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ABSTRACT

Unsupervised landmark learning is the task of learning semantic keypoint-like
representations without the use of expensive keypoint-level annotations. A popu-
lar approach is to factorize an image into a pose and appearance data stream, then
to reconstruct the image from the factorized components. The pose representa-
tion should capture a set of consistent and tightly localized landmarks in order to
facilitate reconstruction of the input image. Ultimately, we wish for our learned
landmarks to focus on the foreground object of interest. However, the reconstruc-
tion task of the entire image forces the model to allocate landmarks to model
the background. This work explores the effects of factorizing the reconstruction
task into separate foreground and background reconstructions, conditioning only
the foreground reconstruction on the unsupervised landmarks. Our experiments
demonstrate that the proposed factorization results in landmarks that are focused
on the foreground object of interest. Furthermore, the rendered background qual-
ity is also improved, as the background rendering pipeline no longer requires the
ill-suited landmarks to model its pose and appearance. We demonstrate this im-
provement in the context of the video-prediction task.

1 INTRODUCTION

Pose prediction is a classical computer vision task that involves inferring the location and configu-
ration of deformable objects within an image. It has applications in human activity classification,
finding semantic correspondences across multiple object instances, and robot planning to name a
few. One of the caveats of this task is that annotation is very expensive. Individual object “parts”
need to be carefully and consistently annotated with pixel-level precision. Our work focuses on the
task of unsupervised landmark learning, which aims to find unsupervised pose representations from
image data without the need for direct pose-level annotation.

A good visual landmark should be tightly localized, consistent across multiple object instances, and
grounded on the foreground object of interest. Tight localization is important because many objects
(such as persons) are highly deformable. A landmark localized to a smaller, rigid area of the object
will offer more precise pose information in the event of object motion. Consistency across multiple
object instances is also important, as we wish for our landmarks to apply to all instances within
a visual category. Finally, and most relevant to our proposed method, we want our landmarks to
focus on the foreground objects. A landmark that fires on the background is a wasted landmark,
as the background is constantly changing, and yields little information regarding the pose of our
foreground object of interest.

Many unsupervised landmark learning methods perturb an input training image with various trans-
formations, then require the model to learn semantic correspondences across the transformed vari-
ants to piece together the unaltered input image. The primary issue with this approach is it penalizes
the entire image reconstruction when we care only about the foreground, resulting in landmarks
being allocated to the background. This poses a number of issues, including increased memory
requirements (more landmarks required to capture the foreground) and lower landmark reliability
(landmarks assigned to background are unstable). Our proposed method aims to reduce the likeli-
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hood of landmarks being allocated to the background, thereby improving overall landmark quality
and reducing the number of landmarks required to achieve state-of-the-art performance.

Our work builds upon existing methods in image-reconstruction-guided landmark learning tech-
niques (Jakab et al., 2018; Lorenz et al., 2019). We explicitly encourage our model to factorize
the reconstruction task into separate foreground and background reconstructions, where only the
foreground reconstruction is conditioned on learned landmarks. Our contributions are as follows:

1. We propose an improvement to reconstruction-guided unsupervised landmark learning that al-
lows the landmarks to better focus on the foreground.

2. We demonstrate through empirical analysis that our proposed factorization allows for state-of-
the-art landmark results with fewer learned landmarks, and that fewer landmarks are allocated to
modeling background content.

3. We demonstrate that the overall quality of the reconstructed frame is improved via the factorized
rendering, and include an application to the video-prediction task.

2 RELATED WORKS

Our work builds upon prior methods in unsupervised discovery of image correspondences (Thewlis
et al., 2017b; Zhang et al., 2018b; Suwajanakorn et al., 2018; Thewlis et al., 2017a; Kanazawa
et al., 2016; Jakab et al., 2018; Lorenz et al., 2019). Most relevant here are Jakab et al. (2018) and
Lorenz et al. (2019), which learn the latent landmark activation maps via an image factorization
and reconstruction pipeline. Each image is factored into pose and appearance representations and
a decoder is trained to reconstruct the image from these latent factors. The loss is designed such
that accurate image reconstruction can only be achieved when the landmarks activate at consistent
locations between an image its TPS-warped variant. Lorenz et al. (2019) specifically improves
upon the method proposed by Jakab et al. (2018) such that instead of representing the appearance
information as a single vector for the entire image, there is a separate appearance encoding for
each landmark in the pose representation. One limitation of these works is that the appearance and
pose vectors also need to encode background information in order to reconstruct the entire image.
Our work attempts to resolve this limitation by introducing unsupervised foreground-background
separation into the pipeline, using the pose and appearance vectors for only the foreground rendering.

There are few other works that propose to separate foreground and background in image rendering
tasks. Balakrishnan et al. (2018) separates foreground and background for image synthesis in an
unseen pose, but their method relies on supervised 2D keypoints. Rhodin et al. (2018) and Rhodin
et al. (2019) separate background from foreground for single and multi-person pose-estimation.
In both works, the background images are computed by taking the median pixel value across all
frames, and therefore require video sequence data with perfectly static backgrounds. Instead, our
approach trains a network to synthesize a clean background from any input frame. It is therefore
more forgiving with respect to background variation, and can even handle thin-plate-spline warped
backgrounds after overfitting to the training data. This allows us to use our method on non-video
datasets such as CelebA faces (Liu et al., 2015).

3 METHOD

Our method extends the pipeline proposed by Lorenz et al. (2019). At a high-level, Lorenz et al.
(2019) attempts to reconstruct an image from two perturbed variants: one where the appearance
(color, lighting, texture) information is perturbed, and one where the pose (position, orientation, and
spatial configuration) of the object is perturbed. The model must learn to extract the pose information
from the appearance-perturbed image, and appearance information from the pose-perturbed image.
The model will learn a set of landmarks in the process as a means to spatially-align the information
extracted from the two sources in order to reconstruct the original image.

3.1 MODEL COMPONENTS

Our pipeline further factorizes the final reconstruction step into separate foreground and back-
ground renders, where only the foreground is rendered conditioned on the spatially-aligned infor-
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Figure 1: This figure depicts an overview of our training pipeline on video data. Given an image
frame x, we produce Tcj(x) and Ttemp(x), which are appearance and pose perturbed variants of x
respectively. The model learns to combine the appearance information from Ttemp(x), and combine
it with the pose from the Tcj(x) in order to reconstruct foreground object from the foreground
decoder. Foreground masks are predicted as part of the pipeline to separate the foreground rendering
from the background rendering. Specifically, the background is rendered from a UNet that learns
to extract clean backgrounds from Ttemp(x). This allows the learned pose representation to focus
on the more dynamic foreground object. The pose encoder and MaskNet are each depicted twice as
they are applied twice during the forward pass.

mation. The background will be inferred directly from the pose-perturbed input image with a simple
UNet (Ronneberger et al., 2015). We want our UNet to have a limited capacity for handling complex
changes in pose, forcing it to focus on simpler operations such as straight-through copying of back-
ground pixels. The remaining complex pose changes (e.g. limb motion, object rotations) will then
be captured by the more flexible landmark representations. Our full pipeline comprises five com-
ponents: the pose and appearance encoders, foreground decoder, background reconstruction subnet,
and foreground mask subnet.

The goal of the pose encoder Φpose = Encpose(x) is to take an input image x and output a set of
unsupervised part activation maps. Critically, we want these part activation maps to be invariant to
changes in local appearance, as well as to be consistent across deformations. A heatmap that acti-
vates on a person’s right hand should be invariant across varying skin tones and lighting conditions,
as well track the right hand’s location across varying deformations and translations.

The appearance encoder Φapp = Encapp(x;Encpose(x)) extracts local appearance information,
conditioned on the pose-encoder’s activation maps. Given an input image x, the pose encoder will
first provide K × H × W part activation maps Φpose. To extract local appearance vectors, the
appearance encoder projects the image to a C×H×W appearance feature mapMapp. We compute
the appearance vector for the kth pose activation map as:

Φapp
k,c =

H∑
i

W∑
j

Φpose
k,i,jM

app
c,i,j for c = 1...C, (1)

giving us K C-dimensional appearance vectors. Here, each activation map in Φpose is softmax-
normalized.

The method pipeline attempts to reconstruct the original input image by combining the pose infor-
mation from the K activation maps with the pooled appearance vectors for each of the K parts. As
in Lorenz et al. (2019), we fit a 2D Gaussian to each activation of the K activation maps by estimat-
ing their respective means and either estimating or using a pre-determined covariance. Each part is
represented by Φ̃pose

k = (µk,Σk), where µk ∈ R2 and Σk ∈ R2×2. The 2D Gaussian approxima-
tion forces each part activation map into a unimodal representation with a simple parameterization,
thereby enforcing that each landmark appears in at most one location per image.

The foreground decoder (FGDec) and background reconstruction subnet (BGNet) are networks
that attempt to reconstruct the foreground and background respectively. Our foreground decoder is

3



Under review as a conference paper at ICLR 2020

based on the architecture proposed in SPADE (Park et al., 2019). In SPADE, semantic maps are
used to predict spatially-aware affine transformation parameters for normalization schemes such as
InstanceNorm. Herein, we project the 2D Gaussian parameters from Φ̃pose to a heatmap of the target
output width and height to use as semantic maps in the SPADE architecture. Following Lorenz et al.
(2019), we use the formula:

s(k, l) =
1

1 + (l − µk)TΣ−1
k (l − µk)

(2)

where s(k, l) is the heatmap value for part map k at coordinate location l. In addition to feeding
s(k, l) as a semantic map to SPADE, individual appearence vectors are also projected onto their
respective heatmap to create a localized appearance encoding to be fed into the decoder. Please see
section 3.4 of Lorenz et al. (2019) for details on this projection.

Unlike the foreground decoder, which is conditioned on bottlenecked pose-appearance represen-
tation, the BGNet is given direct access to image data, albeit the pose-perturbed variant of the
input. Given a static background video sequence, we assume it is easier for the BGNet to learn
to directly copy background pixels (and remove the foreground when necessary) than it is for the
pose-appearance factorization to learn to model the background. In the absence of a BGNet-like
module, several landmarks will be allocated to capture the “pose” of the background, despite being
ill-suited for such a task.

The final module is the foreground mask subnet (MaskNet), which infers the blending mask to com-
posite the foreground and background renders. It can be interpreted as a foreground segmentation
mask and is conditioned on Φ̃pose.

3.2 TRAINING PIPELINE

All network modules are jointly trained in a fully self-supervised fashion, using the final image
reconstruction task as guidance. We follow the training method as detailed in Lorenz et al. (2019),
with the addition of our proposed factorized rendering pipeline in the reconstruction phase. An
illustration of this pipeline is depicted in Fig. 1.

Training involves reconstructing an image from its appearance and pose perturbed variants, learning
to extract the un-perturbed element from each variant. As with Lorenz et al. (2019), we use color
jittering to construct the appearance-perturbed variant Tcj(x). When training from video data, we
temporally sample a frame 3 to 60 timesteps apart from the same scene to attain the pose-perturbed
variant Ttemp(x). However, in the absence of video data, we use thin-plate-spline warping to perturb
pose Ttps(x). In general, our method is able to work with both Ttemp(x) and Ttps(x), though
TPS-warping has the downside of also warping the background pixels, making the task of BGNet

more difficult. Let Φ̃pose be the gaussian-heatmap fitted to the raw activation map Φpose, and let �
represent element-wise multiplication. Our training procedure can be expressed as follows:

Φpose
cj = Encpose(Tcj(x)) and Φpose

temp = Encpose(Ttemp(x)) (3)

Φapp = Encapp(Ttemp(x);Encpose(Ttemp(x))) (4)

Mcj = MaskNet(Φ̃pose
cj ) andMtemp = MaskNet(Φ̃pose

temp) (5)

x̃fg = FGDec(Φ̃pose
cj ,Φapp) and x̃bg = BGNet((1−Mtemp)� Ttemp(x)), (6)

x̃ =Mcj � x̃fg + (1−Mcj)� x̃bg (7)

where the goal is to minimize the reconstruction loss between the original input x and the recon-
struction x̃. As can be seen, neither the shape encoder nor the appearance encoder are ever given
direct access to the original image x. The pose information feeding into the foreground decoder
FGDec(·, ·) is based on the color-jittered input image, where only the local appearance information
is perturbed. The appearance information is captured from Ttemp(x) (or Ttps(x)), where the pose
information is perturbed. Notice the shape encoder is also executed on both the pose-perturbed and
color-jittered input images. This is necessary to map the localized appearance information for a
particular landmark from its location in the pose-perturbed image to its unaltered position in Tcj(x).
Finally, the predicted foreground-background masks are computed for both the appearance and pose
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Table 1: Evaluation of landmark accuracy on Human3.6M 1a and BBC Pose 1b. Human3.6M error
is normalized by image dimensions. For BBC Pose, we report the percentage of annotated keypoints
predicted within a 6-pixel radius of the ground truth.

Human3.6M Error
supervised Newell et al. (2016) 2.16
unsup. Thewlis et al. (2017b) 7.51

Zhang et al. (2018a) 4.91
Lorenz et al. (2019) 2.79
Baseline (temp) 3.07
Baseline (temp,tps) 2.86
Ours 2.73

(a)

BBC Pose Acc.
supervised Charles et al. (2013) 79.9%

Pfister et al. (2015) 88.0%
unsup. Jakab et al. (2018) 68.4%

Lorenz et al. (2019) 74.5%
Baseline (temp) 73.3%
Baseline (temp, tps) 73.4%
Ours 78.8%

(b)

perturbed variants:Mcj andMtemp respectively.Mcj should have a foreground mask correspond-
ing to the original foreground’s pose, and is used to blend the foreground and background renders
in the final step. Mtemp is the foreground mask for the pose-perturbed input image, and assists the
BGNet in removing foreground information from its background render. Refer to Appendix A for
architecture, loss, and training parameters.

4 EXPERIMENTS

Here, we analyze the effect of introducing foreground-background separation into an unsupervised-
landmark pipeline. Through empirical analysis, we demonstrate that the learned landmarks less
used for capturing background information, thereby improving overall landmark quality. Landmark
quality is evaluated by using linear regression to map the unsupervised landmarks to annotated key-
points, with the assumption that well-placed, spatially consistent landmarks lead to low regression
error. Finally, we include an additional application of our method in the video prediction task,
demonstrating how the factorized rendering pipeline improves the overall rendered result.

4.1 DATASETS

We evaluate our method on Human3.6M (Ionescu et al., 2013), BBC Pose (Charles et al., 2013),
CelebA (Liu et al., 2015), and KTH (Schuldt et al., 2004). Human3.6M is a video dataset that
features human activities recorded with stationary cameras from multiple viewpoints. BBC Pose
dataset contains video sequences featuring 9 unique sign language interpreters. Individual frames
are annotated with keypoint annotations for the signer. While most of the motion is from the hand
gestures of the signers, the background features a constantly changing display that makes clean back-
ground separation more difficult. CelebA is an image-only dataset that features keypoint-annotated
celebrity faces. As with prior works, we separate out the smaller MAFL subset of the dataset, train
our landmark representation on the remaining CelebA training set, and perform the annotated re-
gression task on the MAFL subset. The KTH dataset comprises videos of people performing one of
six actions (walking, running, jogging, boxing, handwaving, hand-clapping). We use KTH for our
video prediction application. Additional preprocessing details are given in Appendix A.

4.2 UNSUPERVISED LANDMARK EVALUATION

As with prior works (Jakab et al., 2018; Thewlis et al., 2017a), we fit a linear regressor (without
intercept) to our learned landmark locations from our pose representation to supervised keypoint
coordinates. Following Jakab et al. (2018), we create a loose crop around the foreground object
using the provided keypoint annotations, and evaluate our landmark learning method within said
crop. Importantly, most prior methods have not released their evaluation code for all datasets, thus
we were not able to control for cropping parameters and coordinate space. The former affects the
relative size and aspect ratio of the foreground object to the input frame, whereas the latter affects the
regression results in the absence of a bias term. As such, external comparisons on this task should
be interpreted as a rough comparison at best, and that the reader focus on the comparison against
our internal baseline, which is our rough implementation of Lorenz et al. (2019). We include our
cropping details in Appendix A.
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Figure 2: Landmark analysis experiments. In 2a, we plot the BBC validation dataset keypoint
accuracy versus number of learned keypoints. By factorizing out the background rendering, we are
able to achieve better landmark-to-annotation mappings with fewer landmarks than the baseline.
In 2b we plot the percentage of the per-landmark normalized activation maps contained within the
provided foreground segmentation masks on Human3.6M, sorted in ascending order. We compare
our model against our baseline at 8, 12, and 16 learned landmarks. In all cases, we can see that the
least-contained landmarks in the background-factorized approach are significantly more contained
than those of the baseline.

We report our regression accuracies on Human3.6M, BBC, and CelebA/MAFL, with the first two
being video-based datasets and the last being image only. Results are shown in Tables 1a, 1b, and
2 respectively. For the video datasets, we found it best to use only Ttemp(x) to sample perturbed
poses from future frames during training. Only Ttps(x) was possible for CelebA/MAFL. Our pri-
mary baseline is our model without the explicit foreground-background separation. For this base-
line, we report results using Ttemp-only (Baseline (temp)) as well as both Ttemp and Ttps (Baseline
(temp,tps)). In all cases, we demonstrate that including factorized foreground-background render-
ing improves landmark quality compared to the controlled baseline model. We also believe our
performance is competitive if not state-of-the-art based on our best-attempt at matching cropping
and regression protocols for external comparisons. The results on CelebA demonstrate that our
method works even given very weak static background assumptions. This is because Ttps(x) in-
discriminately warps the entire image, creating a pose-perturbed variant with a heavily deformed
background. Further discussion in Appendix B.

Table 2: Landmark evaluation on
MAFL using 10 landmarks. Predic-
tion error is scaled by inter-ocular dis-
tance. While we can only use Ttps to
sample pose perturbations on this non-
video dataset, we still see strong im-
provements over the baseline. We also
ablate the use of the masksM in Ours
(No Mask), where no masks are pre-
dicted and the predicted x̃fg and x̃bg

are directly elementwise-added.

MAFL Error
Thewlis et al. (2017b) 6.32
Zhang et al. (2018a) 3.46
Lorenz et al. (2019) 3.24
Jakab et al. (2018) 3.19
Baseline (tps) 4.34
Ours (No Mask) 2.88
Ours 2.76

Next, we analyze how factorizing out the background ren-
dering influences landmark quality. In Fig. 2a, we present
an ablation study where we measure the regression-to-
annotation accuracy against the number of learned land-
marks. Compared to our baseline models, we can see that
the background-factorization allows us to achieve better
accuracy with fewer landmarks, and that the degradation
is less steep. Further, in Table 2, we include a No Mask
baseline which is our proposed model but sans predicted
blending masks. Here, we combine foreground and back-
ground directly with: x̃ = x̃fg + x̃bg . This variant also
improves over the unfactorized baseline, though the full
pipeline still performs best.

One of our primary claims is that by factorizing fore-
ground and background rendering in the training pipeline,
we allow the landmarks to focus on modeling the pose
and appearance of the foreground objects, leaving the
background rendering task to a less expressive, but eas-
ier to learn mechanism. We attempt to validate this claim
on the Human3.6M dataset, as they provide foreground-
background segmentation masks. If the landmarks truly
focus more on modeling the foreground more, then underlying activation heatmaps for each unsu-
pervised landmark should be more contained within the provided segmentation masks in the factor-
ized case. In Fig. 2b, we compare the percentage of the normalized activation maps contained within
the provided segmentation masks against our baseline model for 8, 12, and 16 landmark models. For
each learned landmark, we first compute its average activation mass contained within the foreground
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Figure 3: Qualitative results of our landmark prediction pipeline. From top to bottom, we show our
regressed annotated keypoint predictions, our predicted foreground mask, and the underlying land-
mark activation heatmaps. Datasets are BBC Pose, Human3.6M, and CelebA/MAFL respectively.

segmentations. We then sort the landmarks in ascending order of containment (horizontal axis of
Fig. 2b) and plot the models’ landmark-containment curve.

The results in Fig. 2b demonstrate that the foreground-background factorization noticeably improves
the least containment of the least-contained landmarks. Note that the lowest containment percent-
ages for the baseline are 0.05, 0.4, and 0.3, whereas the factorized containment percentages are an
order of magnitude larger at 8.2, 4.8, and 2.5 for 16, 12, and 8 landmarks respectively. It is safe
to say that the least-contained landmarks for the baseline model are nearly completely utilized for
modeling the image background (99%+ of the activation mass is on the background). While the
proposed factorization does not eliminate the problem, we believe this difference is a contributing
factor to the improvements over our baseline.

We show qualitative results of our regressed annotated keypoint predictions, as well as landmark
activation and foreground mask visualizations in Fig. 3. From top to bottom, we show our regressed
annotated keypoint predictions, our predicted foreground mask, and the underlying landmark activa-
tion heatmaps. Datasets are BBC Pose, Human3.6M, and CelebA/MAFL respectively. Notice that
the degree of binarization in the predicted mask is indicative of the strength of the static background
assumption on the data. Human3.6M features a strongly static background, whereas BBC Pose has
a constantly updating display on the left, and CelebA was trained with Ttps which indiscriminately
warps both foreground and background. Nevertheless, our method still shows improves over the
baseline despite imperfectly binarized foreground-background separation.

4.3 APPLICATION TO VIDEO PREDICTION

Lorenz et al. (2019) applied their model to video-to-video style transfer on videos of BBC signers,
indicating that the rendered images from the landmark model are temporally stable. One of the
issues with these renders, however, is that the landmarks are not suited for modeling the background,
resulting in low-fidelity rendered backgrounds. We demonstrate that our factorized formulation
resolves this issue.

We evaluate our rendering on the video prediction task on the KTH dataset, and compare against
external methods. The unsupervised landmark model factorizes image data into pose (landmarks
parameterized as 2D Gaussians) and appearance information. We assume the appearance informa-
tion remains constant throughout each video sequence, and use an LSTM to predict how the 2D
Gaussians move through time conditioned on an initial set of seed-frames. Refer to Appendix D
for implementation details. We show our qualitative and quantitative results in Fig. 4 and 5 and
respectively. We report SSIM, PSNR, and the perceptual-feature based LPIPS (Zhang et al., 2018a)
metric. Note that the background-factorized approach significantly outperforms the unfactorized
baseline on all performance metrics, indicating better background reconstruction, as the foreground
is a comparatively smaller portion of the frame. Our method is also competitive with state-of-the-art
models such as Lee et al. (2018). In Fig. 4, we show our rendered foreground, mask, rendered back-
ground, and the corresponding composition. Our method assumes a fixed background for the entire
sequence, but predicts a new foreground and blending mask for each extrapolated timestep. Both
our baseline and proposed method maintain better structural integrity than other methods. However,
due to the imperfect binarization of the predicted mask, the foreground in the composite image may

7



Under review as a conference paper at ICLR 2020

t=3 t=8 t=11 t=14 t=17 t=20 t=23 t=26 t=29 t=32 t=35 t=38

G
T

DRNET

SAVP Det

SAVP

Baseline

Foreground

Mask

O
ur

s

Figure 4: Qualitative results on KTH action test dataset comparing our method to prior work. Our
baseline produces a sharp foreground, but the background does not match that of the initial frames.
Our proposed factorized rendering significantly improves the background fidelity. The bottom three
rows shows our factorized outputs. From top to bottom, we have the rendered foreground, the
predicted blending mask, and the rendered background (first image on bottom row) followed by the
composite output.
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Figure 5: We base our main evaluation to LPIPS score which closely correlates with human percep-
tion. We also provide SSIM and PSNR metrics for completeness. Our method is competitive with
state-of-the-art methods on KTH, and shows a large improvement over our controlled baseline.

appear somewhat faded compared to that of other methods. Improved binarization of the predicted
masks remains a topic of future work.

5 CONCLUSION

We propose and study the effects of explicitly factorized foreground and background rendering on
reconstruction-guided unsupervised landmark learning. Our experiments demonstrate that by using
UNet to learn a simpler copy mechanism to copy roughly static background pixels, the model do
a better job of allocating landmarks to the foreground objects of interest. As such, we are able to
achieve more accurate regressions to annotated keypoints with fewer landmarks, thereby reducing
memory requirements. We also demonstrate applications of our pipeline to unsupervised-landmark-
based video manipulation tasks. For future work, we are interested in finding ways to improve
binarization of the predicted foreground masks.
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A IMPLEMENTATION DETAILS

Architecture: The overall architecture consists of 5 sub-networks as in: pose and appearance encod-
ing networks, foreground mask subnet, background reconstruction subnet, and a foreground image
decoder. We use the U-net architectures (Ronneberger et al., 2015) for the pose encoder, appearance
encoder, foreground mask subnet and background reconstruction subnet, complete with skip connec-
tions. The pose encoder has 4 blocks of convolutional dowsampling modules. Each convolutional
downsampling module has a convolution layer-Instance Normalization-ReLU and a downsampling
layer. At each block, the number of filters doubles, starting from 64. The upsampling portion of
the pose encoder has 3 blocks of convolutional upsampling modules, and the number of channels
is halved at every block starting from 512. The appearance encoder network has one convolutional
downsampling module and one convolutional upsampling module. The foreground mask subnet has
3 blocks of convolutional dowsampling module and 3 blocks of upsampling module, and the number
of channels is 32 at each module. Similarly, the background reconstruction subnet has 3 blocks of
convolutional dowsampling module and 3 blocks of upsampling module. At each block, the number
of filters doubles starting from 32.

The image decoder has 4 convolution-ReLU-upsample modules. We first downsample the appear-
ance featuremap by a factor of 8 in each spatial dimension. Number of output channels of each
convolution-ReLU-upsampling module in the image decoder are 256, 256, 128, 64, and 3 respec-
tively. We apply spectral normalization (Miyato et al., 2018) to each convolutional layer.

Loss Function and Optimization Parameters: We train our the image factorization-reconstruction
network with VGG Perceptual loss which uses the pre-trained VGG19 model provided by the Py-
Torch library. We apply the MSE loss on outputs of layers relu1 2, relu2 2, relu3 2, and
relu4 2, weighted by 1

32 , 1
16 , 18 ,and 1

4 respectively. We use Adam optimizer, learning rate of 1e−4,
and weight decay of 5e−6. The network is trained on 8 GPUs with batch size of 16 images per GPU.

Dataset Preprocessing: For BBC Pose, we first roughly crop around each signer by using the given
keypoints. Specifically, we find the center of the keypoints and crop 300×300 around the center
and resize the crops to 128×128. For the Human3.6M dataset, we follow the procedure defined
by Zhang et al. (2018b) for training/validation splits. We find the center of the keypoints and crop
300×300 around the center and again resize the crops to 128×128. For the CelebA/MAFL dataset,
we follow Jakab et al. (2018) by resizing the images to 160×160, and center crop by 128×128.

Regression coordinates For BBC Pose and Human3.6M, we define the origin coordinate as the
center of the image before regression. It is unclear what other methods used for these datasets. For
CelebA/MAFL, we follow Jakab et al. (2018) and set the origin at the top left corner.

Dataset-Specific Model parameters We use 30 landmarks of fitted covariances for the BBC Pose
dataset, meaning we estimate the covariance from the part activation maps when fitting the Gaussians
to compute Φ̃pose. For Human3.6M and CelebA, we use 16 and 10 landmarks respectively with a
fixed diagonal covariance of 0.08. In general, fixed diagonal covariances lead to better performance
on the landmark regression task than fitted covariance, though fitted covariances lead to better image
generation results. As such, we use fitted covariances for the video prediction task.

B STATIC IMAGE REFACTORING DURING TRAINING

In Fig. 6, we show our model outputs from training on CelebA. We see that the pipeline has de-
termined the center of the face to be foreground, with everything else as background. Importantly,
the fourth column from the left shows that the BGNet is capable of memorizing how to rectify a
thin-plate-spline warped image. While this is a case of overfitting, it is arguably the reason our ap-
proach is able to perform foreground-background separation when the static background assumption
is weak. A median-filtering based approach for background subtraction would be feasible only on
video sequence data with perfectly still backgrounds.
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Figure 6: From left to right input image, color jittered image, thin-plate-spline warped image, re-
constructed background, predicted foreground, mask, and reconstructed output.

C ADDITIONAL QUALITATIVE LANDMARK PREDICTION RESULTS

Here, we show additional results for the pose-regression task on various datasets. The regression
quality is generally very accurate, though notice that, as with other unsupervised landmark ap-
proaches, we cannot model keypoint visibility easily, nor can we distinguish between front and back
facing subjects on the Human3.6M dataset.

Figure 7: Additional qualitative results for keypoint predictions for BBC Pose, Human3.6M, and
CelebA/MAFL respectively.
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D VIDEO PREDICTION WITH UNSUPERVISED LANDMARKS

As can be seen in Fig. 1, the rendering component of our pipeline is conditioned directly on an
appearance encoding Φapp and a pose encoding Φ̃pose. Conveniently, the pose representation is
stored as a set of 2D Gaussian distributions, which can can easily manipulate spatially by translating
their means and updating their covariances. As such, we apply our model to the video prediction
task by assuming Φapp to be constant throughout the prediction sequence, and using an LSTM to
update Φ̃pose, conditioned on the first N frames. We extract Φapp from the N th frame in the input
sequence.

LSTM LSTM

(𝑡 ,𝑡)

→LLT

(𝑡 , 0, 𝐿𝑡, 0)

(𝑡 ,ෘ𝐿𝑡)

(𝑡+1,𝑡 , 𝐿𝑡+1,ෘ𝐿𝑡)

(𝑡+1,ෘ𝐿𝑡+1)

𝑡+1 = 𝑡 + 𝑡

𝐿𝑡+1 = ෘ𝐿𝑡 + 𝐿𝑡

Figure 8: The LSTM predicts
perturbations to the Gaussian
means and Cholesky parame-
ters of the covariances.

Care must be taken to maintain positive definite covariance matri-
ces during prediction. Thus we use the parameters of the Cholesky
decomposition of the covariance matrices as the prediction targets.
In practice, the LSTM may produce an estimate for L which is not
a valid Cholesky factor, but even this case will still produce a valid
covariance matrix when LLT is computed.

An illustration of our LSTM setup is depicted in Fig.8. In addition
to the Cholesky parameterization, we also found that predicting the
residual during extrapolation, rather than the state directly, was im-
portant to robust long term predictions. In practice. this helped im-
prove both training performance and generalization. At each time-
step, the LSTM takes a concatenation of the previous state and state
residual to predict the next state residual.

Our LSTM comprises 3 LSTM layers and a final linear layer. Each
LSTM layer has 256 channels. For the KTH results, we trained our
landmark model with 40 landmarks. We also use a GAN loss term
to improve image quality. Due to the KTH dataset being grayscale,
we had to predict foreground-background masks at half resolution to prevent the masks from en-
coding all the foreground details. The LSTM was trained to predict 10 future frames from an input
sequence of 10.
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E ADDITIONAL VIDEO PREDICTION RESULTS
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Figure 9: Qualitative results on KTH action test dataset comparing our method to prior work. SAVP
and SAVP-deterministic methods produce blurry foreground images. On the other hand, the base-
line method produces sharp foreground but the background does not match the initial frames. Our
method maintains sharpness and high fidelity to the background. We show the foreground image re-
constructions and masks that are used to produce output images. In the last row, first column shows
the reconstructed background image.

F ADDITIONAL VIDEO PREDICTION EXPERIMENT ON BAIR PUSH DATASET

We additionally run video prediction experiments on the BAIR action-free dataset (Finn et al.,
2016). This dataset consists of videos with robot arms moving randomly with a diverse set of objects
on a table. The videos have spatial resolution of 64×64. For this dataset, our video prediction LSTM
is trained with a 10 input 0 future setup (never conditioning on its own output during training). We
show our qualitative and quantitative results on the BAIR dataset in Fig. 10 and 11 and respectively.
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Figure 10: Qualitative results on the BAIR dataset comparing our method to prior work. Methods
are conditioned on 2 initial frames to predict the next 28. SVGLP, SAVP and SAVP-deterministic
methods produce blurry outputs in the previously occluded regions. Our method maintains sharpness
and high fidelity to the background. We show the foreground image reconstructions and masks that
are used to produce output images. In the last row, first column shows the reconstructed background
image.
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Figure 11: We base our main evaluation to LPIPS score (Zhang et al., 2018a) which closely cor-
relates with human perception. We also provide SSIM and PSNR metrics for completeness. Our
implementation achieves better LPIPS score than the competing methods. Importantly, the factor-
ized method significantly outperforms our baseline by a large margin on all metrics.
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