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ABSTRACT

Sparse neural networks have been shown to be computationally efficient networks
with improved inference times. There is a large body of work on training dense
networks to yield sparse networks for inference (Molchanov et al., 2017; Zhu &
Gupta, 2018; Louizos et al., 2017; Li et al., 2016; Guo et al., 2016). This limits
the size of the largest trainable sparse model to that of the largest trainable dense
model. In this paper we introduce a method to train sparse neural networks with
a fixed parameter count and a fixed computational cost throughout training, with-
out sacrificing accuracy relative to existing dense-to-sparse training methods. Our
method updates the topology of the network during training by using parameter
magnitudes and infrequent gradient calculations. We show that this approach re-
quires less floating-point operations (FLOPs) to achieve a given level of accuracy
compared to prior techniques. We demonstrate state-of-the-art sparse training re-
sults with ResNet-50, MobileNet v1 and MobileNet v2 on the ImageNet-2012
dataset. Finally, we provide some insights into why allowing the topology to
change during the optimization can overcome local minima encountered when the
topology remains static.

1 INTRODUCTION

The parameter and FLOP efficiency of sparse neural networks is now well demonstrated on a va-
riety of problems (Han et al., 2015; Srinivas et al., 2017). Some work has even shown inference
time speedups are possible on Recurrent Neural Networks (RNNs) (Kalchbrenner et al., 2018) and
Convolutional Neural Networks (ConvNets) (Park et al., 2016). Currently, the most accurate sparse
models are obtained with techniques that require, at a minimum, the cost of training a dense model
in terms of memory and FLOPs (Zhu & Gupta, 2018; Guo et al., 2016), and sometimes significantly
more (Molchanov et al., 2017). This paradigm has two main limitations:

1. The maximum size of sparse models is limited to the largest dense model that can be
trained. Even if sparse models are more parameter efficient, we can’t use pruning to train
models that are larger and more accurate than the largest possible dense models.

2. It is inefficient. Large amounts of computation must be performed for parameters that are
zero valued or that will be zero during inference.

Additionally, it remains unknown if the performance of the current best pruning algorithms are an
upper bound on the quality of sparse models. Gale et al. (2019) found that three different algorithms
all achieve about the same sparsity / accuracy trade-off. However, this is far from conclusive proof
that no better performance is possible. In this work we show the surprising result that dynamic
sparse training, which includes the method we introduce below, can find more accurate models than
the current best approaches to pruning initially dense networks. Importantly, our method does not
change the FLOPs required to execute the model during training, allowing one to decide on a specific
inference cost prior to training.

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) hypothesized that if we can find a sparse
neural network with iterative pruning, then we can train that sparse network from scratch, to the
same level of accuracy, by starting from the original initial conditions. In this paper we introduce a
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new method for training sparse models without the need of a “lucky” initialization; for this reason,
we call our method “The Rigged Lottery” or RigL∗. We show that this method is:

• Memory efficient: It requires memory only proportional to the size of the sparse model.
It never requires storing quantities that are the size of the dense model. This is in contrast
to Dettmers & Zettlemoyer (2019) which requires storing the momentum for all parameters,
even those that are zero valued.

• Computationally efficient: The amount of computation required to train the model is pro-
portional to the number of nonzero parameters in the model.

• Accurate: The performance achieved by the method matches and sometimes exceeds the
performance of pruning based approaches.

Our method works by infrequently using instantaneous gradient information to inform a re-wiring
of the network. We show that this allows the optimization to escape local minima where it would
otherwise become trapped if the sparsity pattern were to remain static. Crucially, as long as the full
gradient information is needed less than every 1

1−sparsity iterations, then the overall work remains
proportional to the model sparsity.

2 RELATED WORK

Research on finding sparse neural networks dates back at least three decades, where Mozer &
Smolensky (1989) concluded that pruning weights based on magnitude was a simple and power-
ful technique. Ström (1997) later introduced the idea of retraining the previously pruned network
to increase accuracy. Han et al. (2016b) went further and introduced multiple rounds of magnitude
pruning and retraining. This is, however, relatively inefficient, requiring ten rounds of retraining
when removing 20% of the connections to reach a final sparsity of 90%. To overcome this problem,
Narang et al. (2017) introduced gradual pruning, where connections are slowly removed over the
course of a single round of training. Zhu & Gupta (2018) refined the technique to minimize the
amount of hyper-parameter selection required.

A diversity of approaches not based on magnitude based pruning have also been proposed. LeCun
et al. (1990) and Hassibi & Stork (1993) are some early examples, but impractical for modern neural
networks as they use information from the Hessian to prune a trained network. More recent work
includes L0 Regularization (Christos Louizos, 2018), Variational Dropout (Molchanov et al., 2017),
Dynamic Network Surgery (Guo et al., 2016) and Sensitivity Driven Regularization (Tartaglione
et al., 2018). Gale et al. (2019) examined magnitude pruning, L0 Regularization and Variational
Dropout and concluded that they all achieve about the same accuracy versus sparsity tradeoffs on
ResNet-50 and Transformer architectures.

Training techniques that allow for sparsity throughout the entire training process were, to our knowl-
edge, first introduced in Deep Rewiring (DeepR) (Bellec et al., 2017). In DeepR, the standard
Stochastic Gradient Descent (SGD) optimizer is augmented with a random walk in parameter space.
Additionally, connections have a pre-defined sign assigned at random; when the optimizer would
normally flip the sign, the weight is set to 0 instead and new weights are activated at random.

Sparse Evolutionary Training (SET) (Mocanu et al., 2018) proposed a simpler scheme where weights
are pruned according to the standard magnitude criterion used in pruning and added back at random.
The method is simple and achieves reasonable performance in practice. Dynamic Sparse Reparam-
eterization (DSR) (Mostafa & Wang, 2019) introduces the idea of allowing the parameter budget
to shift between different layers of the model, allowing for non-uniform sparsity. This allows the
model to put parameters where they are most effective. Unfortunately, the models under consid-
eration are mostly ConvNets, so the result of this parameter reallocation (which is to decrease the
sparsity of early layers and increase the sparsity of later layers) has the overall effect of increasing
the FLOP count because the spatial size is largest at the beginning. Sparse Networks from Scratch
(SNFS) (Dettmers & Zettlemoyer, 2019) introduces the idea of using the momentum of each param-
eter as the criterion to be used for growing weights and demonstrates it leads to an improvement in
test accuracy. Like DSR, they allow the sparsity of each layer to change and focus on a constant
∗Pronounced ”riggle”.
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Method Drop Grow Selectable FLOPs Space & FLOPs ∝
SNIP min(|w|) none yes sparse

DeepR stochastic random yes sparse
SET min(|w|) random yes sparse
DSR min(|w|) random no sparse
SNFS min(|w|) momentum no dense

RigL (ours) min(|w|) gradient yes sparse

Table 1: Comparison of different sparse training techniques. Drop and Grow columns correspond to
the strategies used during the mask update. Selectable FLOPs is possible if the cost of training the
model is fixed at the beginning of training.

parameter, not FLOP, budget. Importantly, the method requires computing gradients and updating
the momentum for every parameter in the model, even those that are zero, at every iteration. This
can result in a significant amount of overall computation. Additionally, depending on the model and
training setup, the required storage for the full momentum tensor could be prohibitive. Single-Shot
Network Pruning (SNIP) (Lee et al., 2019) attempts to find an initial mask by calculating the full
gradients only once and pruning based on the gradient magnitudes, then proceeding to train with
this static sparse network. Properties of the different sparse training techniques are summarized in
Table 1.

There has also been a line of work investigating the Lottery Ticket Hypothesis (Frankle & Carbin,
2019). Frankle et al. (2019) showed that the formulation must be weakened to apply to larger
networks such as ResNet-50 (He et al., 2015). In large networks, instead of the original initial-
ization, the values after thousands of optimization steps must be used for initialization. Zhou et al.
(2019) showed that lottery tickets obtain non-random accuracies even before the training has started.
Though the possibility of training sparse neural networks with a fixed sparsity mask using lottery
tickets is intriguing, it remains unclear whether it is possible to generate such initializations – both
of masks and parameters – de novo.

3 RIGGING THE LOTTERY

Our method, RigL, is illustrated in Figure 1. At regularly spaced intervals our method removes
a fraction of connections based on weight magnitudes and activates new ones using instantaneous
gradient information. After updating the connectivity, training continues with the updated network
until the next update. The main parts of our algorithm, Sparsity Distribution, Update Schedule,
Drop Criterion, Grow Criterion, and the various options we considered for each, are explained
below. The improved performance of RigL is due to two reasons: the use of a new method for
activating connections that is efficient and more effective than choosing at random, and the use of
a natural extension to an existing method for distributing parameters statically among convolutional
layers.

(0) Notation. Given a dataset D with individual inputs xi and targets yi, one can train a neural
network to minimize the loss function

∑
i L(fθ(xi), yi), where fθ(x) is the neural network with

parameters θ of length N . The vector θ can be decomposed into parameters θl, of length N l, for

(1) Sparsity 
Distribution

(3) Drop (4) Grow

Sparse
Training
Step

Is Update
Iteration?

no

yes

(2) Update 
Schedule

Initialization

Figure 1: Dynamic sparse training aims to change connectivity during training to help out optimza-
tion.
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each layer l. A sparse network keeps only a fraction D ∈ (0, 1) of all connections, resulting in a
sparsity of S = 1 − D. More precisely, denoting the sparsity of individual layers by sl, the total
parameter count of the sparse neural network satisfies

∑
l(1− sl)N l = (1− S) ∗N .

(1) Sparsity Distribution. There are many ways of distributing the non-zero weights across the
layers while satisfying the equality above. We avoid re-allocating parameters between layers during
the training process as it makes it difficult to target a specific final FLOP budget, which is important
for many inference applications. We consider the following three strategies:

1. Uniform: The sparsity sl of each individual layer is the same as the total sparsity S, except
for the first and last layers; following the strategy of Gale et al. (2019), we fix the sparsity
of the last layer to 0.8 and keep the first layer as a dense layer.

2. Erdős-Rényi: As introduced in Mocanu et al. (2018), sl scales proportionally to the ratio
nl−1+nl

nl−1∗nl , where nl denotes number of neurons at layer l. This enables the number of
connections in a sparse layer to scale with the number of output channels.

3. Erdős-Rényi-Kernel (ERK): This method modifies the original Erdős-Rényi formulation
by including the kernel dimensions in the scaling factors. In other words, the number
of parameters of the sparse convolutional layers are scaled by nl−1+nl+wl+hl

nl−1∗nl∗wl∗hl , where wl

and hl are the width and the height of the l’th convolutional kernel. Sparsity of the fully
connected layers scale as in the original Erdős-Rényi formulation. Similar to Erdős-Rényi,
ERK allocates higher sparsities to the layers with more parameters while allocating lower
sparsities to the smaller ones.

In all methods, the bias and batch-norm parameters are kept dense.

(2) Update Schedule. The update schedule is defined by the following parameters: (1) the number
of iterations between sparse connectivity updates (∆I), (2) the iteration at which to stop updating
the sparse connectivity (Iend), (3) the initial fraction of connections updated (α) and (4) a function
fdecay , invoked every ∆I iterations until Iend, possibly decaying the fraction of updated connections
over time. For the latter we choose to use cosine annealing, as we find it slightly outperforms the
other methods considered.

fdecay(t) =
α

2

(
1 + cos

(
tπ

Iend

))
Alternatives to cosine annealing like a constant schedule and inverse power annealing are studied in
the Appendix D.

(3) Drop criterion. Over the course of training, we drop the lowest magnitude weights according to
the update schedule. Specifically, we drop the connections given by
TopK(−|θl|, fdecay(t)(1− sl)N l)‡.

(4) Grow criterion. The novelty of our method lies in how we grow new connections. We grow
the connections with highest magnitude gradients, TopKw/∈θlactive

(|grad(θl)|, fdecay(t)(1−sl)N l),
where θlactive is the set of active connections after the drop step. Newly activated connections are
initialized to zero. This procedure can be applied to each layer in sequence and the dense gradients
can be discarded immediately after selecting the top connections. If a layer is too large to materialize
the full gradient with respect to the weights, then we can further reduce the memory requirements
by performing an iterative calculation:

1. Initialize the set TK = {}.
2. Materialize a subset of size M of the full gradient, which we denote Gi:i+M .
3. Update TK to contain the Top-K elements of Gi:i+M concatenated with TK.
4. Repeat steps 1 through 3 until the all of the gradients have been materialized. The final set
TK contains the connections we wish to grow.

As long as ∆I > 1
1−s the total work in calculating dense gradients is amortized and still proportional

to S. This is in contrast to the method of Dettmers & Zettlemoyer (2019), which requires calculating
and storing the full gradients at each optimization step.
‡TopK(v, k) returns the indices and values of the top-k elements of vector v.
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Figure 2: (left) Performance of various dynamic sparse training methods on ImageNet-2012 classi-
fication task. We use 80% sparse ResNet-50 architecture with uniform sparsity distribution. Points
at each curve correspond to the individual training runs with training multipliers from 1 to 5 (except
pruning which is scaled between 0.5 and 2). We repeat training 3 times at every multiplier and report
the mean accuracies. The number of FLOPs required to train a standard dense Resnet-50 is indi-
cated with a dashed red line. (right) Performance of RigL at different sparsity levels with extended
training. Results are averaged over 3 runs.

4 EMPIRICAL EVALUATION

Our experiments focus on the ImageNet-2012 dataset and we use the TensorFlow Model Pruning
library (Zhu & Gupta, 2018) to sparsify our networks. A Tensorflow (Abadi et al., 2015) imple-
mentation of our method along with three other baselines (SET, SNFS, SNIP) will be open sourced.
In all experiments, we use SGD with momentum as our optimizer. We set the momentum of the
optimizer to 0.9, L2 regularization coefficient to 0.0001, and label smoothing to 0.1. The learning
rate schedule starts with a linear warm up reaching its maximum value of 1.6 at epoch 5 which is
then dropped by a factor of 10 at epochs 30, 70 and 90. We train our networks with a batch size
of 4096 for 32000 steps which roughly corresponds to 100 epochs of training. When we increase
the training steps by a factor x, the anchor epochs of the learning rate schedule are also scaled by
the same factor; we indicate this scaling with a subscript (e.g. RigL5×). Our training pipeline uses
standard data augmentation, which includes random flips and crops.

4.1 RESNET-50

Figure 2-left summarizes the performance of various methods training on an 80% sparse ResNet-
50. We also train small dense networks with equivalent parameter count. All sparse networks use
the constant sparsity distribution and a cosine update schedule (α = 0.1, ∆I = 50). Overall, we
observe that the performance of all methods improves with training time; thus, for each method we
run extended training with up to 5× the training steps of the original. The calculation of the number
of FLOPs required by each method are detailed in Appendix E.

As noted by Gale et al. (2019), Evci et al. (2019), Frankle et al. (2019), and Mostafa & Wang (2019),
training a fixed sparsity network from scratch (Static) leads to inferior performance. Training a small
dense network with the same number of parameters gets better results than Static, but it fails to match
the performance of dynamic sparse models. All dynamic sparse methods are able to achieve high
accuracies, but RigL achieves the highest accuracy and does so while consistently requiring fewer
FLOPs than the other methods.

Given that different applications or scenarios might require a limit on the number of FLOPs for
inference, we investigate the performance of our method at various sparsity levels. As mentioned
previously, one strength of our method is that its resource requirements are constant throughout
training and can be chosen before training begins. In Figure 2-right we show the performance of
our method at different sparsities and compare them with the pruning results of Gale et al. (2019),
which uses 1.5x training steps, relative to the original 32k. To make a fair comparison with regards
to FLOPs, we scale the learning schedule of all other methods by 5x. Note that even after extending
the training, it takes less FLOPs to train sparse networks (except for the 80% sparse RigL-ERK)
compared to the pruning method.
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Method Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Top-1
Accuracy

FLOPs
(Train)

FLOPs
(Test)

Dense 76.8±0.09 1x
(3.2e18)

1x
(8.2e9)

0.8 0.9
Snip 30.0±3.11 0.23x 0.23x 26.4±0.38 0.10x 0.10x
Static 70.6±0.06 0.23x 0.23x 66.1±0.13 0.10x 0.10x

Small-Dense 72.1±0.12 0.20x 0.20x 68.9±0.10 0.12x 0.12x
SET 72.8±0.11 0.23x 0.23x 69.3±0.10 0.10x 0.10x
RigL 73.4±0.11 0.23x 0.23x 70.3±0.07 0.11x 0.10x

Small-Dense5× 73.9±0.07 1.01x 0.20x 71.3±0.10 0.60x 0.12x
RigL5× 76.4±0.10 1.15x 0.23x 74.8±0.08 0.54x 0.10x

Static (ERK) 72.1±0.04 0.42x 0.42x 67.7±0.12 0.24x 0.24x
DSR* 73.3 n/a 0.40x† 71.6 n/a 0.30x†

RigL (ERK) 74.5±0.08 0.42x 0.42x 71.7±0.10 0.25x 0.24x
RigL5× (ERK) 76.9±0.01 2.10x 0.42x 75.9±0.05 1.24x 0.24x

SNFS* 74.2 n/a n/a 72.3 n/a n/a
SNFS (ERK) 74.6±0.02 0.61x 0.42x 71.9±0.08 0.50x 0.24x

Pruning* (Zhu) 73.2 1.00x 0.23x 70.3 1.00x 0.10x
Pruning* (Gale) 75.6 1.00x 0.23x 73.9 1.00x 0.10x

Pruning*1.5× (Gale) 76.5 1.50x 0.23x 75.2 1.50x 0.10x

Table 2: Performance and cost of sparse training methods on training 80% and 90% sparse ResNet-
50s. FLOPs needed for training and test are normalized with the FLOPs of a dense model. See
Appendix E for further explanation on how FLOPs are calculated. Methods with a subscript in-
dicate a rescaled training time, whereas ‘*’ indicates results obtain from another work. (ERK)
corresponds to the sparse networks with Erdős-Renyi-Kernel sparsity distribution. RigL5× (ERK)
achieves 76.89% Top-1 Accuracy using only 20% of the parameters of a dense model and 42% of
its FLOPs.

RigL, our method with constant sparsity distribution, follows pruning very closely in all sparsity
levels. Sparse networks that use Erdős-Renyi-Kernel (ERK) sparsity distribution, however, obtain
a remarkable performance that exceeds the performance of pruning based models. As observed
earlier, training either smaller dense models (with the same number of parameters) or static sparse
models fails to perform at a comparable level.

A more fine grained comparison of sparse training methods is presented in Table 2. Methods using
uniform sparsity distribution and whose FLOP/memory footprint scales directly with the sparsity of
the model are placed in the first sub-group of the table. The second sub-group includes DSR and
networks with ERK sparsity distribution which require a higher number of FLOPs for inference.
The final sub-group includes methods that require larger storage and the work of a training dense
model.

4.2 MOBILENET

MobileNet is a compact architecture that performs remarkably well in resource constrained settings.
Due to its compact nature with separable convolutions it is known to be notoriously difficult to
sparsify (Zhu & Gupta, 2018). In this section we apply our method to MobileNet-v1 (Howard et al.,
2017) and MobileNet-v2 (Sandler et al., 2018). Due to its low parameter count we keep the first
layer dense, and evaluate using ERK and Uniform sparsity distribution to sparsify the remaining
layers.

The performance of sparse MobileNets trained with RigL as well as the baselines are shown in
Figure 3. We do extended training (5x of the original number of steps) for all runs in this section.
Although MobileNets are more sensitive to sparsity compared to the ResNet-50 architecture, RigL
successfully trains sparse MobileNets at high sparsities and exceeds the performance of previously
reported pruning results.

†approximated
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S Method Top-1 FLOP-Inf

0.75 Small-Dense5× 66.0±0.11 0.23x
Pruning* (Zhu) 67.7 0.27x
RigL5× 70.3±0.08 0.27x
RigL5× (ERK) 71.1±0.12 0.52x

0.90 Small-Dense5× 57.7±0.34 0.09x
Pruning* (Zhu) 61.8 0.12x
RigL5× 65.6±0.02 0.12x
RigL5× (ERK) 66.1±0.06 0.27x
Dense 72.1±0.17 1x (1.1e9)

0.75 Big-Sparse5× 75.9±0.06 0.98x
Big-Sparse5× (ERK) 76.7±0.06 1.91x

Figure 3: (left) RigL significantly improves the performance of Sparse MobileNets on ImageNet-
2012 dataset and exceeds the pruning results reported by Zhu & Gupta (2018). (right) Performance
of sparse MobileNet-v1 architectures presented with their inference FLOPs. Networks with ERK
distribution get better performance with the same number of parameters but take more FLOPs to run.
Training wider sparse models with RigL (Big-Sparse) yields a significant performance improvement
over dense model even though both have same number of parameters and FLOPs.

To demonstrate the advantages of sparse models we train wider sparse MobileNets while keeping
the FLOPs and total number of parameters the same as the dense baseline. A sparse MobileNet
v1 with width multiplier 1.98 and constant sparsity has the same FLOP and parameter count as the
dense baseline. This yields a 3.8% absolute improvement in Top-1 Accuracy.

4.3 ANALYZING THE PERFORMANCE OF RIGL

In this section we study the effect of sparsity distributions, update schedules, and dynamic connec-
tions on the performance of our method. The results for SET and SNFS are similar and are discussed
in Appendices A and C.

Effect of Mask Initialization: Figure 4-left shows how the sparsity distribution affects the final test
accuracy of sparse ResNet-50s trained with RigL. Erdős-Rényi-Kernel (ERK) performs significantly
better than the other two initializations overall. Recall that uniform distribution keeps the first layer
dense and has a fixed sparsity for the last dense layer. We scale the uniform sparsities so that
the overall parameter count is the same across all distributions considered. Though performing
better, ERK distribution requires around 2x FLOPs to run compared to uniform. This highlights an
interesting trade-off between accuracy and computational efficiency.

Effect of Update Schedule and Frequency: In Figure 4-right, we evaluate the performance of our
method on update intervals ∆I ∈ [50, 100, 500, 1000] and initial drop fractions α ∈ [0.1, 0.3, 0.5].
Even when we update the sparse connectivity every 1000 iterations, Rigl performs above 72.5%.
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Figure 4: (left) Performance of RigL at different sparsities using different sparsity masks (right)
Ablation study on cosine schedule. Other methods are in the appendix.
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Figure 5: (left) Training loss evaluated at various points on interpolation curves between a magnitude
pruning model (0.0) and a model trained with static sparsity (1.0). (right) Training loss of RigL and
Static methods starting from the static sparse solution, and their final accuracies.

Effect of Dynamic connections: Frankle et al. (2019) and Mostafa & Wang (2019) observed that
static sparse training converges to a solution with a higher loss than dynamic sparse training. In
Figure 5-left we examine the loss landscape lying between a solution found via static sparse training
and a solution found via dynamic sparse training. Performing a linear interpolation between the two
reveals a high-loss barrier which may be insurmountable with a fixed topology. Following Garipov
et al. (2018), we attempt to find quadratic and cubic Bézier curves between the two solutions. Sur-
prisingly, even with a cubic curve, we fail to find a path without a high-loss barrier. These results
suggest that static sparse training can get stuck at local minima that are isolated from improved
solutions. On the other hand, when we optimize the quadratic Bézier curve across the full dense
space we find a near-monotonic path to the improved solution, suggesting that allowing new con-
nections to grow lends dynamic sparse training greater flexibility in navigating the loss landscape.
In Figure 5-right we train RigL starting from the sub-optimal solution found by static sparse train-
ing, demonstrating that it is able to escape the local minimum, whereas re-training with static sparse
training cannot.

5 DISCUSSION & CONCLUSION

In this work we introduced ‘Rigged Lottery’ or RigL, an algorithm for training sparse neural net-
works efficiently. For a given computational budget RigL achieves higher accuracies than existing
dense-to-sparse and sparse-to-sparse training algorithms. RigL is useful in three different scenarios:
(1) To improve the accuracy of sparse models intended for deployment; (2) To improve the accuracy
of large sparse models which can only be trained for a limited number of iterations; and (3) Com-
bined with sparse primitives to enable training of extremely large sparse models which otherwise
would not be possible.

The third scenario is unexplored due to the lack of hardware and software support for sparsity.
Nonetheless, work continues to improve the performance of sparse networks on current hard-
ware (Hong et al., 2019; Merrill & Garland, 2016), and new types of hardware accelerators will
have better support for parameter sparsity (Wang et al., 2018; Mike Ashby, 2019; Liu et al., 2018;
Han et al., 2016a). RigL provides the tools to take advantage of, and motivation for, such advances.
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A EFFECT OF SPARSITY DISTRIBUTION ON OTHER METHODS

In Figure 6-left we show the effect of sparsity distribution choice on 4 different sparse training
methods. The ordering among the three distribution is the same across different methods.

B EFFECT OF MOMENTUM COEFFICIENT FOR SNFS

In Figure 6-right we show the effect of the momentum coefficient on the performance of SNFS. Our
results suggest that the accumulated values are not important since setting the coefficient to 0 brings
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Figure 6: (left) Effect of sparsity distribution choice on sparse training methods at different sparsity
levels. We average over 3 runs and report the standard deviations for each. (right) Effect of momen-
tum value on the performance of SNFS algorithm. Setting the momentum coefficient of the SNFS
algorithm to 0 seems to perform best, suggesting the accumulated values are not important.
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the best performance. This surprising result might be due to the large batch size we are using (4096),
but it still motivates using RigL and instantaneous gradient information only when needed, instead
of accumulating them.

C EFFECT OF UPDATE SCHEDULES ON OTHER DYNAMIC SPARSE METHODS

In Figure 7 we repeat the hyper-parameter sweep done for RigL in Figure 4-right, but for SET and
SNFS. A cosine schedule with ∆I = 50 and α = 0.1 seems to work best across all methods.
For this reason, we used these values in the experiments presented in the main text. An interesting
observation is that higher drop fractions (α) seem to work better with longer intervals ∆I . For
example, SET with an update interval of 1000 seems to work quite well with å starting drop fraction
α = 0.5.

D TRYING DIFFERENT UPDATE SCHEDULES

In Figure 8, we share the results of using two alternative annealing functions for the update fractions:

1. Constant: fdecay(t) = α.

2. Inverse Power: The fraction of weights updated decreases similarly to the schedule used
in Zhu & Gupta (2018): fdecay(t) = α(1 − t

Iend
)k. In our experiments we tried k = 1

which is the linear decay and their default k = 3.

Constant seems to perform well with low initial drop fractions like α = 0.1, but it starts to perform
worse with increasing α. Inverse Power for k=3 and k=1 (Linear) seems to perform similarly for low
α values. However the performance drops noticeably for k=3 when we increase the update interval.
As reported by Dettmers & Zettlemoyer (2019) linear (k=1) seems to provide similar results as the
cosine schedule.

E CALCULATING FLOPS OF MODELS AND METHODS

In order to calculate FLOPs needed for a single forward pass of a sparse model, we count the total
number of multiplications and additions layer by layer for a given layer sparsity sl. The total FLOPs
is then obtained by summing up all of these multiply and adds.

Different sparsity distributions require different number of FLOPs to compute a single prediction.
For example Erdős-Renyi-Kernel distributions usually cause earlier layers to be less sparse than
the later layers (see Appendix G). The inputs of earlier layers have greater spatial dimensions, so
a convolutional kernel that works on such inputs will require more FLOPs to compute the output
features compared to later layers. Thus, having earlier layers which are less sparse results in a
higher total number of FLOPs required by a model.
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Figure 7: Cosine update schedule hyper-parameter sweep done using dynamic sparse training meth-
ods SET (left) and SNFS (right).
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Training a neural network consists of 2 main steps:

1. forward pass: Calculating the loss of the current set of parameters on a given batch of
data. During this process layer activations are calculated in sequence using the previous
activations and the parameters of the layer. Activation of layers are stored in memory for
the backward pass.

2. backward pass: Using the loss value as the initial error signal, we back-propagate the
error signal while calculating the gradient of parameters. During the backward pass each
layer calculates 2 quantities: the gradient of the activations of the previous layer and the
gradient of its parameters. Therefore in our calculations we count backward passes as two
times the computational expense of the forward pass. We omit the FLOPs needed for batch
normalization and cross entropy.

Dynamic sparse training methods require some extra FLOPs to update the connectivity of the neural
network. We omit FLOPs needed for dropping the lowest magnitude connections in our calculations.
For a given dense architecture with FLOPs fD and a sparse version with FLOPs fS , the total FLOPs
required to calculate the gradient on a single sample is computed as follows:

• Static Sparse and Dense. Scales with 3 ∗ fS and 3 ∗ fD FLOPs, respectively.
• Snip. We omit the initial dense gradient calculation since it is negligible, which means

Snip scales in the same way as Static methods: 3 ∗ fS FLOPs.
• SET. We omit the extra FLOPs needed for growing random connections, since this op-

eration can be done on chip efficiently. Therefore, the total FLOPs for SET scales with
3 ∗ fS .
• SNFS. Forward pass and back-propagating the error signal needs 2 ∗ fS FLOPs. However,

the dense gradient needs to be calculated at every iteration. Thus, the total number of
FLOPs scales with 2 ∗ fS + fD.

• RigL. Iterations with no connection updates need 3 ∗ fS FLOPs. However, at every ∆I
iteration we need to calculate the dense gradients. This results in the average FLOPs for
RigL given by (3∗fS∗∆I+2∗fS+fD)

(∆I+1) .

F EFFECT OF MASK UPDATES ON THE ENERGY LANDSCAPE

To update the connectivity of our sparse network, we first need to drop a fraction d of the existing
connections for each layer independently to create a budget for growing new connections. Following
the recipe of magnitude based pruning(Han et al., 2015), we order parameters at layer i by magnitude
|θi| and drop the Ni ∗ (1−s)∗d parameters with lowest magnitude. The effectiveness of this simple
criteria can be explained through the first order Taylor approximation of the lossL around the current
set of parameters θ.

∆L = L(θ + ∆θ)− L(θ) = ∇θL(θ)∆θ +R(||∆θ||22)

The main goal of dropping connections is to remove parameters with minimal impact on the func-
tion and therefore on its performance. Since removing a connection corresponds to setting it to
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Figure 8: Using other update schedules with RigL: (left) Constant (middle) Exponential (k=3) and
(right) Linear
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zero, removing the parameter θi incurs a change of ∆θ = −θi in the parameters and a change of
∆Li = −∇θiL(θ)θi + R(θ2

i ) in the loss, where the first term is usually defined as the saliency of
a connection. Though using saliency to remove connections has been used as a criteria for remov-
ing connections (Molchanov et al., 2016), it has been shown to produce inferior results compared
to magnitude based removal, especially when used to remove multiple connections at once (Evci,
2018). In contrast, picking the lowest magnitude connections ensures a small remainder term in ad-
dition to a low saliency, limiting the damage we make to the network while dropping connections.In
other words, dropped connections are likely to be connections which don’t affect the output of the
neural network.

After removal of these connections, we add new connections with the highest expected gradients.
Note that although we initialize the added connections to zero, they are guaranteed to have a high
gradient in the first iteration after the mask update. A direction of non-zero gradient means that the
energy landscape on that dimension is not flat.

G SPARSITY OF INDIVIDUAL LAYERS FOR SPARSE RESNET-50

Sparsity of ResNet-50 layers defined by the Erdős-Rényi-Kernel sparsity distribution plotted in Fig-
ure 9.
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Figure 9: Sparsities of individual layers of the ResNet-50.
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