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ABSTRACT

Single cell RNA sequencing (scRNAseq) technology enables quantifying gene
expression profiles by individual cells within cancer. Dimension reduction meth-
ods have been commonly used for cell clustering analysis and visualization of
the data. Current dimension reduction methods tend overly eliminate the expres-
sion variations correspond to less dominating characteristics, such we fail to find
the homogenious properties of cancer development. In this paper, we proposed a
new and clustering analysis method for scRNAseq data, namely BBSC, via im-
plementing a binarization of the gene expression profile into on/off frequency
changes with a Boolean matrix factorization. The low rank representation of ex-
pression matrix recovered by BBSC increase the resolution in identifying distinct
cell types or functions. Application of BBSC on two cancer scRNAseq data suc-
cessfully discovered both homogeneous and heterogeneous cancer cell clusters.
Further finding showed potential in preventing cancer progression.

1 INTRODUCTION

Cancer the biggest deadly threat to human has been a huge puzzle since its determination in 1775.
From once considered as contagious to nowadays cancer immunotherapy, the modern medication
continues to evolve in tackling this problem (Dougan et al., 2019). And yet, not enough to make a
huge difference, 1,762,450 people have been diagnosed with cancer and 606,880 has died in 2018
(Siegel et al., 2019). The development of single cell RNA sequencing (scRNA-seq), which measures
each single cell in cancer tissue with over 20,000 dimension of genes (features), picturized the
hologram of cancer and its micro-environment with high resolution (Picelli et al., 2014; Puram et al.,
2017; Tirosh et al., 2016). As illustrated in Figure 1A, classic analysis pipeline takes a linear (PCA)
or non-linear (t-SNE) dimension reduction of the high dimensional input data, by which loadings of
the top bases are further used for cell clustering and visualization (Tirosh et al., 2016).

Figure 1: Classic analysis pipeline for
scRNA-seq data and Melanoma example

Cancer cell heterogeneity hampers theraputic de-
velopment. We use the melanoma dataset as an ex-
ample. Cells in a scRNA-seq data are always with
multiple crossed conditions, such as types of cancer,
origin of patients and different cell types. By analyz-
ing melanoma scRNA-seq data with classic pipeline,
we differentiated the cell type of each cell in its can-
cer microenvironment (CME) (figure 1B). All cell
types other than cancer cell are constituted by mul-
tiple patients (figure 1C), validated the accuracy of
classic pipeline in cell type identification. While
on cancer cell, each patient forms a distinct clus-
ter (highlighted in shadow), suggesting confound-
ing patient-wise heterogeneity. Similar phenomenon
also exists in breast cancer and head and neck cancer.
On the other hand, being an investment-heavy in-
dustry like medical industry, the uniqueness of each
cancer patient contradicts its general principle as to
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Figure 2: BBSC Pipeline for scRNA-seq data

seek a rather universal treatment for a broad range
of patients. To solve this dilemma, major modifica-
tions are needed for the analysis pipeline of cancer
scRNA-seq data.

Approximate gene expression with Bi-state model. The expression of one gene in a single cell is
characterized as the following two-state bursting model determined by two factors, transcriptional
frequency (f) and size (ksize) (Larsson et al., 2019)

f |kon, koff ∼ Beta(kon, koff )
y|ksize, f ∼ Poisson(ksize · f)
x ∼ y + ε, ε ∼ N(λ0, σ0)

In addition, f follows a beta distribution accounting for the collective effect of the probability to
shift the expression from off to on (kon) and from on to off (koff ). y denotes the true expression
of gene i inside cell j and x is the observation of y with Gaussian error. Recent study revealed
that, regulated by enhancers, burst frequency f is the major facilitator of cell type specific gene
expression landscape (Larsson et al., 2019). Though f and ksize cannot be precisely fitted from
our observed data, since y follows the Poisson distribution of the pure product of ksize and f , we
could still capture the most significant frequency changes across different cells. That is, we could
infer whether f is above or equal to zero, corresponding to expression/no-expression of the gene,
from our observed data. Counting this property, we thus propose the following approximate gene
expression bi-state models.

Fn×m = An×k ⊗Bk×m + E, (1)

Yij ∼
{
Poisson(λi), if Fij = 1,

0, if Fij = 0,
(2)

Xij ∼ Yij + εij , εij ∼ N(λ0, σ0), (3)

where F denotes a latent binary matrix of f , which is considered as a low rank representation
of k different cell types, generated by the Boolean product of two binary matrix A and B plus
a Boolean flipping error E. Y denotes the true quantitative expression level generated from F ,
and X is considered as a measure of Y with i.i.d. Gaussian error ε. Here our approach takes the
approximating Y by Hadamard product between X and Ân×k ⊗ B̂k×m, i.e.

Ŷ = X ◦ (Ân×k ⊗ B̂k×m),

where Ân×k and B̂k×m are the estimation of An×k and Bk×m.

Bi-state and Boolean matrix factorization for scRNA-seq data (BBSC). In sight of this, we de-
veloped a novel scRNA-seq pattern mining and analysis pipeline namely BBSC (Figure 2), by im-
plementing a data binarization process for the inference of ON/OFF bi-state expression patterns. In
addition, we proposed a fast binary matrix factorization (BMF) method, namely PFAST, adapting
to the large scale of scRNA-seq data. BBSC can be easily implemented with classic dimension re-
duction based analysis procedure. Application of BBSC on scRNA-seq of the head and neck cancer
and melanoma data successfully revealed the cancer homogeneity hence increased the sensitivity in
identifying sub types of cells. In addition, cancer cell clusters expressing the epithelial mesenchy-
mal transition (EMT) markers were specifically identified by BBSC in head and neck cancer study,
which consist cancer cells from different patient samples, suggesting heterogeneous cancer cells
may adopt a similar strategy in cancer metastasis process.

We summarize our contributions as follows:
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• We constructed a scRNA-seq analysis pipeline, BBSC, for retrieving cancer homogeneity
properties. BBSC is by far the first analysis pipeline accounting the fundamental interplay
between cell type and gene expression in the analysis of scRNA-seq data.

• As a major component in BBSC pipeline, we proposed a fast and efficient BMF algorithm,
PFAST, in adapting to the large scale of scRNA-seq data.

• In the analysis of head and neck cancer data, BBSC identified that cancer cell may adapt
similar strategies in metastasis. This finding could be applied to prevent cancer progression.

2 RELATED WORK

So far, two strategies have been used to optimize the classic pipeline for scRNA-seq data analysis:
(1) using extra information to supervise the dimension reduction, such as CITE-seq and REAP-seq
data combining scRNA-seq with additional protein information (Stoeckius et al., 2017; Peterson
et al., 2017) or a recent work by Peng et al. (2019), by maximizing the similarity with bulk RNA
seq data for scRNAseq imputation; and (2) limiting analysis to the genes known to be related with
desired biological features Tirosh et al. (2016). Both strategies require substantial prior information
that is either expensive or unsuitable for studying biological characterization. In this paper, we
developed a new strategy rooted from a perspective that differences in cell types and physiological
states correspond to different bi-state frequency patterns, which could retrieve effectively by Boolean
matrix factorization.

Following the Boolean algebra, BMF decomposes a binary matrix as the Boolean product of two
lower rank binary matrices and has revealed its strength in retrieving information from binary data.
Due to the NP completeness of the BMF problem, several heuristic solutions have been developed,
among which two series of works are most frequently utilized (Miettinen et al., 2008; Lucchese et al.,
2010). One is ASSO algorithm developed by Miettinen et al. (2008). ASSO first generates potential
column basis from row-wise correlation. Then adopts a greedy searching from generated basis
for the BMF fitting. The second series of work is the PANDA algorithm developed by Lucchese
et al. (2010). PANDA aims to identify the top 1-enriched submatrices in a binary matrix from
background noise. In each iteration, PANDA excludes the current fitting from the input matrix and
retains a residual matrix for further fitting. More recently, Bayesian inference has involved in this
field. Ravanbakhsh et al. (2016) retrieve patterns from factor-graph model by deriving MAP using
message passing (denoted MP). Rukat et al. (2017) proposed OrMachine, provide full probabilistic
inference for binary matrices. While ASSO and PANDA being regarded as the baseline in BMF, MP
and OrMachine represent state-of-the-art performance.

3 BBSC ANALYSIS PIPELINE

As shown in Figure 2, we implemented a data binarization and PFAST algorithm to constrain
scRNA-seq data before a regular dimension reduction based analysis, which forms a new analysis
pipeline namely BBSC. BBSC first binarizes the input data via the on/off expression states of each
gene. The approximated matrix, namely recover matrix, is further constructed by the Hadamard
product of the original expression matrix and the BMF fitted binary matrix. Regular dimension
reduction and cell clustering analysis is then conducted on the recovered matrix.

3.1 CHARACTERIZATION OF ON/OFF EXPRESSION STATE

Figure 3: Infer F from scRNA-seq data

To determine a gene is truly ex-
pressed or not is to examine Xij on
ε. Empirically, we assume the lowest
none zero expression value of each
gene approximates the distribution of
ε. Since type I error is far damag-
ing than type II error in biological ex-
periments, we utilized the 95% quan-
tile of ε distribution as the threshold
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of ON expression state, i.e., gene ex-
pression above the threshold is con-
sidered as f > 0 while expression below the threshold is considered as with an OFF state, i.e.
f = 0. We applied this binarization procedure on two high quality scRNAseq cancer datasets of
head and neck cancer (Figure 3A) and melanoma (Figure 3B). To justify the threshold of ON/OFF
state computed in this way, we compared the representation of data in the lower dimension by the
overall silhouette score, which measures the similarity of each data point to own cluster compare to
others. The overall silhouette score represents the goodness of the clustering. Note that cell cluster
information is retrieved directly from original paper. In both datasets, the binarization approach
significantly increased the performance of cluster representation, suggesting our binarization can
remove true noise and still maintains the biological information.

3.2 PFAST ALGORITHM

We developed a fast and efficient BMF algorithm, namely PFAST to cope with the large scale of
modern data of interest. PFAST follows the general framework of PANDA algorithm. In each
iteration, PANDA has two main sub functions, core pattern discovery (Core) and extensions of a
core pattern (Core ext). Core finds the most enriched square of 1s under current residual matrix.
Core ext expands the generated core patterns with not included area. To find most precise patterns
amid noise, PANDA calculates global loss at each step. Though PANDA only works on the residual
matrix in each iteration, it still involves already generated patterns for calculating loss. This look
back property and global loss calculation may play a major role in decomposing noisy binary data.
However, the associated computational pressure makes PANDA inapplicable for large-scale scRNA-
seq data. Fortunately, during our binarization process, 95% of noise has been eliminated, which
compensates an extensive binary pattern mining as PFAST. Unlike PANDA, PFAST only focus
on the loss in a local scale. Moreover, PFAST abolished the look back property, only focus the
loss decrease for current pattern. Taken together, PFAST is an extensive BMF algorithm. Each
iteration of PFAST has a computational complexity of O(mn). Like PANDA, PFAST will only work
iteratively on residual matrix that has not been covered by any identified patterns before hitting the
convergence criteria. The choice of convergence criteria can be modified for different needs. The
popular convergence criteria are set by identifying top k patterns or covering certain proportion of
the non-zero values in the matrices. Detailed algorithms of PFAST is illustrated below:

Algorithm 1: PFAST
Inputs: Binary matrix F , Threshold t, and τ
Outputs: A ∈ {0, 1}n×k, B ∈ {0, 1}k×m

PFAST (F, t, τ):
A← ∅ B ← ∅ Fr ← F
while !τ do

(a,b)← PFAST core(Fr)
(a,b)← PFAST ext core(Fr, a,b, t)
A← A ∪ a B ← B ∪ b
Erij ← 0where (a⊗ b)ij = 1

end

3.3 EVALUATION OF PFAST ALGORITHM ON SYNTHETIC DATA

Since OrMachine has been deprecated, we compared the performance of PFAST with ASSO,
PANDA ,and MP on simulated datasets. We simulated binary matricesXn×m = Un×k ⊗ V k×m

where each element of U and V follows an identical Bernoulli random variable. In the simulation,
we set n = m = 1000, k = 5, and two signal level p = 0.2/0.4, corresponding to sparse and dense
matrix. We compared the performance with three criterion: reconstructed error, sparsity, and time
cost. Specifically, reconstructed error measures the overall fitting of each method, and sparsity mea-
sures the parsimonious level of the pattern matrices. Detailed definition of reconstructed error and
sparsity are given below. Intuitively, a good binary matrix factorization should have small recon-
structed error and proper sparsity level. To the best of our knowledge, the conditions to guarantee
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Algorithm 2: PFAST core
Inputs: Residual matrix Fr
Outputs: a ∈ {0, 1}n, b ∈ {0, 1}m
PFAST core(Fr):
s = {s1, ..., sn} ← sorting based on row-wise sum
a← 0n ; b← 0m; as1 ← 1; bs1 ← 1 ∀i s.t.Frs1,i = 1
for l← 2, ..., n do

a∗ ← a; a∗si ← 1; b∗ ← b; b∗
i ← 0 ∀i s.t. Frsl,i = 0

if sum(Fra∗,b∗) > sum(Fra,b) then
a← a∗; b← b∗

end

Algorithm 3: PFAST ext core
Inputs: Fr a b t
Outputs: a ∈ {0, 1}n, b ∈ {0, 1}m
PFAST ext core(Fr, a,b, t):
Fext← Fr−,b
for i in 1, ...n do

ai ← 1 ∀i |Eexti,−| > |b| ∗ t
end

a unique solution of the BMF problem have not been theoretically derived, thus we do not directly
compare the factorized and true pattern matrices directly, i.e., U vs A∗, and V vs B∗, where A∗

and B∗ denote the pattern matrices decomposed by the three different algorithms. Note that ASSO
and PFAST require one additional parameter as a standard input. To achieve a fair comparison, we
tested different parameters for each method and used the parameter with the best performance for
the comparison. The convergence criteria for all the methods were set as when (1) 5 patterns were
identified, corresponds to the true rank of simulated matrices; (2) identified patterns already covers
95% of the non-zero values. All the experiments ran on the same laptop with i7-7600U CPU and 16
GB memory. We conducted the evaluation for 10 times, detailed results are shown in Figure 4. The
definitions of reconstructed error and sparsity are

reconstructed error =
|(U ⊗ V )	 (A∗ ⊗B∗)|

|U ⊗ V |
sparsity =

|A∗n×k|+ |B∗k×m|
(n+m)× k

.

Figure 4: Performance comparison of PFAST with ASSO,
PANDA and MP

Comparing to ASSO, PANDA, and
MP, our analysis showed that PFAST
achieved superior performance in
both sparse and dense matrices. The
running time of PFAST is signifi-
cant lower than all other methods.
We also observed better convergence
of PFAST. ASSO tended to find
the most inclusive patterns so that
they usually converged with very few
dense patterns. PANDA was de-
signed to identified significant pat-
terns from background noise. Its
low tolerance to noise caused a rel-
ative slow pace in convergence. MP
revealed its robustness in fitting bi-
nary data. However, it has the high-
est computational cost compared to
others. The performance of PFAST
demonstrated its balanced computa-
tional cost and fitting accuracy. With the significant improvement of speed, PFAST still manages to
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Figure 5: BBSC analysis of Head and neck and Melanoma scRNA-seq data

maintain information by decomposed patterns. Meanwhile, the PFAST has a pattern sparsity level
very close to true density 0.2 and 0.4, also indicating the rationality of PFAST decomposition. Thus,
PFAST is suitable in dealing with large scale data like scRNA-seq data.

4 APPLICATION OF BBSC ON REAL CANCER DATASETS

We applied classic tSNE-based dimension reduction and BBSC analysis on the head and neck cancer
and melanoma data sets, as detailed below. For both datasets, we recovered the bi-state model of
data by binarizing the expression matrix into ON/OFF expression state with 95% Gaussian noise
quantile. PFAST was applied on the binary matrices with threshold setting to 0.6. The choice of
convergence criteria can vary according to different needs. Here, we set convergence as 1) top
10 patterns have been identified, 2) 40% of non-zero values has been recovered. The rationale
here is that scRNA-seq data is overall sparse. It usually cost extensive patterns to achieve a small
reconstructed error. However, the later discovered patterns introduced more bias, where the later
patterns are more likely to be related to other factors rather than cell type. Empirically, top 10
patterns and 40% cutoff achieve better cell type identification ability. In analyzing the head and
neck cancer and melanoma data sets, it resulted in 5 and 10 patterns respectively. In both analysis
pipeline, we conducted dimension reduction using t-SNE with perplexity setting to 30 with 20000
max iterations. It is noteworthy that no cell clustering was made in this analysis. All the cell type
annotation and patient information were directly retrieved from the original paper. As illustrated
in Figure 5A,E, the 2D embedding achieved from the classic pipeline well separated cells by their
phenotypic types. Fibroblast, T-, B-, myeloid and cancer cells et al forms distinct individual clusters.
Further analysis of the association between cell groups and patient information confirmed same
type of the immune and stromal cells from different patients form one cell group, while the cancer
cells are grouped by specific patient over the 2D embedding (Figure 5B,F). These observations are
consistent with original work.

On the other hand, on the 2D embedding of the BBSC pipeline, cell of different phenotypic types
form into distinct groups. Comparing to the classic pipeline, BBSC retrieved data generated more
groups of subtypes of Fibroblast, T cells and cancer cells (Figure 5C,G). The split cell groups iden-
tified by BBSC show higher association with intra-cancer heterogeneity. We further investigated
the association between the patient origin and cell group over the 2D embedding of the BBSC data
(Figure 5D,H). Interestingly, in both datasets, we observed several cell groups, marked with yel-
low circles, that are constituted by cancer cells for different patients. These cancer cell groups
correspond to the common sub cell populations prevalently shared by cancer tissues with different
patients, which may suggest hallmark functions developed in the disease progression.
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To identify the functional characteristics of BBSC derived cell groups, we checked the differen-
tially expressed genes associated with the cell groups of cancer cells. We first achieved five distinct
clusters of the cancer cells over the 2D embedding of the BBSC retrieved data by using k-mean
method (Figure 6A). Figure 6B illustrates the newly clustered cancer cell in the 2D embedding de-
rived by the classic tSNE method. The cluster 1 and 2 are formed by cells from different patients
while the cluster 3 to 5 were associated with specific patients. We identified significant differen-
tial expression of epithelial-mesenchymal transition (EMT) marker genes among the five clusters
(Figure 6C). EMT is regarded as a hallmark event in cancer cells metastasis approach for carci-
nomas such as head and neck cancer [13]. Under this process, cancer cells lose their epithelial
properties and become mesenchymal-like cells with higher migratory capabilities for escaping the
cancer tissue into circulating system. We identified the cluster 1 and 2 behaved distinct difference
compared with cluster 3 to 5 on EMT marker genes. Cells in the cluster 1 and 2 are with overly
expressed mesenchymal markers such as CDH3, TGFB1, ITGB6 and VIM. While the cluster 3 to
5 overly express epithelial markers genes such as CDH1, CLDN4, CLDN7, KRT19 and EPCAM.

Figure 6: Detailed analysis of cancer cell clusters

Our analysis clearly
demonstrated the BBSC
substantially removed
inter-cancer heterogeneity
that enables the identi-
fication of cancer cells
from different patients
with common functional
characteristics. More im-
portantly, the observation
also suggests though can-
cer cell are very different
in each patient, they ought
to take similar strategy
in the metastasis process.
Targeting the progression
strategy revealed in this
study may have huge thera-
peutic impact in preventing
cancer progression.

5 DISCUSSION

Enabled by the development of single cell technology, we now can observe the complicated bio-
logical process like cancer with unprecedented resolution. However, the classic analysis pipeline
fails to deliver detailed information: 1) it does not reveal common characteristic of cancer cell in
different cancer patients. 2) Even it separates functional cells; it fails to reveal intra-cluster hetero-
geneity. To solve above problems, we have developed BBSC analysis pipeline. Rooted from casting
the frequency change in gene expression, we have applied BMF in the feature selection process,
which avoids adding new expensive and potentially noisy information. We have applied tailored
binarizing process for each dataset. Moreover, to deal with big scale tall matrix like scRNAseq data,
we have developed a fast and efficient algorithm called PFAST. Letting alone its fast speed in han-
dling large-scale data, it shows high accuracy compared with state-of-art BMF algorithms. We have
applied BBSC on two high quality cancer studies, head and neck cancer and melanoma. In both
datasets, BBSC shutters the big clusters into several sub clusters, and promotes a gateway to analy-
sis intra-cluster heterogeneity. Moreover, BBSC manages to get common cancer sub cell clusters in
both datasets, and decreases the patient-wise heterogeneity that hindered cancer therapeutic devel-
opment. We next have justified the biological meanings of BBSC derived sub clusters by looking
into the sub cancer clusters in head and neck cancer. By analyzing their detailed expression profile,
We find out that the common clusters are in the EMT transition process indicating these cancer cells
play an important part in cancer metastasis. While patient specific clusters are in the early EMT
process indicating that these cells are still in the original cancer micro environment. These find-
ings have first justified the biological importance of BBSC derived sub clusters. Secondly, it brings
much insightful ideas in the clinical application. We now can hypothesize that when cancer cells
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seek metastasis, they will transform into similar states that are common across different patients.
The characteristic of the common clusters may serve as target in preventing cancer metastasis. Fur-
thermore, we validate that the heterogeneity of cancer comes from the original cancer tissue. Also
BBSC shows promising results in deciphering this kind of heterogeneity. Especially in head and
neck cancer study, BBSC distinctly divides cancer cells from the same patient into two sub clusters.
Due to our limited expertise in cancer biology, we did not look closely in this property. However, we
believe this would bring insightful ideas in the cause of cancer origin heterogeneity. Overall BBSC
is an efficient and valuable analysis platform for scRNAseq or other single cell data. It is capable to
bring insightful knowledge for our detailed understanding of complicated biological process.
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