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ABSTRACT

Capturing spatiotemporal dynamics is an essential topic in video recognition. In
this paper, we present learnable higher-order operations as a generic family of
building blocks for capturing higher-order correlations from high dimensional in-
put video space. We prove that several successful architectures for visual classi-
fication tasks are in the family of higher-order neural networks; theoretical and
experimental analysis demonstrates their underlying mechanism is higher-order.
Experimentally, we show that on the task of video recognition, our higher-order
models can achieve results on par with or better than the existing state-of-the-art
methods on both Something-Something (V1 and V2) and Charades datasets.

1 INTRODUCTION

Actions in videos arise from motions of objects with respect to other objects and/or the background.
To understand an action, an effective architecture should recognize not only the appearance of the
target object associated with the action, but also how it relates to other objects in the scene, in both
space and time. Figure 1 shows four different categories of actions. Each column shown an action
where, in temporal order, the figures above occur before the figures below. Recognizing the hand
and the object is not enough. To distinguish left to right motion from right to left motion, the model
must know how the hand moves against the background. It is more complicated to classify pull and
push since it is an XOR operation on the relative positions of the hand and the object resulting from
the hand’s movements.

(a) pull from left to right (b) push from right to left (c) pull from right to left (d) push from left to right

Figure 1: Different contexts of the hand in four different categories. In Figure 1a, since the hand
moves from left to right and the hand is on the right side of the iron, it is pull from left to right.
Figure 1d has the same hand movement, but it is a different category since the hand is on the left of
the pen. Figure 1b is a reverse action of Figure 1a, but it is not pull from right to left.

The key point here is the need for recognizing patterns in spatiotemporal context. Even the same
hand-iron-background combination has different meanings in different spatiotemporal contexts. The
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number of combinations increases sharply as scenes become more complicated and the number of
objects involved increases. It would be difficult for conventional convolutions which recognize
fixed patterns that are determined by the fixed filter parameters to capture the variety of variations
that distinguish the action classes. To recognize every object-in-context pattern, the model needs to
have more detailed filters, potentially leading to a blow up of the number parameters.

On the other hand, although the object-in-context patterns can vary, they are related through a higher-
order structure: pushing an iron, pushing a pen, pulling an iron, and so on affects the spatio-temporal
relations of the involved structures to one another in similar ways. We hypothesize that the structure
of object-in-context patterns can be learned, i.e., the model can learn to conclude object-in-context
pattern given the context, and propose a corresponding feature extractor. Explicitly, let X and Y
respectively represent the input and output of a convolution. Let yp and {xp′} represent a specific
position of Y and the set of positions of X from which yp is computed, respectively. Denote
conventional convolution operation as Y = f(X; Θ) where Θ is the shared parameters at different
positions. The parameters act as determined feature extractors as yp = f({xp′}; Θ) for different
positions.

As we analyze, the visual pattern of the target object can vary in different contexts, and determined
feature extractors (filters) that ignore this dependence are not optimal. We replace the fixed filters
with context-dependent filters yp = f({xp′};wp) where the filters wp are in turn obtained as
wp = g({xp′′}; Θ). The mapping g is the structure of object-in-context patterns and Θ are the
learned parameters as we hypothesize. The entire relation between Y and X can be compactly
represented through the higher-order function Y = f(X; g(X; Θ)).

The proposed model is able to capture spatiotemporal contexts effectively. We test our method
on four benchmark datasets for action recognition: Kinetics-400 (Carreira & Zisserman, 2017),
Something-Something V1 (Mahdisoltani et al., 2018), Something-Something V2, and Charades
datasets (Sigurdsson et al., 2016). Specifically, we make comprehensive ablation studies on
Something-Something V1 datasets and further evaluate on the other three datasets to demonstrate
the generality of our proposed method. The experiments establish significant advantages of the
proposed models over existing algorithms, achieving results on par with or better than the current
state-of-the-art methods.

2 RELATED WORK

Action Recognition. Many video-action recognition methods are based on high-dimensional en-
codings of local features. For instance, Laptev et al. (2008) used as local features histograms of
oriented gradients (HOG) (Dalal & Triggs, 2005) and histograms of optical flow (HOF) as sparse
interest points. The features are encoded into a bag of features representation. Wang et al. (2011);
Peng et al. (2014) made use of dense point trajectories which are computed using optical flow. The
high performance of 2D ConvNets in image classification tasks (Krizhevsky et al., 2012) makes
it appealing to try to reuse them for video recognition tasks. Tran et al. (2015) investigated 3D
ConvNets to learn spatiotemporal features end-to-end. Some researchers tried to save computation
by replacing 3D convolutions with separable convolutions (Qiu et al., 2017a; Tran et al., 2018) or
mixed convolutions (Tran et al., 2018; Xie et al., 2018). Meanwhile, Carreira & Zisserman (2017)
introduced an inflation operation. It allows for converting pre-trained 2D models into 3D. Simonyan
& Zisserman (2014) designed a two-stream architecture to capture appearance and motion informa-
tion separately. The spatial stream uses RGB frames as inputs, while the temporal stream learns
from stacked optical flow. Wang et al. (2016) further generalized this framework to learn long-range
dependencies by temporal segment.

Spatiotemporal Context. Contextual information is very important for action recognition. Gal-
leguillos & Belongie (2010) review different approaches of using contextual information in the field
of object recognition. Several methods (Marszałek et al., 2009; Sun et al., 2009; Kovashka & Grau-
man, 2010; Vail et al., 2007; Cao et al., 2015; Chen et al., 2014) exploit contextual information to
facilitate action recognition. Marszałek et al. (2009) exploited the context of natural dynamic scenes
for human action recognition in video. Sun et al. (2009) modeled the spatio-temporal relationship
between trajectories in a hierarchy of multiple levels. Kovashka & Grauman (2010) proposed to
learn the shapes of space-time feature neighborhoods that are most discriminative for a given action
category. Conditional Random Field (CRF) models has also been exploited for object and action
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recognition (Vail et al., 2007; Cao et al., 2015; Chen et al., 2014; Quattoni et al., 2005; Wang et al.,
2018a). Quattoni et al. (2005) propose a CRF framework that incorporates hidden variables for part-
based object recognition. Wang et al. (2018a) use a CRF-based approach to exploit the relationship
among features from videos captured by cameras from different viewpoints.

3 OUR APPROACH

In the section below we define our second-order model for video analysis. Our model comprises
the analysis of video feature maps by a position-dependent bank of spatio-temporal filters, whose
filter parameter values are themselves computed through a higher-level function. We first present
our notation, and subsequently describe the model itself.

The description below represents one layer or block of a larger model. We will refer to such second
(or more generally, higher) order blocks as H-blocks. We note that the larger model may be com-
posed entirely of H-blocks, or include H-blocks intermittently between conventional convolutional
layers. To allow for this more generic interpretation we will define our blocks as working on video
feature maps and producing video feature maps, where the input map may either be the original
video itself or the output of prior blocks.

3.1 NOTATION

We denote the input video feature map of the H-block as X ∈ RCin×T×H×W , where Cin is the
number of channels in each frame of the video, T is the number of frames, and the height and the
width of each frame are H and W . The feature/content at position p = (t, h, w), 1 ≤ t ≤ T, 1 ≤
h ≤W, 1 ≤ w ≤W , is represented as xp, and xp ∈ RCin .

We denote the output map for the H-block as Y ∈ RCout×T ′×H′×W ′
. The description below

assumes, for convenience, that the spatio-temporal dimensions of the output map are identical to
those of the input (i.e. T ′ = T,H ′ = H , and W ′ = W ) although this is not essential. Similarly
to the input, we denote elements at individual spatio-temporal positions of the output as yp, where
yp ∈ RCout .

In our model Y is derived from X through a second-order relation of the form Y = f(X, g(X; Θ))
– the relation being second order since the function f relating the input and output maps takes a
function g as arguments to generate parameters of function f . Both f(·) and g(·) are convolution-
like (or actual convolution) operations; hence we will use terminology drawn from convolutional
neural networks to describe them. As reference, we first describe the common convolutional network
structure, and subsequently build our model from it.

Following (Dai et al., 2017), we use a gridR over the input feature map to specify the receptive field
size and dilation for convolution kernels. For example (all integers below),

R =
{

(t, h, w)
∣∣∣|t| ≤ Kt, |h| ≤ Kh, |w| ≤ Kw

}
(1)

defines a 3D kernel with kernel size (2Kt + 1)× (2Kh + 1)× (2Kw + 1) and dilation 1. The usual
convolution operation can now be written as

yp =
∑
q∈R

Wqxp+q. (2)

where {Wq, q ∈ R} are the weights of convolutional filters that scan the input X . Each Wq is a
matrix: Wq ∈ RCout×Cin . The convolution outputs are generally further processed by an activation
function such as ReLU and tanh.

Our H-block retains the same structure as above, except that the convolution operation of Equation
2 now changes to

yp =
∑
q∈R

Wp,qxp+q. (3)

Note that the filter parameters Wp,q are now position dependent. The position-dependent filter
parameters Wp,q are themselves computed using an upper-level function. Representing the entire
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set of filter parameters asW = {Wp,q}, we have
W = g(X; Θ)

The actual number of parameters required to define the block is the number of components in Θ.
We propose two models for g(·) below, with different requirements for the number of parameters.

3.2 CONVOLUTION-BASED SECOND-ORDER OPERATION

In the convolution-based model for g(·), we derive the filter parameters {Wp,q} through convolu-
tions. Since the total number of parameters in {Wp,q} can get very large, we restrict each Wp,q to
be a diagonal matrix, which can equivalently be represented by the vector wp,q . It is similar to a
depth-wise convolution. Equation 3 can now be rewritten as

yp =
∑
q∈R

wp,q ⊗ xp+q. (4)

where ⊗ represents a component-wise (Schur) multiplication.

The filter parameters to estimate are xp,q are derived from X through a convolution operation as

wp,q =
∑
t∈R′

Θq
txp+t (5)

whereR′ (likeR) is the receptive field for the convolutional filters, and represents the context field.
The size of R′ represents the span from which context is captured to compute any single yp, and
must ideally be larger than, or at least no smaller than the size of R. Θq

t are the convolutional filter
parameters. Each Θq

t is a Cin × Cin matrix. The complete set of parameters of g() are given by
Θ = {Θq

t , q ∈ R, t ∈ R′}, with the total number of parameters equal to C2
in × |R| × |R′| where

|R| is the number of elements inR.

The shared weights Θ capture the higher-level patterns required to characterize spatio-temporal
context. We define R′ as the context field where context information is captured and define R as
the kernel size where features are extracted from |R| positions.

3.3 CNN-BASED SECOND-ORDER OPERATION

In the CNN-based second-order block, we use a full convolutional neural network comprising multi-
ple layers of convolutions followed by activations to compute wp,q . Representing wq = {wp,q, ∀p},
we can write

wq = CNN (X,Θq) , (6)
where Θq are the parameters of the CNN. The filters and their strides in the CNN of Equation 6 are
designed such that the receptive field of the CNN (representing the context field) is larger thanR.

Since CNNs require multiple layers of convolutions, the number of parameters in Equation 6 is ap-
parently larger than that required by the simple convolutional model of . However, by appropriately
structuring the CNNs we can, in fact, arrive at a model that requires far fewer parameters than the
simple convolution model. For instance, a CNN with two layers, each computed by a 3×3 (height×
width) filter provides a context field of 5×5 using only 18 parameters, whereas a single convolution
would require a 5 × 5 filter with 25 parameters to provide the same context field. Furthermore, by
appropriately sharing parameters across the CNNs for the different q ∈ R, the actual number of
parameters required can be greatly reduced.

In our implementations we implement the shared computation through a single multi-output CNN.
The CNN comprises a series of M (e.g. 3) shared convolutional layers (with activations). The last
shared layer is operated on by a bank of |R| 1 × 1 convolutions to derive wq, q ∈ R. Figure 2
illustrates this structure.

4 EXPERIMENTS

We perform comprehensive studies on the challenging Something-Something V1 dataset (Mahdis-
oltani et al., 2018), and also report results on the Charades (Sigurdsson et al., 2016), Kinetics-400
(Carreira & Zisserman, 2017) and Something-Something V2 dataset to show the generality of our
models.
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context field: 5x5 

ConvNet

concat

wp,q : Cx1x1

Input feature map：CxHxW

Output feature map: CxHxW

…

kernel wp: 3x3

…
…

…

…

Figure 2: One example of a second-operation on 2D data with channel number C, width W , and
height H . For every position p in the feature map (HW positions in total), the ConvNet derives 9
C-dimensional vectors. They are concatenated into a C×3×3 filter to extract the pth output feature
from a 3× 3 region of the input feature map centered at p.

4.1 IMPLEMENTATION DETAILS

To draw fair comparison with the results in (Wang & Gupta, 2018) on the same datasets, our back-
bone model is based on the ResNet-50 Inflated 3D architecture (Table 7 in Appendix) and is the same
as that in (Wang & Gupta, 2018) . Note there are small differences between our backbone model
with the Inflated 3D backbone in (Wang et al., 2018c) where the output of the last convolutional
layer is a T/2× 14× 14 feature map (T is the number of input frames).

H-blocks. Following (Qiu et al., 2017b), we use 3 layers of Pseudo-3D (P3D) convolutions to imple-
ment the ConvNet CNN(·,Θq) in Equation 6 for obtaining a sufficiently large context field. Table 6
in Appendix shows the kernel size of three P3D convolutions as the factorization of different context
fields. Suppose the number of the H-block’s input channels is C and the kernel size of the H-block
is |R|, the number of input channels and output channels for the three P3D convolutions are (C, C),
(C, C//|R| × |R|) and (C//|R| × |R|,C × |R|) respectively (// is integer divison, for example
19//9 = 2). The last convolution is a group convolution with group size |R| to reduce parameters.
After each convolution layer, we use the scaled exponential linear unit (SELU) (Klambauer et al.,
2017) as the activation. The last convolution is always a group convolution (Xie et al., 2017) with
group size |R| to reduce parameters. And we use softmax as the last convolution’s activation as a
normalization factor.

Training. Unless specified, all the models are trained from scratch. Following (Wang & Gupta,
2018), we first resize the input frames to the 256×320 dimension and then randomly crop 224×224
pixels for training. We first train our model with 8-frame input clips randomly sampled in 12 frames
per second (FPS) on a 4-GPU machine with a batch size of 64 for 30 epochs, starting with a learning
rate of 0.01 and reducing it by a factor of 10 at 15th epoch. Then we fine-tune the model with 32-
frame input randomly sampled in 6FPS on an 8-GPU machine with a batch size of 32 for 45 epochs,
starting with a learning rate of 0.01 and reducing by a factor of 10 at every 15 epoch.

We use mini-batch stochastic gradient descent with a momentum of 0.9 and a weight decay of
1e-4 for optimization. We use cross entropy loss function for Something-Something V1, V2 and
Kinetics-400 datasets, and binary sigmoid loss for Charades datasets (multi-class and multi-label).

Inference. At the inference stage, we resize the input frames to the 256× 320 dimension, randomly
sample 40 clips of 32-frame inputs in 6FPS, randomly crop 224 × 224 pixels for testing. The final
predictions are based on the the averaged softmax scores of 40 all clips.

4.2 EXPERIMENTS ON SOMETHING-SOMETHING V1

Something-Something V1 dataset has 86K training videos, around 12K validation videos and 11K
testing videos. The number of classes in this dataset is 174.
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Table 1: Ablations on Something-Something V1 action classification.

(a) Stage

model top-1 top-5
I3D 41.6 72.2

res2-1 43.6 74.3
res3-1 43.7 74.6
res4-1 43.4 74.2
res5-1 42.1 73.5

(b) Position within one stage

model top-1 top-5
I3D 41.6 72.2

res3-1 43.6 74.4
res3-2 43.7 74.6
res3-3 43.3 74.2
res3-4 42.9 74.0

(c) Number of blocks added

model top-1 top-5
I3D 41.6 72.2

1-block 43.7 74.2
3-block 46.2 76.1
5-block 48.6 78.1

(d) Kernel Size

model top-1 top-5
I3D 41.6 72.2

3× 1× 1 48.0 77.1
1× 3× 3 48.1 77.3
3× 3× 3 48.6 78.1
3× 5× 5 48.3 77.6

(e) Context Field

model top-1 top-5
I3D 41.6 72.2

3× 5× 5 48.0 77.1
1× 3× 3 48.1 77.3
3× 3× 3 48.6 78.1
3× 5× 5 48.3 77.6

(f) Activations

model top-1 top-5
I3D 41.6 72.2

softmax 48.6 78.1
ReLu 48.3 74.6
tanh 48.4 77.9

Table 1 shows the ablation results on the validation dataset, analyzed as follows:

Higher-order at different stages. We study the network performance when the H-blocks are added
to different stages on the network. We add one single H-block after the first bottleneck on 1) res2, 2)
res3, 3) res4 and 4) res5 in Table 7 (in Appendix). As shown in Table 1a, the improvement of adding
one H-block on res3 is the most prominent. The improvement decreases when adding the H-block
to deeper stage of the network. One possible explanation is that spatiotemporal correlation weakens
as the network going deeper, since high level features are more linear separable so higher-order in-
formation is less important. One possible reason that higher-order on res2 cannot get the maximum
improvement is that the output size of res2 is 8 times larger than the output size of res3, thus the
context field is much smaller compared with the entire feature map. An evidence can be found in
the following study.

Higher-order at different positions of the same stage. We further discuss the performance of
adding one single H-block to different positions of the same stage. We add one single H-block after
1) first, 2) second, 3) third and 4) fourth bottleneck within res3. From Table 1b, We find that adding
one H-block after the first and second bottleneck (res3-1 and res3-2) leads to a better accuracy than
adding the H-block in res3-3 and res3-4. This again proves that spatiotemporal contexts weakens
as the network going deeper, and our single H-block can capture more meaningful spatiotemporal
contexts and lose less information than deep stack of convolution layers.

Table 2: Comparisons with state-of-the-art results on Something-Something V1 dataset.

Method Pre-train dataset Backbone val test
2-stream TRN (Zhou, 2018) Imagenet BN-Inception 42.0 40.7
ECO (Zolfaghari et al., 2018) ImageNet,Kinetics BN-Inception-Res18 49.5 43.9
I3D (Wang & Gupta, 2018) ImageNet,Kinetics ResNet 50 41.6 -
NL I3D (Wang & Gupta, 2018) ImageNet,Kinetics ResNet 50 44.6 -
NL I3D + GCN (Wang & Gupta, 2018) ImageNet,Kinetics ResNet 50 46.1 45.0
HO I3D [ours] None ResNet 50 48.6 44.7
HO I3D [ours] ImageNet,Kinetics ResNet 50 51.2 46.7

Going deeper with H-blocks. Table 1c shows the results of adding more higher-order blocks. We
add 1 block (to res3), 3 block (1 to res3 and 2 to res4), 5 blocks (3 to res4 and 2 to res3, to every
other residual block) in ResNet-50. More H-blocks in general lead to better results. We argue that
multiple higher-order blocks can capture comprehensive contextual information. Messages in each
location can be learned with its own context, which is hard to do via shared weights.

H-blocks within different kernel sizes. We study how the kernel size would influence the improve-
ment by adding 5 blocks of H-blocks with different kernel sizes and same context field (5× 5× 5).
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As shown in Table 1d, H-blocks with a kernel size of 3× 3× 3 is the best, smaller and larger kernel
lower the classification accuracy. The reduced performance for the 3 × 5 × 5 may come from the
optimization difficulties because of the large spatial size. H-blocks with different context fields.

(d)(a)

(b)

(c)

(e)

(f)

Figure 3: Visualize Learned feature map. The upper row of each sample is feature map of I3D, the
bottom raw is feature map of higher-order. Videos are from Something-Something V1 dataset, with
labels of: (a) Moving something and something closer to each other; (b) Moving something down;
(c) Touching (without moving) part of something; (d) Putting something, something and something
on the table; (e) Lifting up one end of something without letting it drop down; (f) Tearing something
just a little bit.

We study how the size of context fields influence the improvement by adding 5 blocks of H-blocks
with different context fields and same kernel size (3× 3). In Table 6 (in Appendix), we show other
possible context fields and their factorization using three convolutions. As shown in Table 1e, The
improvement of a H-blocks block with a context field of 5 × 5 × 5 and 5 × 7 × 7 is similar, and a
smaller context field of 3 × 5 × 5 as well as a larger context field of 7 × 7 × 7 is slightly smaller.
One possible explanation is that smaller context field has a small context and it is insufficient to
provide precise contextual information. And for larger context field, the context is redundant and
more difficult for capturing contextual information.

H-blocks with different activation functions. Instead of use softmax, we also use ReLU and
tanh as the last activations. As shown in Table 1f, different activation functions versions perform
similarly, illustrating that activation function of this module is not the key to the improvement in our
applications; instead, it is more likely that the higher-order behavior is essential, and it is insensitive
to the activation functions.

Comparison to the state of the art. We compare the performance with the state-of-the-art ap-
proaches on the test set of Something-Something V1 dataset. The results are summarized in Table 2
(HO is short for higher-order). We use the settings of 5 × 5 × 5 context field and 3 × 3 × 3 kernel
size with the activation function of softmax. We get a top-1 accuracy of 44.7% without pre-training
with other image or video datasets. And when pre-trained with ImageNet and Kinetics, our model
gets a top-1 accuracy of 46.7%, which is the highest single model result on leaderboard, surpassing
all the existing RGB or RGB + flow based methods by a good margin.

Figure 3 visualize several examples of the feature maps learned by our H-blocks block as well as I3D
ResNet-50 backbone. All the feature maps are from the output of res5 stage in Table 7 (in Appendix)
and resized back to the size of original videos. In Figure 3(a) moving something and something
closer to each other, our model is focusing simultaneously on two objects and hands, showing
that our model can not only capture appearance information but also capture motion information. In
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Figure 3(d) putting something, something and something on the table, we can see evident differences
between I3D and H-blocks in the third frame, in which I3D is looking at the red clock, while H-
block is focusing on the moving part - hand. From Figure 3, we can conclude that our higher-order
network can learn to find important relation clues instead of focusing on appearance information
compared with I3D backbones.

4.3 EXPERIMENTS ON KINETICS-400

Kinetics-400 (Carreira & Zisserman, 2017) contains approximately 246k training videos and 20k
validation videos. It is a classification task involving 400 human action categories. We train all
models on the training set and test on the validation set.

Table 3 shows the comparisons with the state-of-arts on this dataset. We use the best settings from
section 4.2, which is 5 H-blocks with 5 × 5 × 5 context field, 3 × 3 × 3 kernel size and softmax
activation. Our model archives a top-1 accuracy of 77.8 and top-5 accuracy of 93.3. Compared with
methods of using RGB and Flow, our method can learn motion information end-to-end. Our model
is also better than those using RGB only for training.

Table 3: Validation results on Kinetics-400 dataset

Method Backbone Top-1 Top-5
ARTNet (Wang et al., 2018b) ResNet 18 69.2 88.3
I3D (Carreira & Zisserman, 2017) BN-Inception 71.1 89.3
2-stream I3D (Carreira & Zisserman, 2017) BN-Inception 74.2 91.3
2-stream R(2+1)D (Tran et al., 2018) ResNet 50 73.9 90.9
NL I3D (Wang et al., 2018c) ResNet 50 76.5 92.6
NL I3D (Wang & Gupta, 2018) ResNet 101 77.7 93.3
SlowFast (C. Feichtenhofer & He, 2018) ResNet 50 77.0 92.6
NL SlowFast(C. Feichtenhofer & He, 2018) ResNet 50 77.7 93.1
HO I3D [ours] ResNet 50 77.8 93.3

4.4 EXPERIMENTS ON OTHER VIDEO DATASETS

In this subsection we study the performance of higher-order neural networks on Charades dataset.
The Charades dataset is a dataset of daily indoors activities, which consists of 8K training videos
and 1.8K validation videos. The average video duration is 30 seconds. There are 157 action classes
in this dataset and multiple actions can happen at the same time. We report our results in Table 5.
The baseline I3D ResNet 50 approach achieves 31.8% mAP. The best result NL I3D + GCN (Wang
& Gupta, 2018) in Table 5 is a combination of two models. By adding 2 H-blocks to res3 and and 3
to res4 stages in the I3D Res50 backbone, our method archives 5.1% improvements (36.9% mAP) in
mAP. And we archive another 0.2% gain (37.1% mAP) by continuously adding 2 H-blocks to res2
stage. The improvement indicates the effectiveness of H-blocks.

We also investigate our models on Something-Something V2 dataset. The V2 dataset has 22K
videos, which is more than twice as many videos as V1. There are 169K training videos, around
25K validation videos and 27K testing videos in the V2 dataset. The number of classes in this dataset
is 174, which is the same as V1 version. Table 4 shows the comparisons with the previous results on
this dataset. When adding five higher-order blocks to res3 and res4 stages, our higher-order ResNet
50 achieves 62.6% Top 1 accuracy.

Table 4: Validation results on Something
Something V2 Dataset

Method Top-1
Multi-Scale TRN (Zhou, 2018) 48.8
2-Stream TRN (Zhou, 2018) 55.5
HO I3D [ours] 62.6

Table 5: Validation results on the Charades dataset

model mAP
I3D (Wang et al., 2018c) 31.8
NL I3D (Wang et al., 2018c) 33.5
GCN (Wang & Gupta, 2018) 36.2
NL I3D + GCN (Wang & Gupta, 2018) 37.5
HO I3D [ours] 37.1
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5 CONCLUSION

In this paper, we have introduced higher-order networks to the task of action recognition. Higher-
order networks are constructed by a general building block, termed as H-block, which aims to model
position-varying contextual information. As demonstrated on the Something-Something (V1 and
V2), Kinetics-400 and Charades datasets, the proposed higher-order networks are able to achieve
state-of-the-art results, even using only RGB mobility inputs without fine-tuning with other image
or video datasets. The good performance may be ascribed to the fact that higher-order networks are
a natural for context modeling.

The actual model itself is not restricted to visual tasks, but may be applied in any task where a context
governs the interpretation of an input feature, such as cross-modal or multi-modal operations. In
future work, we plan to investigate the benefits of our higher-order model and its extensions, in a
variety of other visual, text and cross-modal tasks.
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A APPENDIX

Table 6 shows the factorization of different context fields. For example, we stack three convolutions
with kernel size 3× 3× 3 to get a 7× 7× 7 context field.

Table 6: Factorization of different context fields.

context field layer 1 layer 2 layer 3

3× 3× 3 1× 3× 3 3× 1× 1 1× 1× 1
3× 5× 5 1× 3× 3 3× 3× 3 1× 1× 1
5× 5× 5 1× 3× 3 3× 3× 3 3× 1× 1
5× 7× 7 1× 3× 3 3× 3× 3 3× 3× 3
7× 7× 7 3× 3× 3 3× 3× 3 3× 3× 3

Table 7 shows our backbone ResNet-50 I3D model. We use T×H×W to represent the dimensions
of kernels and output feature maps. T = {8, 32}, and the corresponding input size is 8×224×224
and 32×224×224.

Table 7: Our backbone ResNet-50 I3D model.

layer output size
conv1 5× 7× 7, 64, stride 1,2,2 T × 112× 112

pool1 1× 3× 3, max, stride 1,2,2 T × 56× 56

res2

[
3× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256

]
× 3 T × 56× 56

pool2 3× 1× 1, max, stride 2,1,1 T
2 × 56× 56

res3

[
3× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512

]
× 4 T

2 × 28× 28

res4

[
3× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 1024

]
× 6 T

2 × 14× 14

res5

[
3× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048

]
× 3 T

2 × 14× 14

global average pool and fc 1×1×1
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