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ABSTRACT

Nash equilibrium has long been a desired solution concept in multi-player games,
especially for those on continuous strategy spaces, which have attracted a rapidly
growing amount of interests due to advances in research applications such as the
generative adversarial networks. Despite the fact that several deep learning based
approaches are designed to obtain pure strategy Nash equilibrium, it is rather lux-
urious to assume the existence of such an equilibrium. In this paper, we present
a new method to approximate mixed strategy Nash equilibria in multi-player con-
tinuous games, which always exist and include the pure ones as a special case. We
remedy the pure strategy weakness by adopting the pushforward measure tech-
nique to represent a mixed strategy in continuous spaces. That allows us to gen-
eralize the Gradient-based Nikaido-Isoda (GNI) function to measure the distance
between the players’ joint strategy profile and a Nash equilibrium. Applying the
gradient descent algorithm, our approach is shown to converge to a stationary
Nash equilibrium under the convexity assumption on payoff functions, the same
popular setting as in previous studies. In numerical experiments, our method con-
sistently and significantly outperforms recent works on approximating Nash equi-
librium for quadratic games, general blotto games, and GAMUT games.

1 INTRODUCTION

Nash equilibrium (Nash||1950) is one of the most important solution concepts in game scenario with
multiple rational participants. It plays an important role in theoretical analysis of games to guide
rational decision-making processes in multi-agent systems. With the recent success of machine
learning applications in games, it attracts even more research interests on applying machine learning
technique for unsolved game theory problems, for example, computation of Nash equilibrium for
multi-player games. In this paper, we focus on games with continuous action spaces, which include
the famous application for Generative Adversarial Networks (GANs) (Goodfellow et al.| [2014),
as well as many important game types such as the colonel blotto game (Gross & Wagner, |1950),
Cournot competition (R} |1996). We develop a solution significantly improves the status-quo.

There have been several successful approaches to compute Nash equilibrium for multi-player
(mostly 2-player) continuous game (Raghunathan et al.,|2019; Balduzzi et al., 2018)). These works
seek Nash equilibria corresponding to pure strategies, in which each player takes a specific action to
achieve its best payoff given other players’ actions. A major concern for such a solution concept is
its possible non-existence. As a result, the convergences to a Nash equilibrium for these approaches
were proven under the assumption for the existence of a pure strategy Nash equilibrium, which can
hardly be checked in practice, and their applicability is limited to specific types of games. On the
contrary, it is known that mixed strategy Nash equilibria always exist under mild conditions. And
note that any pure strategy Nash equilibrium is also a mixed strategy Nash equilibrium, which means
the latter one is a much more desired solution concept.

However, a key challenge that obstructs the study of computing a mixed strategy Nash equilibrium,
especially for a continuous game, lies on how to design an efficient method to represent the mixed
strategy. To be precise, a pure strategy can be represented by a single variable choosing from some
region. But as a distribution on each player’s action space, a mixed strategy with respect to the player
is defined in a (subspace of) real space R. More generally, exact representation for a mixed strategy
of a player usually requires many variables in a continuous space. In addition, the corresponding
probability distribution may not have a density function in closed-form.
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To address this challenge, we introduce a pushforward measure technique. It is a common tool in
measure theory to transfer a measure to some specific measure space (Bogachevl, 2007). Specific to
a continuous game, the probability distribution corresponding to a mixed strategy is obtained via a
mapping parameterized by neural nets from a multi-dimensional uniform distribution.

With this pushforward representation, we generalize the Gradient-based Nikaido-Isoda (GNI) func-
tion, defined in (Raghunathan et al., 2019)), to handle mixed strategy Nash equilibria. The original
GNI function can be viewed as a measure for the distance between any joint strategy profile and
a Nash equilibrium after applying the payoff functions of players. With proper generalization and
modification, we develop its mixed strategy version as a proper measure for a Nash equilibrium. We
prove that the distance becomes zero if and only if a stationary mixed Nash equilibrium is obtained.
Then we apply the gradient descent algorithm to the general GNI function, which converges to a
stationary mixed Nash equilibrium under the convexity assumptions on the payoff functions.

Finally, we compare our method with baseline algorithms in numerical experiments. Our approach
shows effective convergence property in all the randomly generated quadratic games, general blotto
games and GAMUT games, which outperforms other baselines.

2 BACKGROUND AND PROBLEM DESCRIPTION

The discrete action space Nash equilibrium computation has been most widely studied in the liter-
atures. Most well-known being the LemkeHowson algorithm [Lemke & Howson| (1964)) for solving
the bimatrix game. The state-of-art work in theoretical computer science of Tsaknakis and Spirakis
provided a solution of 1/3 approximation in polynomial time [Tsaknakis & Spirakis| (2007). Sur-
prisingly, an empirical work [Fearnley et al.| (2015)) shows it performs well against practical game
solving methods for the bimatrix game.

However, continuous action space game computation is widely used in practice. But few methods
are known for the general Nash equilibrium computation. Several recent effort to develop compu-
tational method of Nash equilibrium for multi-player (mostly 2-player) continuous game (Raghu-
nathan et al.,|2019; |Balduzzi et al.| |2018) have been restricted to pure strategies.

Game-theoretical approach has had useful applications to machine learning such as the optimization
of GAN network training (Daskalakis et al.,|2017;|Gidel et al., 2018)) and adjustment on the gradient
descent method (Balduzzi et al., 2018). However they are limited to pure strategy Nash equilibrium.

We are the first work to study the mixed strategy continuous game Nash equilibrium computa-
tion. Our work is motivated by the utilization of the Nikaido-Isoda (NI) function for loss function
minimization (Uryas’ ev & Rubinstein, [1994; Raghunathan et al., [2019). We start to establish a
theoretical formulation of the extend mixed strategy continuous action space Nash equilibrium as a
result of the minimization on a functional variation-based Nikaido-Isoda function.

2.1 CONTINUOUS GAME NASH EQUILIBRIUM

Find x* = (27,25, ,2N)
Loxf = i ; 1

s.t. xz} = arg xeRng{l{r}:xii fi(x)
Here N denotes the number of players, and x; € R™¢ the strategy of the i-th player where n; is the
dimension of his action space. Let n = Zivzl n;, and x = (21,22, -+ ,xy) € R™ denotes the joint
pure strategy among all players while x_; = (21, ,2;—1,Tit1, - ,n) € R" ™™ the joint pure
strategy among players except ¢. f; : R™ — R denotes the utility function (cost) of i-th player. A
solution x* to (I) is called a pure strategy Nash equilibrium.

2.2  NIKAIDO-ISODA (NI) FUNCTION

In the paper (Nikaidd et al.|(1955)), Nikaido-Isoda (NI) function is introduced as:

N N
o)=Y (fi - inf ﬁ-(f«)) 53 i) ®
=1

‘ XER™:X_;=x_;
=1
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From the Equation (2), we know ¢(x) > 0 for Vx € R™, and ¢(x) = 0 is the global minimum of NI
function which can only be achieved at a Nash equilibrium (NE). Therefore, a common algorithm
of computing NE points is minimizing the NI function above. However, it is a huge difficulty to
handle the global infimum. On the one hand, global infimum can not be obtained in finite time. On
the other hand, the infimum can be unbounded below in some games, for example the two-player bi-
linear games, where f1(x) = 27 Mxzy = — fo(x). All of the facts above show us the shortcomings
of NI function, and in order to rectify them, Raghunathan et al.| (2019) introduces the following
Gradient-based Nikaido-Isoda (GNI) function.

2.3 GRADIENT-BASED NIKAIDO-ISODA (GNI) FUNCTION

If we calculate local infimum in the NI function ¢(x) instead of global infimum, the time complexity
and unbounded infimum are no longer shortcomings. In precise, given the local radius A, local

infimum can be approximated by steepest descent direction, and we get the following GNI function:
N

V(A =Y (filx) = filwr, -+ micy, @i = AVifi(X), 241, an))
i=1
By minimizing V' (x, A), a stationary Nash point x*, where V., f;(x*) = 0 for Vi, can be approx-
imated efficiently. Furthermore, if all the utility functions f; are convex, then the stationary Nash
points (SNP) obtained are actually Nash Equilibrium (NE).

3 (MC-GNI) GRADIENT-BASED NIKAIDO-ISODA FUNCTION OF MIXED
STRATEGY ON CONTINUOUS GAMES

In this section, we are going to introduce our novel Gradient-based Nikaido-Isoda function of mixed
strategy on continuous games (MC-GNI), which is used to get an approximated solution of the
following optimization problem.

Find * = (m}, 73, -+, 7)
s.t.m; =arg min E  filzi, 22,7 2N) 3)
TR =TE ey, Vi

Before we solve this optimization problem, there is another fundamental question, which is how we
should represent (or parametrize) a distribution 7;. The simplest way to do so is to parametrize its
density function. However, not every distribution has its density function, such as Dirac distribution,
and it will be inconvenient for us to do sampling from only a density function. Therefore, we
introduce another way, adopting the pushforward measure to represent a distribution.

Given a distribution po and a mapping ¢g(-), data x drown from g can be transported into a new
distribution p1 (constituted by g(x)). Technically speaking, p1 is called the pushforward measure
of 119 by mapping g, denoted by p1 = g# (o).

Here, for Vj € [N], we prepare each distribution 7; a corresponding pushforward function g; :
R¢ — R™, and we have:
m =g7 (U)

where U stands for the uniform distribution on [0, 1]¢. Each time we want to sample from distribu-
tion 7;, we only need to sample several w; € [0, 1]¢ from distribution U and calculate g;(w;). Then,
these g;(w;) form a sample set from distribution ;. And optimization problem (3)) becomes:

Find g* = (97,92, - 9 )

st.g; =arg min E  fi(g1(w1),g2(w2), -, gn(wn)) “4)
8:9—i=9_,; w;i~U, Vj

To solve the optimization problem above, we consider the following Gradient-based Nikaido-Isoda
function of Mixed strategy on Continuous games (MC-GNI), generalized from the GNI function

introduced above, and we call this function V' the local regret:
N

V(gtha"' 79N7)\) = ZE‘(th?,"' 7gN) _Fi(gla"' y9i—1,34 _A(SgLFu agN)
i=1
N (5)
£ Z‘/;(glag%"' 7,gN;)‘)
i=1
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Here, ¢4, F; stands for the 1-st order variation of functional F; on element function g; and
Fi(91,92,- -+ ,9n) = E [fi(g1(w1), g2(w2), -+, gn (wn))]

wi~U, Vi
By minimizing the functional V'(g1,g2, -+ ,gn;A), we can approximately get stationary Nash
points (SNP), and even get Nash equilibrium if all the utility functions f; are convex. We will
prove them in the next section.

In practice, we further parametrize these pushforward functions as: g;(-) = g (-, 6;), to efficiently
calculate derivatives instead of variations. For simplicity, we denote g; as gy,. In order to obtain a
better expressibility, we use neural networks as the architecture to parametrize these pushforward
functions. Then, MC-GNI function V' can be transformed to:

N
V(Q@u.g@z?"' 7991\1;)‘) = ZFi(g&ngm”' 7g9N) 7Fi(g‘913'"' 7997:—17997:—391.F7;a"' 7g9N)
=1

Finally, the MC-GNI function can be minimized by implying gradient descent on these function
parameters 6;, i € [IN], the convergence of which is proved in the next section.

4 THEORETICAL ANALYSIS OF MC-GNI

4.1 THE SUFFICIENT AND NECESSARY CONDITION OF STATIONARY NASH POINT

As a mixed strategy of an N-player continuous game, (71,72, - ,TN) = (ng, gf& e ,gﬁU)
is a stationary Nash point (SNP) if and only if for Vi € [IV], the 1-st order variation
8g, (Fi)[o(x)] =0 (6)
holds at each direction o (). Here:
Fi(91,92,- - ,9n) = E i [fi(g1(w1), g2(w2), -+, gn(wn))]
wij~U, V)

is the expectation of the i-th player’s utility with the form of N-variable functional. Now, we
compute the variation above and deduce the sufficient and necessary condition of SNP.

o1
591(Fl)[0-(‘r)} = hn(l)i (Fi(91;927"' 7gN) _FZ(gl7 g9 — €0, >gN))

= w,-NIrEj, v‘j[a(wi)T “Vifi(gi(wi), g2(w2), -, gn(wn))]
- EU[U(WZ')T' z}Ev- [Vifilg1(w1), g2(w2), - -+, gy (wn))]] @
Wi~ wji~U, Vj#i
& o(w;) - G(w;)] = o(w;) - G(w;)dw;
JE,low) - Gw) /H () - Glw)d
where:
G(w;) = w_N(;Evj#[vz‘fi(gl(wl)»92(w2)a o gn(wn))]

For SNP, Equation (6) holds at each direction o (), i.e. G(w;) = 0. Therefore, we have

Theorem 1. 7 = (my,ma, - ,TN) = (gfﬁU7 g;#U, e 7gﬁU) is a stationary Nash point (SNP) for
an N-player continuous game if and only if:

E  [Vifilgi(wi), g2(w2), -+ ,gn(wn))] =0, Vw; €R?
wji~U, Vj#i

holds for all i € [N].

From Equation (7)), we also know that:
bg; (Fi)]o(wi)] = (G(wi), 0 (wi))
In other words, the steepest direction is:
0g,(Fi) = G(w;) = E ;é [Vifi(g1(w1),g2(w2), -, gn(wn))]

wj ’\f[]7 V_] 7
Then we show the relationship between stationary Nash point and Nash equilibrium.

Theorem 2. Denote S°NP SNE s the set of SNPs and NEs of a particular N-player continuous
game. Obviously, SN¥ C SSNP_ If all utility functions f; are convex, we have: SN¥ = SSNF
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Proof. Suppose m = (71, 7o, -+ ,TN) = (g1 U, g3 i 7gﬁU) is an SNP, we will prove it an NE
when all functions f; are convex. Accordmg to the convexity and the condition of SNPs, we know
that for V¢ € [IN] and any other pushforward function g;:
Fi(g1,92, -+ gn) = Filg1,- -+, Gir- 1 9N)
= E _[fi(gl(wl)a"' yGi(wi), - gn(wN)) = fi(g1(wi), g2(w2), -+, gn (W ))]

>w U, [ gz wz ( z))T ~Vifi(gl(W1)7gg(w2)’... ’gN(OJN))] ®
= [( i(wi) = gi(wi)" - l}gv' [Vifi(g1(w1), ga(w2),- -+, gn(wn))]]

Wi~ wji~U, Vj#i
= E [0 — )" - 8, (F)] = 0

which leads to our conclusion, that 7 = ( gf&U , gf U,---.,g NU ) is a global Nash equilibrium. ]

Next, we show the relationship between the zeros of MC-GNI function V' (g1, g2, - - - , gn) and SNPs
of the N-player continuous game.

Lemma 1. Assume f : RY — R is a twice differentiable function, and its 1-st order gradient V f is
L ¢-Lipschitz continuous. Then forVzx,y € R?, we have:

1
) = @) = (Vf@),y = 2)| < 5Lylly =[5
Proof. According to the condition of f, there holds the following equations.

@) — f@) — (Vf(@)y — )| = / (Vf (@ +7(y — ) - VI (),y — 2)dr

< [ VSl =) = V@)= ) dr
©)
/nvmw( ~ ) = V@) Iy - aldr

< / Lyl — ldr = S Lylly — 3

With this lemma, we can show that each global minimum of V' (g1, go,- - , gn) is also an SNP.

Theorem 3. If each utility function f; is twice differentiable and its 1-st order gradient V f; is
L -Lipschitz continuous. Then:

A 3
§||§giFi(gl7927"' 79N)||2 g ‘/;(91,927"' 7gNa)\) < 7”591}7‘1(91792’ 7gN)||2

holds when 0 < \ < LL 12

is a functional norm which means:

1917 = [ B dui = E 1703
[0,1]¢ w;~U
Proof.
Vi(g1, 92, N3 A)
=Fi(91,92, - ,9N) — Fi(g1, -+ ,9i — XNog, Fi,- -+ ,gn)
= E ,[fz‘(gl(m),gz(wz)v 9N (wh)) = filgr(wr), -y giwi) — AégiFi(wi)v"' s gn(wn))]

w]-~ y V]
(10)
Then, according to Lemma [T}
V;(glag%"' 7gN1>‘)
L
< E . A(8g, Fi(wi)) "' Vi fi(g1(w1), g2(wa), -+, gn (wn)) + 2f>\2||5g,-Fi(wz‘)||2]

wi~U, V)

(11

L
=A 'EU ||6giFi(glng7 e agN)(wi)H% + %AQ EU HégiFi(gl,QQ, o 7gN)(Wi)||§

i~

3\
<§||5glFi(91,92,"' ) |1?
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And the other side of this inequality is similar. O

The theorem above tells us that, V' (g1, 92, -+, gn; A) is always non-negative as long as A < i
And its global minima, or in the other words, its zeros, are surely SNPs, because for Vi € [N]:

Vi(g1,92, -+ ,gn; A) =0 & g, Fi(91,92,--- ,9n) =0

Finally, we analyze the stability of SNPs. In the following theorem, we show that the 2-nd order
variation of functional V' is a positive semidefinite operator, which confirms the stability of SNPs.

Theorem 4. The 2-nd order variation §*V (g*; \) is a positive semidefinite operator for Vg* €
SNPand 0 <X < -

Proof. The 1-st and 2-nd order variation of V;(g; \) satisfy:

0Vi(g: A) = 6Fi(g) — 6F3(8) + A 8°Fi(g) Did Fy(8). (12)
Whereg = (917927' o 7gN)7g = (gla" 5 9i—-1,9i — Ad LF7 agN) and
Di = Diag(onlxnla' o )Oniflxni717Inaniuoni+1Xni+17. te aOTLNX’nN)

is an x n matrix. Given g* € SN then §F;(g*) = 0.
§%Vi(g*; A) = A 6°F;(g*)[2D; — AD;6°F;(g*) D;]0° Fi(g*)
= X 6°F;(g")[2D; — ALy D})8*Fi(g")

13
= NOPF(g")D.0Fi(g") -
=\ (8°F;(g")D:)" (8°F;(g") D;)
which is positive semidefinite. Therefore:
N
= 5%Vi(g" N
i=1
is also positive semidefinite. O

4.2 CONVERGENCE ANALYSIS

In this section, we analyze the convergence analysis of gradient descent:
gttt =g® —p. 5V (g™ )
According to the definition of functional V' (g; A), it can be rewritten as the following form:

VigiA) = oo [Gv(g1(w1), g2(w2), -+ gn (wn))]

N
where Gv = .0 filyi,y2,- -, yn) — fily, -+ Wim1, ¥ — AVifi(ys, y2, -+ ,UN), - L YN).

Theorem 5. Suppose VGvy (x) is Lg-Lipschitz continuous. Through gradient descent, the function
sequence g'%) converges sublinearly to a stationary Nash point (SNP) g* if p < i, A< L%

Proof. According to Lemmal|[I] we have:

V(g™tiN) < v(g™in) - UF;/E[ N [P VGv((g1(wr), ga(wa), -+ gn(wn)) - 6V (g™); \)
UJ]N J

Lg
+ E P16V (g5 N2
w;j~U, VjE[N] 27

L
= V(™) = (0= ) V(g™ N)?

20Lc — (pLa)?
=V(g®; ) — (pc(pc)) 16V (g™ \)||2

2L¢
(14
Letk=0,1,---, K, and add them up, we have:

2oL L
V(g ;) < V(g®; \) (”“‘) Znav NIP
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Since A\ < L%’ we know that V (g(5+1); \) > 0 by Theorem we have

al 9oL
5V (g®): A 2<<G>V O, )
S 1V I < (550, ) V"

5)
. 2L V(g®;\)
= SV (g™ V)| < ¢ ’
i Ve NI™ < 5,0 —rar ) K+
which completes our proof. O

5 EXPERIMENTS

To evaluate the practical performance of our approach, we apply it to three types of games, two-
player quadratic games, general blotto games, and GAMUT games, the most popular games for
evaluation of Nash equilibrium algorithms. In all the experiments, we set the local radius A = le —3
and we use gradient descent as our optimization method with step size p = le — 2 and momentum
x = 0.9. The network architecture we use for the pushforward functions gy is a 6-layer fully
connected neural network with the size of each layer as: 20, 40, 160, 160, 40, 20. The size of its
output layer is the dimension of each player’s action space. From forward to backward, the activation
function we use is: tanh, tanh, tanh, ReLU, tanh, tanh.

We mainly compare our approach with two recent studies, gradient descent for GNI function
(Raghunathan et al., [2019) (gradGNI in short), and Symplectic Gradient Adjustment algorithm
(Balduzzi et al., 2018) (SGA in short), as they outperformed other existing algorithms applicable
to continuous game settings. For all these methods, we either follow the standard hyper-parameters
mentioned in the original papers, or the ones resulting in the best convergence.

5.1 TWO-PLAYER QUADRATIC GAME

The two-player quadratic game is defined by the the players’ payoff functions f; (i = 1, 2):

filx) =xTQix + 1] x, (16)
where Q; € R(m1tn2)x(nmitn2) o e Rratne x — (1 25) and z; € R™. In our experiments,
we choose n1 = ny € {3,5,10}. For each pair of n;, we randomly generate 100 instances for the
matrix @); and r; for i = 1,2. Each item in each matrix (Q; and each vector r; follows the uniform
distribution on [0, 1] independently.

We show the converging process of all algorithms for one game instance (n; = no = 3) in Fig.
as an example. As we can see, our approach effectively converges to a stationary Nash equilibrium
point. While the gradGNI approach also converges in this instance, its result has a larger local
regret. In other words, it obtains a worse approximation to Nash equilibrium, which coincides
with the essential difference between pure strategy and mixed strategy. The MC-GNI approach
searches for the equilibrium in the mixed strategy space, which includes the pure strategy space that
the gradGNI approaches searches in. On the other hand, the SGA approach diverges in this game
instance. We further take the average of the final local regret after 2000 iterations for all the 100
instances, summarized in Tab. [T} All the algorithms show consistency as the dimension of action
space increases, and MC-GNI outperforms others regardless of the randomness of game structures.

5.2 GENERAL BLOTTO GAME

We next consider the general blotto game, which differs from previous games in the action space of
each player for which further constraints apply.

In a blotto game, player 1 and 2 (sometimes known as two colonels) have a budget of resource X1,
X, respectively. W.Lo.g we set X; < X,. There are m battlefields in total. In each battlefield 7,
when two players allocate w1, x2; resource on it, the payoff of player ¢ is:

Ui; = f(zij —x—s5), where f(x) = tanh (x), 17)
where —i denotes the player other than player 7. Each player’s payoff across all m battlefields is
the sum of the payoffs across the individual battlefields. For each player ¢, a feasible pure strategy
i = (Ti1,- .., Tim) € R must also satisfies Z;n:l x;j < X;. Here we adopt the generalized
blotto game proposed by (Golman & Page, [2009) with continuous payoff functions. The payoff
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Figure 1: Local Regret of Various Games.

| MC-GNI (our model) | gradGNI | SGA
Quadratic (n; = 3) (1.63 +1.20)e-3 (1.01 £ 0.03)e-1 2.59 £0.17
Quadratic (n; = 5) | (2.84+1.95)e-3 | (2.95+0.19)-1 | 3.92 +0.22
Quadratic (n; = 10) (3.76 £ 3.02)e-3 (1.47 £ 0.08)e-1 2.54 £+ 0.09

Blotto (m = 3)
Blotto (m = 5)
Blotto (m = 10)

(6.32 £ 4.97)e-6
(4.52 + 3.09)e-6
(3.62 + 2.39)e-6

(2.62 £0.38)e5
(1.10 % 0.06)e-5
(7.60 £ 0.49)e-6

(5.26 £ 0.91)e5
(1.21 4 0.18)e-5
(5.94 £ 0.26)e-6

GAMUT (n; = 3)
GAMUT (n; = 5)
GAMUT (n; = 10)

(4.95 £ 0.42)e-3
(8.90 + 0.79)e-3
(1.54 + 0.86)e-2

(4.80 £ 0.8D)e-1
(1.52 + 0.27)e-1
(1.84 4 0.48)e-1

(0.04 £ 0.13)e-1
(2.59 £ 0.60)e-1
(1.76 £ 0.32)e-1

Table 1: Comparison results.

functions in vanilla blotto game (Gross & Wagner, |1950) is discontinuous, for which our method
as well as baselines fails. In our experiments, we set m € {3,5,10}. For each m, we randomly
generate 100 instance for the budget X, following the uniform distribution on [0, 1] independently.

We show the converging process of all algorithms for one game instance (m = 3) in Fig. [I(b)as an
example. All the algorithms converges for this game, and both the gradGNI and SGA approaches
converges faster and more smoothly comparing with our MC-GNI. However, similar to the quadratic
game, their final results have larger local regret. This coincides with the fact that the mixed strategy
is a better solution concept than the pure strategy, especially in blotto games. We further take the
average of the final local regret after 2000 iterations for all the 100 instances, summarized in Tab.
All the algorithms show consistency as the dimension of action space increases, and MC-GNI
outperforms others regardless of the randomness of game structures.

5.3 GAMUT GAMES

Finally, we apply our method on the game instance generated by the comprehensive GAMUT
suite of game generators designated for testing game-theoretic algorithms Nudelman et al.| (2004)).
GAMUT includes a group of random distributions, based on each of which the payoff of each player
for each pure strategy profile can be drown independently. In precise, we extend the quadratic game
to a multi-player version, where r; = 0, and 100 game instances with 4 players are generated. For
each instance, one of the distributions from the GAMUT set is selected, and each item in each matrix
Q; is sampled according to it independently.

We show the converging process of all algorithms for one game instance in Fig. |I(c)l Both MC-
GNI and SGA converge, but SGA has a much worse final result than our MC-GNI. And this time,
gradGNI diverges. Furthermore, we take the average of the final local regert after 2000 iterations
for all the 100 instances, shown in Table

From these different games, we know that our MC-GNI converges and performs better than two
baselines in all of the three games, which shows the effectiveness and efficiency of our MC-GNI
model. As the first algorithm to compute the mixed strategy Nash equilibrium of games with con-
tinuous action space, we believe that the technique we introduced here will enable new optimization
researches of many exciting interaction domains of algorithmic game theory and deep learning.
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