUSSIONS

This paper proposes to extend the traditional Top-1 targeted attack setting to the ordered Top-k
setting (k ≥ 1) under the white-box attack protocol. The ordered Top-k targeted attacks can improve
the robustness of attacks themselves. To our knowledge, it is the first work studying this ordered
Top-k attacks. To learn the ordered Top-k attacks, we present a conceptually simple yet effective
adversarial distillation framework motivated by network distillation. We also develop a modified
C&W method as the strong baseline for the ordered Top-k targeted attacks. In experiments, the
proposed method is tested in ImageNet-1000 using two popular DNNs, ResNet-50 and DenseNet-
121, with consistently better results obtained. We investigate the effectiveness of label semantic
knowledge in designing the adversarial distribution for distilling the ordered Top-k targeted attacks.

Discussions. We have shown that the proposed AD method is generally applicable to learn ordered
Top-k attacks. But, we note that the two components of the AD framework are in their simplest
forms in this paper, and need to be more thoroughly studied: designing more informative adver-
sarial distributions to guide the optimization to learn adversarial examples better and faster, and
investigating loss functions other than KL divergence such as the Jensen-Shannon (JS) divergence
or the Earth-Mover distance. On the other hand, we observed that the proposed AD method is more
effective when computation budget is limited (e.g., using the 9 × 30 search scheme). This leads to
the theoretically and computationally interesting question whether different attack methods all will
work comparably well if the computation budget is not limited. Of course, in practice, we prefer
more powerful ones when only limited computation budget is allowed. Furthermore, we observed
that both the modified C&W method and the AD method largely do not work in learning Top-k
(k ≥ 20) attacks with the two search schema (9× 30 and 9× 1000). We are working on addressing
the aforementioned issues to test the Top-k (k ≥ 20) cases, thus providing a thorough empirical
answer to the question: how aggressive can adversarial attacks be?
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