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ABSTRACT

This paper advocates the use of offline (batch) reinforcement learning (RL) to help
(1) isolate the contributions of exploitation vs. exploration in off-policy deep RL,
(2) improve reproducibility of deep RL research, and (3) facilitate the design of
simpler deep RL algorithms. We propose an offline RL benchmark on Atari 2600
games comprising all of the replay data of a DQN agent. Using this benchmark, we
demonstrate that recent off-policy deep RL algorithms, even when trained solely
on logged DQN data, can outperform online DQN. We present Random Ensemble
Mixture (REM), a simple Q-learning algorithm that enforces optimal Bellman
consistency on random convex combinations of multiple Q-value estimates. The
REM algorithm outperforms more complex RL agents such as C51 and QR-DQN
on the offline Atari benchmark and performs comparably in the online setting.

1 INTRODUCTION

Deep neural networks have become a critical component of modern reinforcement learning (RL) (Sut-
ton and Barto, 2018). The seminal work of Mnih et al. (2013; 2015) on deep Q-networks (DQN)
has demonstrated that it is possible to train neural networks using Q-learning (Watkins and Dayan,
1992) to achieve human-level performance in playing Atari 2600 games (Bellemare et al., 2013)
directly from raw pixels. Recent progress in mastering Go (Silver et al., 2016) and advances in
robotic control (Levine et al., 2016; OpenAI et al., 2018; Kalashnikov et al., 2018) present additional
supporting evidence for the enormous potential of deep RL.

Off-policy RL algorithms such as Q-learning are attractive because they disentangle data collection
and policy optimization and offer more sample efficient solutions than on-policy algorithms (Sutton
et al., 2000; Schulman et al., 2015; Mnih et al., 2016). Importantly, off-policy techniques can leverage
the vast amount of existing offline logged data for real-world applications such as digital advertis-
ing (Strehl et al., 2010; Bottou et al., 2013), education (Mandel et al., 2014), and healthcare (Shortreed
et al., 2011). Since online RL is often unsafe to deploy in the real world, offline RL algorithms are
the only feasible solution for many practical decision making problems (Dulac-Arnold et al., 2019).
Nevertheless, off-policy RL algorithms when combined with neural networks can be unstable or even
divergent (Baird, 1995; Boyan and Moore, 1995; Tsitsiklis and Van Roy, 1997).

In the absence of theoretical guarantees for off-policy deep RL, recent advances (see Hessel et al.
(2018) for an overview) are largely governed by empirical results on a popular benchmark suite of
Atari 2600 games (Bellemare et al., 2013). Unfortunately, these empirical results are difficult to
reproduce (Henderson et al., 2018) and the contribution of novel RL algorithms is often conflated
with many other design choices (Clary et al., 2019; Khetarpal et al., 2018). Given the empirical nature
of deep off-policy RL, it is crucial to come up with simpler and reproducible experimental settings
and study the relative importance of different components of deep RL algorithms. It is also important
to strive for finding successful RL algorithms that are as simple as possible.

This paper advocates the use of offline (batch) RL to help (1) isolate the contributions of exploitation vs.
exploration in off-policy deep RL, (2) improve reproducibility of deep RL research, and (3) facilitate
the design of simpler off-policy deep RL algorithms. To this end, we propose a new benchmark
for offline optimization of RL agents on Atari 2600 games using all of the replay data of a DQN
agent (Mnih et al., 2015). Using this benchmark, we investigate the following questions:

1. Is it possible to train successful Atari agents based solely on offline data?
2. Can one design simple and effective alternatives to intricate RL algorithms in the offline setting?
3. Are the insights gained from the offline setting useful for developing effective online algorithms?
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Figure 1: (a) Median normalized online evaluation scores averaged over 5 runs across 60 Atari 2600 games of
offline agents trained using the DQN replay dataset (b) Number of games where an offline agent achieves a
higher score than fully trained online DQN (Nature) as a function of training time. The online agents are trained
for 200 iterations where each iteration corresponds to 1 million game frames.

The contributions of this paper can be summarized as:

• An offline RL benchmark is proposed for evaluating and designing RL algorithms on Atari 2600
games without exploration, based on the logged replay data of a DQN agent comprising 50 million
(observation, action, reward, next observation) tuples per game. This reduces the computation
cost of the experiments considerably and helps improve reproducibility of deep RL research by
standardizing training using a fixed offline dataset. The replay dataset used in our experiments
will be released to enable offline optimization of RL algorithms on a common ground.
• Contrary to recent work (Zhang and Sutton, 2017; Fujimoto et al., 2019), we find that the

logged DQN data is sufficient for optimizing strong Atari agents offline without any environment
interaction. For instance, QR-DQN (Dabney et al., 2018b) trained on the DQN replay dataset
significantly outperforms online DQN (Mnih et al., 2015).
• A simple and novel Q-learning algorithm called Random Ensemble Mixture (REM) is presented,

which enforces optimal Bellman consistency on random convex combinations of multiple Q-value
estimates. The REM algorithm outperforms more complex RL algorithms such as C51 (Bellemare
et al., 2017) and QR-DQN in the offline setting (Figure 1).
• We use the insights gained from the offline experiments to develop an online variant of REM,

which performs comparably with online QR-DQN (Figure 4b).

2 OFF-POLICY REINFORCEMENT LEARNING

An interactive environment in reinforcement learning (RL) is typically described as a Markov decision
process (MDP) (S,A, R, P, γ) (Puterman, 1994), with a state space S , an action spaceA, a stochastic
reward function R(s, a), transition dynamics P (s′|s, a) and a discount factor γ ∈ [0, 1). A stochastic
policy π(· | s) maps each state s ∈ S to a distribution (density) over actions.

For an agent following the policy π, the action-value function, denoted Qπ(s, a), is defined as the
expectation of cumulative discounted future rewards, i.e.,

Qπ(s, a) = E
[∑∞

t=0
γtrt

∣∣∣ s0 = s, a0 = a, st ∼ P (· | st−1, at−1), at ∼ π(· | st), rt ∼ R(st, at)
]
.

(1)
The goal of RL is to find an optimal policy π∗ that attains maximum expected return, for which
Qπ
∗
(s, a) ≥ Qπ(s, a) for all π, s, a. The Bellman optimality equations (Bellman, 1957) characterize

the optimal policy in terms of the optimal Q-values, denoted Q∗ = Qπ
∗
, via:

Q∗(s, a) = E
[
r + γmax

a′
Q∗(s′, a′)

∣∣∣ r ∼ R(s, a), s′ ∼ P (· | s, a)
]
. (2)

To learn a policy from interaction with the environment, Q-learning (Watkins and Dayan, 1992)
iteratively improves an approximate estimate of Q∗, denoted Qθ, by repeatedly regressing the
LHS of (2) to target values defined by samples from the RHS of (2). For large and complex state
spaces, approximate Q-values are obtained using a neural network as the function approximator.
To further stabilize optimization, a target network Qθ′ with frozen parameters may be used for
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computing the learning target (Mnih et al., 2013). The target network parameters θ′ are updated to the
current Q-network parameters θ after a fixed number of time steps. DQN (Mnih et al., 2013; 2015)
parameterizes Qθ with a convolutional neural network (LeCun et al., 1998) and uses Q-learning
with a target network while following an ε-greedy policy with respect to Qθ for data collection.
DQN minimizes the TD error using the loss L(θ) on mini-batches of agent’s past experience tuples,
(s, a, r, s′), sampled from an experience replay buffer D (Lin, 1992) collected during training:

L(θ) = Es,a,r,s′∼D
[
`δ

(
Qθ(s, a)− r − γmax

a′
Qθ′(s

′, a′)
)]
, (3)

where lδ is the Huber loss (Huber, 1964) given by `δ(u) =

{
1
2u

2 for |u| ≤ δ,
δ(|u| − 1

2δ), otherwise.
.

Q-learning is an off-policy algorithm (Sutton and Barto, 2018) since the learning target can be
computed without any consideration of how the experience was generated. In offline (batch) RL (Ernst
et al., 2005; Riedmiller, 2005; Lange et al., 2012), we assume access to a fixed offline dataset of
experiences D, without any further interaction with the environment.

A family of recent off-policy deep RL algorithms, which serve as a strong baseline in this paper,
include Distributional RL (Bellemare et al., 2017; Jaquette, 1973) methods. Such algorithms estimate
a density over returns for each state-action pair, denoted Zπ(s, a), instead of directly estimating the
mean Qπ(s, a). Accordingly, one can express a form of distributional Bellman optimality as

Z∗(s, a)
D
= r + γZ∗(s′, argmaxa′∈A Q

∗(s′, a′)), where r ∼ R(s, a), s′ ∼ P (· | s, a), (4)

and D
= denotes distributional equivalence and Q∗(s′, a′) is estimated by taking an expectation with

respect to Z∗(s′, a′). C51 (Bellemare et al., 2017) approximates Z∗(s, a) by using a categorical
distribution over a set of pre-specified anchor points, and distributional QR-DQN (Dabney et al.,
2018b) approximates the return density by using a uniform mixture of K Dirac delta functions, i.e.,

Zθ(s, a) :=
1

K

K∑
i=1

δθi(s,a), and Qθ(s, a) =
1

K

K∑
i=1

θi(s, a) . (5)

QR-DQN trains each θi for 1 ≤ i ≤ K to match the 2i−1
2K -quantile of the target return density (RHS

of (4)) using the Huber quantile regression loss (Koenker, 2005; Dabney et al., 2018b). QR-DQN,
albeit complex, outperforms C51 and DQN and obtains state-of-the-art results on Atari 2600 games,
among agents that do not exploit n-step updates (Sutton, 1988) and prioritized replay (Schaul et al.,
2016). This paper avoids using n-step updates and prioritized replay to keep the empirical study
simple and focused on deep Q-learning algorithms.

3 OFFLINE OPTIMIZATION OF REINFORCEMENT LEARNING AGENTS

Modern off-policy deep RL algorithms perform remarkably well on common benchmarks such as the
Atari 2600 games (Bellemare et al., 2013) and continuous control MuJoCo tasks (Todorov et al., 2012).
Such off-policy algorithms (Mnih et al., 2015; Lillicrap et al., 2015) are considered “online” because
they alternate between optimizing a policy and using that policy to collect more data. Typically, these
algorithms keep a sliding window of most recent experiences in a finite replay buffer (Lin, 1992),
throwing away stale data to incorporate most fresh (on-policy) experiences. In principle, off-policy
algorithms can learn from data collected by any policy, however, Zhang and Sutton (2017) assert that
using a large replay buffer can significantly hurt the performance of Q-learning algorithms, since it
can delay rare on-policy experiences that are importnat for policy learning.

This paper revisits offline off-policy RL and investigates whether off-policy deep RL agents trained
solely on offline data can be successful. We advocate the use of offline RL to help isolate an
RL algorithm’s ability to exploit experience and generalize vs. its ability to explore effectively by
collecting interesting new data. The offline RL setting removes design choices related to the replay
buffer and exploration; therefore, it is much simpler to experiment with and reproduce than the typical
online off-policy learning. Also, in the offline setting, we optimize an objective (e.g., (3)) over a fixed
dataset as opposed to a changing replay buffer of an online agent.

To facilitate a large-scale study of offline RL, we train several instances of DQN (Nature) agents (Mnih
et al., 2015) on 60 Atari 2600 games for 200 million frames each, with a frame skip of 4 (standard
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Figure 2: Normalized performance improvement (in %) over online DQN (Nature), per game, of (a) offline
DQN (Nature) and (b) offline QR-DQN trained using the DQN replay dataset for same number of gradient
updates as online DQN. The normalized online score for each game is 0.0 and 1.0 for the worse and better
performing agent among fully trained online DQN and random agents respectively.

protocol) and sticky actions enabled (Machado et al., 2018). On each game, we train 5 different
agents with random initialization, and store all of the experience tuples of (observation, action, reward,
next observation) encountered during training into 5 replay datasets of 50 million tuples each. These
replay datasets are used for training standard off-policy RL agents, offline, without any interaction
with the environment during training. We perform an online evaluation of the agents in the intervals
of 1 million training frames, and report the best evaluation score for each agent, averaged over 5 runs.

3.1 EXPERIMENTS AND RESULTS

Given the logged replay data of the DQN agent, it is natural to ask whether training an offline variant
of DQN on this data will recover the performance of online DQN. Furthermore, whether more
recent off-policy algorithms are able to exploit the DQN replay dataset more effectively than DQN.
To investigate these questions, we train DQN (Nature) and distributional QR-DQN (Dabney et al.,
2018b) agents, offline, on the DQN replay dataset for the same number of gradient updates as online
DQN. We use the hyperparameters provided in the Dopamine baselines (Castro et al., 2018) for a
standardized comparison (Section A.4) and report scores using a normalized scale (Section A.3). We
note that the replay datasets include samples from all of the intermediate policies seen during the
optimization of the DQN (Nature) agent. Accordingly, we compare the performance of offline agents
against the best performing policy among the mixture of data collecting policies.

Results. We find that offline DQN underperforms online DQN on all except a few games while offline
QR-DQN outperforms offline DQN and online DQN on most of the games (Figure 2). C51 (Bellemare
et al., 2017) trained offline using the DQN replay dataset also considerably improves upon offline
DQN (Figure A.4). These results suggest that DQN (Nature) is somewhat ineffective at exploiting
off-policy data. However, offline QR-DQN’s impressive performance demonstrates that it is possible
to optimize strong Atari agents completely offline (see Figure A.6 for learning curves).

3.2 OFFLINE CONTINUOUS CONTROL EXPERIMENTS

In contrast to our offline results on Atari 2600 games with discrete action spaces, discussed above,
Fujimoto et al. (2019) find that standard off-policy deep RL agents are not effective on continuous
control problems when trained offline, even when large and diverse replay datasets are used. The
results of Fujimoto et al. (2019) are based on the evaluation of a standard continuous control agent,
called DDPG (Lillicrap et al., 2015), and other more recent continuous control algorithms such as
TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) are not considered in their study.

Motivated by the so-called final buffer setting in Fujimoto et al. (2019) (Section A.2), we train a DDPG
agent on continuous control MuJoCo tasks (Todorov et al., 2012) for 1 million time steps and store
all of the experienced transitions. Using this dataset, we train standard off-policy agents including
TD3 and DDPG completely offline. Consistent with our offline results on Atari games, offline TD3
significantly outperforms the data collecting DDPG agent and offline DDPG (Figure A.1).

4 SEEKING SIMPLER OFF-POLICY RL ALGORITHMS

Section 3.1 finds that recent distributional RL algorithms such as QR-DQN are effective at exploiting
offline data. However, these algorithms are complicated as they require a generalization of Bellman
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Figure 3: Neural network architectures for DQN, QR-DQN and the proposed expected RL variants, i.e.,
Ensemble-DQN and REM, with the same multi-head architecture as QR-DQN. The individual Q-heads share all
of the neural network layers except the final fully connected layer.

equations to distributions (4) and typically minimize a probability divergence measure from a
distributional target (Rowland et al., 2018; Dabney et al., 2018b) instead of scalar TD errors. Moreover,
despite recent efforts (Lyle et al., 2019; Bellemare et al., 2019), the source of the gains when using
distributional RL algorithms remains unclear. We investigate whether one can develop simple and
effective alternatives to more intricate RL algorithms in the offline setting. To this end, we study two
deep Q-learning algorithms, Ensemble DQN and REM, which adopt ensembling to improve stability.

4.1 ENSEMBLE-DQN

Ensemble-DQN is a simple extension of DQN that approximates the Q-values via an ensemble
of parameterized Q-functions (Faußer and Schwenker, 2015; Osband et al., 2016; Anschel et al.,
2017). Each Q-value estimate, denoted Qkθ(s, a), is trained against its own target Qkθ′(s, a), similar
to Bootstrapped-DQN (Osband et al., 2016). The Q-functions are optimized using identical mini-
batches in the same order, starting from different parameter initializations. The loss L(θ) takes the
form,

L(θ) =
1

K

K∑
k=1

Es,a,r,s′∼D
[
`δ

(
Qkθ(s, a)− r − γmax

a′
Qkθ′(s

′, a′)
)]

, (6)

where lδ is the Huber loss. While Bootstrapped-DQN uses one of the Q-value estimates in each
episode to improve exploration, in the offline setting, we are only concerned with the ability of
Ensemble-DQN to exploit better and use the mean of the Q-value estimates for evaluation.

4.2 RANDOM ENSEMBLE MIXTURE (REM)

Increasing the number of models used for ensembling typically improves the performance of su-
pervised learning models (Shazeer et al., 2017). This raises the question whether one can use an
ensemble over an exponential number of Q-estimates in a computationally efficient manner. Inspired
by dropout (Srivastava et al., 2014), we propose Random Ensemble Mixture for RL.

Random Ensemble Mixture (REM) uses multiple parameterizedQ-functions to estimate theQ-values,
similar to Ensemble-DQN. The key insight behind REM is that one can think of a convex combination
of multiple Q-value estimates as a valid Q-value estimate itself. This is especially true at the fixed
point, where all of theQ-value estimates have converged to an identicalQ-function. Using this insight,
we train a family of Q-function approximators defined by mixing probabilities on a (K − 1)-simplex.
Specifically, for each mini-batch, we randomly draw a categorical distribution α, which defines a
convex combination of the K estimates to approximate the optimal Q-function. This approximator is
trained against its corresponding target to minimize the TD error. The loss L(θ) takes the form,

L(θ) = Es,a,r,s′∼D

[
Eα1,...,αK∼P∆

[
`δ

(∑
k

αkQ
k
θ(s, a)− r − γmax

a′

∑
k

αkQ
k
θ′(s
′, a′)

)]]
(7)

where P∆ represents a probability distribution over the standard (K − 1)-simplex ∆K−1 = {α ∈
RK : α1 + α2 + · · · + αK = 1, αk ≥ 0, k = 1, . . . ,K}. One can view L(θ) as an infinite set
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Figure 4: Normalized scores averaged over 5 runs across 60 Atari 2600 games of (a) offline agents trained using
the DQN replay dataset, and (b) agents trained online for 200 million game frames.

of Bellman optimality constraints corresponding to different mixture probability distributions. For
action selection, we use the average of the K value estimates as the Q-function, i.e., Q(s, a) =∑
kQ

k
θ(s, a)/K. REM is easy to implement and analyze (see Proposition 1), and can be viewed

as a simple regularization technique for value-based RL. In our experiments, we use a very simple
distribution P∆: we first draw a set of K values i. i. d. from Uniform (0, 1) and normalize them to get
a valid categorical distribution, i.e., α′k ∼ U(0, 1) followed by αk = α′k/

∑
α′i.

Proposition 1. Consider the assumptions: (a) The distribution P∆ has full support over the entire
(K − 1)-simplex. (b) Only a finite number of distinct Q-functions globally minimize the loss in (3).
(c) Q∗ is defined in terms of the MDP induced by the data distribution D. (d) Q∗ lies in the family of
our function approximation. Then, at the global minimum of L(θ) (7) for a multi-head Q-network:

(i) Under assumptions (a) and (b), all the Q-heads represent identical Q-functions.
(ii) Under assumptions (a)–(d), the common global solution is Q∗.

The proof of (ii) follows from (i) and the fact that (7) is lower bounded by the TD error attained by
Q∗. The proof of part (i) can be found in the supplementary material.

4.3 EXPERIMENTS AND RESULTS

Asymptotic performance of offline agents. In supervised learning, asymptotic performance matters
much more than performance within a fixed budget of gradient updates. Similarly, for a given sample
complexity, we prefer RL algorithms that perform the best as long as the number of gradient updates
is feasible. Since the sample efficiency of the offline agents for a given dataset is fixed, we train them
on the DQN replay dataset for five times as many gradient updates as online DQN.

Comparison with QR-DQN. QR-DQN modifies the DQN (Nature) architecture to output K values
for each action using a multi-head Q-network and replaces RMSProp (Tieleman and Hinton, 2012)
with Adam (Kingma and Ba, 2015) for optimization. To ensure a fair comparison with QR-DQN, we
use the same multi-head Q-network as QR-DQN with K = 200 heads (Figure 3), where each head
represents a Q-value estimate for REM and Ensemble-DQN. We also use Adam for optimization.

Additional Baselines. To isolate the gains due to Adam in QR-DQN and our proposed variants,
we compare against a DQN baseline which also uses Adam. We also evaluate Averaged Ensemble-
DQN, a variant of Ensemble-DQN proposed by Anschel et al. (2017), which uses the average of the
predicted target Q-values as the Bellman target for training each parameterized Q-function. This
baseline determines whether the random combinations of REM provide any significant benefit over
simply using an ensemble of predictors to stabilize the Bellman target.

REM with separate Q-networks. To investigate whether the effectiveness of REM is linked to
ensembling techniques and dropout, we compare offline REM with K Q-value estimates computed
using K separate Q-networks vs. a multi-head Q-network for K ∈ {4, 16}.
Results. Figure 4a shows the comparison of the additional baselines with REM and Ensemble-DQN
and Table 1 summarizes the asymptotic performance results. DQN with Adam noticeably bridges the
gap in asymptotic performance between QR-DQN and DQN (Nature) in the offline setting. Offline
Ensemble-DQN does not improve upon this strong DQN baseline showing that its naive ensembling
approach is inadequate. Furthermore, Averaged Ensemble-DQN performs only slightly better than
Ensemble-DQN. In contrast, REM exploits offline data more effectively than other agents, including
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Table 1: Median normalized best evaluation scores (averaged over 5 runs) across 60 Atari 2600 games, measured
as percentages and number of games where an agent achieves better scores than a fully trained online DQN (Na-
ture) agent. The offline RL agents are trained using the DQN replay dataset for five times as many gradient
updates as the online DQN agent. The online RL agents are trained for 200 million frames (standard protocol).

Offline agent Median >DQN

DQN (Adam) 111.9% 41
Ensemble-DQN 111.0% 39
Averaged Ensemble-DQN 112.1% 43
QR-DQN 118.9% 45
REM 123.8% 49

Online agent Median >DQN

C51 119.0% 44
Bootstrapped-DQN 122.8% 53
QR-DQN 134.8% 52
REM 134.0% 52

QR-DQN, when trained for more gradient updates. Surprisingly, using the DQN replay dataset,
offline REM surpasses the gains from online C51, the first state-of-the-art distributional RL method
on Atari games (Figure 1). REM with separate Q-networks performs better asymptotically and learns
faster than REM with a multi-head Q-network in the offline setting (Figure A.5).

4.4 FROM OFFLINE TO ONLINE REINFORCEMENT LEARNING

Can we combine the insights gained from the offline setting with appropriate design choices (e.g., ex-
ploration, replay buffer) to create effective online methods? In online RL, learning and data generation
are tightly coupled, i.e., an agent that learns faster also collects more relevant training data.

We ran online REM with K separate Q-networks (with K = 4 for computational efficiency) because
of the improved convergence speed over multi-head REM in the offline setting. For data collection,
we use ε-greedy with a randomly sampled Q-estimate from the simplex for each episode, similar to
Bootstrapped DQN. To estimate the gains from the REM objective (7) in the online setting, we also
evaluate Bootstrapped-DQN with identical modifications (e.g., separate Q-networks) as online REM.
Figure 4b and Table 1 show that REM performs on par with QR-DQN and considerably outperforms
Bootstrapped-DQN (see Figure A.8 for learning curves). Based on these results, we conclude that
our offline benchmark cen help facilitate the design of effective online off-policy RL algorithms.

5 RELATED WORK

Our work is motivated by whether the complexity of recent off-policy approaches (e.g., Rainbow (Hes-
sel et al., 2018)) is necessary and is similar in spirit to work by Rajeswaran et al. (2017), which
attempts to demystify the complexity of on-policy deep RL for continuous control. Our work is
mainly related to two subareas of RL known as batch RL and distributional RL. For the sake of clarity,
we refer to batch RL as offline RL in other sections of the paper.

Batch Reinforcement Learning. While there has been increasing interest in batch RL (Lange et al.,
2012) over the last few years (Jiang and Li, 2016; Farajtabar et al., 2018; Irpan et al., 2019), much of
this focussed on off-policy policy evaluation, where the goal is to estimate the performance of a given
fixed policy. Similar to (Ernst et al., 2005; Kalyanakrishnan and Stone, 2007; Jaques et al., 2019), we
investigate batch off-policy learning, which requires learning a good policy given a fixed dataset. In
our offline setup, we only assume access to samples from the behavior policy and focus on Q-learning
methods without any importance sampling correction as opposed to (Swaminathan and Joachims,
2015; Liu et al., 2019). Recent work (Fujimoto et al., 2019; Kumar et al., 2019) documents that
standard off-policy methods with fixed datasets fail on continuous control MuJoCo tasks. Opposed to
Kumar et al. (2019), we focus on the offline setting with data collected from a diverse mixture of
policies rather than a single Markovian behavior policy. Furthermore, in contrast to Fujimoto et al.
(2019), our batch learning results on MuJoCo tasks and Atari 2600 games (Section 3) demonstrate that
standard off-policy deep RL algorithms (e.g., TD3 (Fujimoto et al., 2018), QR-DQN (Dabney et al.,
2018b)) are quite effective when learning truly off-policy from large and diverse datasets. Zhang and
Sutton (2017) show that large replay buffers can hurt the performance of simple Q-learning methods
with weak function approximators; they attribute this to the “off-policyness” of a large buffer which
might delay important transitions for learning. However, our results reveal that even with uniform
sampling, effective deep Q-learning algorithms (e.g., REM) can exploit completely off-policy logged
DQN data on Atari 2600 games, given sufficient number of gradient updates.

Distributional Reinforcement Learning. Recently, distributional RL algorithms (e.g., C51 (Belle-
mare et al., 2017), QR-DQN (Dabney et al., 2018b), IQN (Dabney et al., 2018a)) gained popularity due
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Figure 5: Normalized scores (averaged over 5 runs) of QR-DQN and multi-head REM trained offline on 5 Atari
2600 games for 5X gradient steps using only a fraction of the DQN replay dataset.

to their strong performance on Atari 2600 games. We observe that distributional algorithms (e.g., QR-
DQN, C51) are quite effective at exploitation and develop much simpler REM (Section 4.2), which
is as successful as QR-DQN. In contrast to distributional RL, much of the theoretical results of
Q-learning naturally extends to REM due to its similarity to Q-learning, e.g., in the tabular setting,
REM converges to Q∗, while popular distributional methods (e.g., QR-DQN, C51) need not learn
true return statistics corresponding to the underlying MDP (Rowland et al., 2019).

6 OFFLINE RL CHALLENGES: SAMPLE EFFICIENCY AND STABILITY

Our offline learning results indicate that 50 million logged experience tuples per game from DQN (Na-
ture) are sufficient to obtain good online performance on most of the Atari 2600 games. One may
argue that the size of the fixed replay buffer and its composition play a key role in our empirical
results (De Bruin et al., 2015). To study the role of the replay buffer size in the success of the offline
agents, we perform an ablation experiment with variable replay buffer size.

We conducted offline experiments with reduced data obtained via randomly subsampling entire
trajectories from the logged DQN experiences, thereby maintaining the same data distribution.
Figure 5 presents the performance of the offline REM and QR-DQN agents with N% of the 50
million tuples in the DQN replay dataset where N ∈ {1, 10, 20, 50, 100}. As expected, performance
tends to increase as the fraction of data increases. With N ≥ 10%, REM and QR-DQN still
perform comparably to online DQN on most of these games. However, the performance deteriorates
drastically for N = 1%. These results pose an important challenge in off-policy deep RL: Can we
create sample-efficient agents that squeeze the most performance gains out of a fixed batch of data?

The offline agents obtain much higher scores compared to the returns in DQN replay dataset on most
of the games (Figure A.3). However, even with 50 million tuples, they exhibit overfitting on some
games (Figure A.7), i.e., after a sufficiently large number of gradient updates, their performance
degrades. We also observe divergence w.r.t. Huber loss in our reduced data experiments withN = 1%.
Based on these findings, we posit that our offline benchmark can be used for designing techniques akin
to regularization for stable off-policy deep RL algorithms with reasonable performance throughout
learning (Garcıa and Fernández, 2015), a requirement for many practical RL applications.

7 CONCLUSIONS AND FUTURE WORK

This work investigates off-policy deep RL using an offline RL benchmark on Atari 2600 games based
on logged experiences of a DQN agent. We demonstrate that it is possible to learn policies with high
returns that significantly outperform the policies used to collect replay data. We develop REM, a
simple variant of ensemble Q-learning, that can effectively exploit large-scale off-policy data and
shares much of the success of the more complicated distributional RL algorithms on Atari 2600 games.
The proposed benchmark can serve as a testbed for designing simple, stable and sample-efficient RL
algorithms and enable the research community to evaluate off-policy methods on a common ground.

For future work, investigating Rainbow components, e.g., prioritized replay (Schaul et al., 2016),
n-step updates (Sutton, 1988), double Q-learning (Van Hasselt et al., 2016), etc., in the offline
RL setting and incorporating them with REM are interesting directions. Experience replay-based
algorithms can be more sample efficient than model-based approaches (Van Hasselt et al., 2019), and
using the DQN replay dataset on Atari 2600 games for designing non-parametric replay models (Pan
et al., 2018) and parametric world models (Kaiser et al., 2019) is quite promising for improving
sample-efficiency. We also leave further investigation of the exploitation ability of distributional
RL to future work. As mentioned by Sutton and Barto (2018, Chapter 11.10): “The potential for
off-policy learning remains tantalizing, the best way to achieve it still a mystery.”
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A APPENDIX

A.1 PROOFS

Proposition 1. Consider the assumptions: (a) The distribution P∆ has full support over the entire
(K − 1)-simplex. (b) Only a finite number of distinct Q-functions globally minimize the loss in (3).
(c) Q∗ is defined in terms of the MDP induced by the data distribution D. (d) Q∗ lies in the family of
our function approximation. Then at the global minimum of L(θ) (7) for multi-head Q-network :

(i) Under assumptions (a) and (b), all the Q-heads represent identical Q-functions.
(ii) Under assumptions (a)–(d), the common convergence point is Q∗.

Proof. Part (i): Under assumptions (a) and (b), we would prove by contradiction that each Q-head
should be identical to minimize the REM loss L(θ) (7). Note that we consider two Q-functions to be
distinct only if they differ on any state s in D.

The REM loss L(θ) = Eα∼P∆ [L(α, θ)] where L(α, θ) is given by

L(α, θ) = Es,a,r,s′∼D

[
`δ

(∑
k

αkQ
k
θ(s, a)− r − γmax

a′

∑
k

αkQ
k
θ′(s
′, a′)

)]
. (8)

If the heads Qiθ and Qjθ don’t converge to identical Q-values at the global minimum of L(θ), it can
be deduced using Lemma 1 that all the Q-functions given by the convex combination αiQiθ + αjQ

j
θ

such that αi + αj = 1 minimizes the loss in (3). This contradicts the assumption that only a finite
number of distinct Q-functions globally minimize the loss in (3). Hence, all Q-heads represent an
identical Q-function at the global minimum of L(θ).

Lemma 1. Assuming that the distribution P∆ has full support over the entire (K − 1)-simplex ∆K−1,
then at any global minimum of L(θ), the Q-function heads Qkθ for k = 1, . . . ,K minimize L(α, θ)
for any α ∈ ∆K−1.

Proof. Let Qα∗,θ∗ =
∑K
k=1 α

∗
kQ

k
θ∗(s, a) corresponding to the convex combination α∗ =

(α∗1, · · · , α∗K) represents one of the global minima of L(α, θ) (8) i.e., L(α∗, θ∗) = min
α,θ
L(α, θ)

where α ∈ ∆K−1. Any global minima of L(θ) attains a value of L(α∗, θ∗) or higher since,

L(θ) = Eα∼P∆ [L(α, θ)] ≥ Eα∼P∆ [L(α∗, θ∗)] ≥ L(α∗, θ∗) (9)

Let Qkθ∗(s, a) = wkθ∗ · fθ∗(s, a) where fθ∗(s, a) ∈ RD represent the shared features among the
Q-heads and wkθ∗ ∈ RD represent the weight vector in the final layer corresponding to the k-
th head. Note that Qα∗,θ∗ can also be represented by each of the individual Q-heads using a
weight vector given by convex combination α∗ of weight vectors (w1

θ∗ , · · · , wKθ∗), i.e., Q(s, a) =(∑K
k=1 α

∗
kw

k
θ∗

)
· fθ∗(s, a).

Let θI be such that QkθI = Qα∗,θ∗ for all Q-heads. By definition of Qα∗,θ∗ , for all α ∼ P∆,
L(α, θI) = L(α∗, θ∗) which implies that L(θI) = L(α∗, θ∗). Hence, θI corresponds to one of the
global minima of L(θ) and any global minima of L(θ) attains a value of L(α∗, θ∗).

Since L(α, θ) ≥ L(α∗, θ∗) for any α ∈ ∆K−1, for any θM such that L(θM ) = L(α∗, θ∗) implies
that L(α, θM ) = L(α∗, θ∗) for any α ∼ P∆. Therefore, at any global minimum of L(θ), the
Q-function heads Qkθ for k = 1, . . . ,K minimize L(α, θ) for any α ∈ ∆K−1.

A.2 OFFLINE CONTINUOUS CONTROL EXPERIMENTS

We replicated the final buffer setup as described by Fujimoto et al. (2019): We train a DDPG (Lillicrap
et al., 2015) agent for 1 million time steps three standard MuJoCo continuous control environments
in OpenAI gym (Todorov et al., 2012; Brockman et al., 2016), adding N (0, 0.5) Gaussian noise to
actions for high exploration, and store all experienced transitions. This collection procedure creates
a dataset with a diverse set of states and actions, with the aim of sufficient coverage. Similar to
Fujimoto et al. (2019), we train DDPG across 15 seeds, and select the 5 top performing seeds for
dataset collection.
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Figure A.1: We examine the performance of DDPG, TD3 and BCQ trained using identical offline data on three
standard MuJoCo environments. We plot the mean performance (evaluated without exploration noise) across
5 runs. The shaded area represents a standard deviation. The bold black line measures the average return of
episodes contained in the offline data collected using the DDPG agent (with exploration noise).

Using this logged dataset, we train standard continuous control off-policy actor-critic methods
namely DDPG and TD3 (Fujimoto et al., 2018) completely offline without any exploration. We
also train a Batch-Constrained deep Q-learning (BCQ) agent, proposed by Fujimoto et al. (2019),
which restricts the action space to force the offline agent towards behaving close to on-policy
w.r.t. a subset of the given data. We use the open source code generously provided by the authors
at https://github.com/sfujim/BCQ and https://github.com/sfujim/TD3. We
use the hyperparameters mentioned in (Fujimoto et al., 2018; 2019) except offline TD3 which uses a
learning rate of 0.0005 for both the actor and critic.

Figure A.1 show that offline TD3 significantly outperforms the behavior policy which collected the
offline data as well as the offline DDPG agent. Noticeably, offline TD3 also performs comparably to
BCQ, an algorithm designed specifically to learn from arbitrary, fixed offline data. While Fujimoto
et al. (2019) attribute the failure to learn in the offline setting to extrapolation error (i.e., the mismatch
between the offline dataset and true state-action visitation of the current policy), our results suggest
that failure to learn from diverse offline data may be linked to extrapolation error for only weak
exploitation agents such as DDPG.

A.3 SCORE NORMALIZATION

The improvement in normalized performance of an offline agent, expressed as a percentage, over an
online DQN (Nature) (Mnih et al., 2015) agent is calculated as: 100× (ScoreNormalized − 1) where:

ScoreNormalized =
ScoreAgent − min(ScoreDQN, ScoreRandom)

max(ScoreDQN, ScoreRandom) − min(ScoreDQN, ScoreRandom)
. (10)

Here, the scores are the mean evaluation scores averaged over 5 runs. We chose not to measure
performance in terms of percentage of online DQN scores alone because a tiny difference relative to
the random agent on some games can translate into hundreds of percent in DQN score difference.
Additionally, the max is needed since DQN performs worse than a random agent on the games Solaris
and Skiing.

A.4 HYPERPARAMETERS & EXPERIMENT DETAILS

In our experiments, we used the hyperparameters provided in Dopamine baselines (Castro et al.,
2018) and report them for completeness and ease of reproducibility in Table 2. As mentioned by
Dopamine’s GitHub repository, changing these parameters can significantly affect performance,
without necessarily being indicative of an algorithmic difference. We will also open source our code
to further aid in reproducing our results.

The Atari environments (Bellemare et al., 2013) used in our experiments are stochastic due to sticky
actions (Machado et al., 2018), i.e., there is 25% chance at every time step that the environment will
execute the agent’s previous action again, instead of the agent’s new action. All agents (online or
offline) are compared using the best evaluation score (averaged over 5 runs) achieved during training
where the evaluation is done online every training iteration using a ε-greedy policy with ε = 0.001.
We report offline training results with same hyperparameters over 5 random seeds of the DQN replay
data collection, game simulator and network initialization.
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Table 2: The hyperparameters used by the offline and online RL agents in our experiments.

Hyperparameter setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training steps per iteration 250K
Update period every 4 steps
Evaluation ε 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Multi-head Q-network: number of Q-heads 200
Hardware Tesla P100 GPU

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1,000,000 steps 50,000,000 steps
Replay Scheme Uniform Uniform
Training Iterations 200 200 or 1000

DQN replay dataset collection. For collecting the offline data used in our experiments, we use
online DQN (Nature) (Mnih et al., 2015) with the RMSprop (Tieleman and Hinton, 2012) optimizer.
The DQN replay dataset, BDQN, consists of approximately 50 million experience tuples for each run
per game corresponds to 200 million frames due to frame skipping of four, i.e., repeating a selected
action for four consecutive frames. Note that the total dataset size is approximately 15 billion tuples (
50 million tuples

agent ∗ 5 agents
game ∗ 60 games).

Optimizer related hyperparameters. For existing off-policy agents, step size and optimizer were
taken as published. Offline DQN (Adam) and all the offline agents with multi-head Q-network (Fig-
ure 3) use the Adam optimizer (Kingma and Ba, 2015) with same hyperparameters as online QR-
DQN (Dabney et al., 2018b) (lr = 0.00005, εAdam = 0.01/32). Note that scaling the loss has the
same effect as inversely scaling εAdam when using Adam.

Online Agents. For online REM shown in Figure 4b, we performed hyper-parameter tuning over
εAdam in (0.01/32, 0.005/32, 0.001/32) over 5 training games (Asterix, Breakout, Pong, Q*Bert,
Seaquest) and evaluated on the full set of 60 Atari 2600 games using the best setting (lr = 0.00005,
εAdam = 0.001/32). Online REM uses 4 Q-value estimates calculated using separate Q-networks
where each network has the same architecture as originally used by online DQN (Nature). Similar to
REM, our version of Bootstrapped-DQN also uses 4 separate Q-networks and Adam optimizer with
identical hyperaparmeters (lr = 0.00005, εAdam = 0.001/32).
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Figure A.2: Normalized Performance improvement (in %) over online DQN (Nature), per game, of (a) offline
Ensemble-DQN and (b) offline REM trained using the DQN replay dataset for same number of gradient steps
as online DQN. The normalized online score for each game is 0.0 and 1.0 for the worse and better performing
agent among fully trained online DQN and random agents respectively.
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Figure A.3: Normalized Performance improvement (in %) over online DQN (Nature), per game, of (a) offline
QR-DQN (5X) (b) offline REM (5X) trained using the DQN replay dataset for five times as many gradient steps
as online DQN. The normalized online score for each game is 0.0 and 1.0 for the worse and better performing
agent among fully trained online DQN and random agents respectively.
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online DQN agent. The scores are averaged over 5 runs (shown as traces) and smoothed over a sliding window
of 5 iterations and error bands show standard deviation.
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(a) REM with 4 Q-value estimates (K = 4)
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(b) REM with 16 Q-value estimates (K = 16)

Figure A.5: REM with Separate Q-networks. Average online scores of offline REM variants with different
architectures and QR-DQN trained on 6 Atari 2600 games for 500 iterations using the DQN replay dataset. The
scores are averaged over 5 runs (shown as traces) and smoothed over a sliding window of 5 iterations and error
bands show standard deviation. The multi-network REM and the multi-head REM employ K Q-value estimates
computed using separate Q-networks and Q-heads of a multi-head Q-network respectively and are optimized
with identical hyperparameters. Multi-network REM improves upon the multi-head REM indicating that the
more diverse Q-estimates provided by the separate Q-networks improve performance of REM over Q-estimates
provided by the multi-head Q-network with shared features.

Table 3: Median normalized scores (Section A.3) across 60 Atari 2600 games, measured as percentages and
number of games where an agent achieves better scores than a fully trained online DQN (Nature) agent. All
the offline agents below are trained using the DQN replay dataset. The entries of the table without any suffix
report training results with the five times as many gradient steps as online DQN while the entires with suffix (1x)
indicates the same number of gradient steps as the online DQN agent. All the offline agents except DQN use the
same multi-head architecture as QR-DQN.

Offline agent Median >DQN

DQN (Nature) (1x) 74.4% 10
DQN (Adam) (1x) 104.6% 39
Ensemble-DQN (1x) 92.5% 26
Averaged Ensemble-DQN (1x) 88.6% 24
QR-DQN (1x) 115.0% 44
REM (1x) 103.7% 35

Offline agent Median >DQN

DQN (Nature) 83.4% 17
DQN (Adam) 111.9% 41
Ensemble-DQN 111.0% 39
Averaged Ensemble-DQN 112.1% 43
QR-DQN 118.9% 45
REM 123.8% 49
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Figure A.6: Average evaluation scores across 60 Atari 2600 games for online DQN, offline DQN and offline
QR-DQN trained for 200 iterations. The offline agents are trained using the DQN replay dataset. The scores are
averaged over 5 runs (shown as traces) and smoothed over a sliding window of 5 iterations and error bands show
standard deviation. The horizontal line shows the performance of the best policy (averaged over 5 runs) found
during training of online DQN.
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Figure A.7: Average evaluation scores across 60 Atari 2600 games of DQN (Adam), Ensemble-DQN, QR-DQN
and REM agents trained offline using the DQN replay dataset. The horizontal line for online DQN show the best
evaluation performance it obtains during training. All the offline agents except DQN use the same multi-head
architecture with K = 200 heads. The scores are averaged over 5 runs (shown as traces) and smoothed over a
sliding window of 5 iterations and error bands show standard deviation.
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Figure A.8: Average evaluation scores across 60 Atari 2600 games of DQN, C51, QR-DQN, Bootstrapped-DQN
and REM agents trained online for 200 million game frames (standard protocol). The scores are averaged over
5 runs (shown as traces) and smoothed over a sliding window of 5 iterations and error bands show standard
deviation.
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