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ABSTRACT

Efficient exploration is essential to reinforcement learning in huge state space. Re-
cent approaches to address this issue include the intrinsically motivated goal ex-
ploration process (IMGEP) and the maximum state entropy exploration (MSEE).
In this paper, we disclose that goal-conditioned exploration behaviors in IMGEP
can also maximize the state entropy, which bridges the IMGEP and the MSEE.
From this connection, we propose a maximum entropy criterion for goal selec-
tion in goal-conditioned exploration, which results in the new exploration method
novelty-pursuit. Novelty-pursuit performs the exploration in two stages: first, it
selects a goal for the goal-conditioned exploration policy to reach the boundary
of the explored region; then, it takes random actions to explore the non-explored
region. We demonstrate the effectiveness of the proposed method in environments
from simple maze environments, Mujoco tasks, to the long-horizon video game of
SuperMarioBros. Experiment results show that the proposed method outperforms
the state-of-the-art approaches that use curiosity-driven exploration.

1 INTRODUCTION

Efficient exploration is important to learn a (near-) optimal policy for reinforcement learning (RL)
in huge state space (Sutton & Barto, 1998). Dithering strategies like ϵ−greedy, Gaussian action
noise, and Boltzmann exploration are inefficient and require exponential interactions to explore the
whole state space. In contrast, deep exploration (Osband et al., 2016) overcomes this dilemma via
temporally extended behaviors with a long-term vision. Recently, proposed methods include the
intrinsically motivated goal exploration process (IMGEP) (Forestier et al., 2017), and maximum
state entropy exploration (MSEE) (Hazan et al., 2019). In particular, IMGEP selects interesting
states from the experience buffer as goals for a goal-conditioned exploration policy. In this way,
exploration behaviors are naturally temporally-extended via accomplishing self-generated goals. On
the other hand, maximum state entropy aims to search a policy such that it maximizes the entropy
of state distribution.

In this paper, we show that goal-conditioned exploration behaviours can also maximize the entropy
of state distribution. Informally, we show that the target of maximizing the support of empirical state
distribution and the entropy of empirical state distribution can be both achieved by goal-conditioned
policy with a specific design. In particular, the goal-conditioned policy performs in two stages: first,
it selects a goal for the goal-conditioned exploration policy to reach the boundary of the explored re-
gion; then, it takes random actions to explore the non-explored region. The exploration policy leads
to maximize the state entropy on the whole state distribution considering tabular MDP. Thus, the
IMGEP and the MSEE is connected by goal-conditioned behaviors. From this connection, we pro-
posed a practical method called novelty-pursuit. An illustration can be seen in Figure 1. Intuitively,
this process is efficient since the agent avoids exploring within the explored region. Besides, the
exploration boundary will be expanded further as more and more new states are discovered. Finally,
the agent will probably explore the whole state space.

In practice, it is unknown where the exploration boundary is. To deal with this problem, we assume
the state distribution density over the whole state space is continuously expanded, thus the visited
states and non-visited states are geometrically close. So the exploration boundary can be approx-
imated using states with the least density. In high-dimension space, we estimate the exploration
boundary based on prediction errors given by Random Network Distillation (Burda et al., 2019b).
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Figure 1: Illustration for the proposed method. A goal-conditioned policy firstly reaches the explo-
ration boundary, then perform random actions to discover new states.

Ideally, a greater prediction error indicates fewer state distribution density. Besides, we observe that
previous methods based on distance-like reward are inefficient to train the goal-conditioned explo-
ration policy. We employ training techniques based on reward shaping (Ng et al., 1999) and HER
(Andrychowicz et al., 2017) to accelerate training the goal-conditioned policy.

Our contributions are summarized as follows: (1) We disclose that goal-conditioned behaviors can
also maximize the state entropy, which bridges the intrinsically motivated goal exploration process
and the maximum state entropy explore. (2) We propose a method called novelty-pursuit from this
connection and give practical implementations. (3) We demonstrate the exploration efficiency of the
proposed method and achieve better performance on environments from the maze, Mujoco tasks, to
long-horizon video games of SuperMarioBros.

2 BACKGROUND

Reinforcement Learning. In the standard reinforcement learning framework (Sutton & Barto,
1998) a learning agent interacts with a Markov Decision Process (MDP). The sequential decision
process is characterized as follows: at each time t, the agent receives a state st from the environment
and selects an action at from its policy π(s, a) = Pr{at = a|st = s}; that decision is sent back
to the environment, and the environment gives a reward signal rt(s, a) and transits to the next state
based on the (unknown) state transition probabilities pass′ = Pr{st+1 = s′|st = s, at = a}. This
process repeats until the agent encounters a terminal state after which the process restarts. Each
(stationary) policy π(s, a) induces a state distribution dπ(s) = (1 − γ)Eπ[

∑∞
t=0 γ

t Pr{st = s}].
The target of reinforcement learning is to maximize the expected discounted return Eπ[

∑∞
t=0 γ

trt]
in an unknown environment (e.g. pass′ is unknown), where γ ∈ (0, 1] is a factor that balances the
importance of future reward. Thus, the agent needs exploration to discover potential valuable states.
Without sufficient exploration, the policy may be stuck into the local optimum.

Intrinsically Motivated Goal Exploration Process. Intrinsically motivated goal exploration pro-
cess (IMGEP) (Baranes & Oudeyer, 2009; Forestier et al., 2017) relies on a goal-conditioned (or
goal-parameterized) policy πg for unsupervised exploration. It involves the following steps: 1) se-
lecting an intrinsic or interesting state from the experience buffer as the desired goal; 2) exploring
with a goal-conditioned policy πg(s, a, g) = Pr{at = a|st = s, gt = g}; 3) reusing experience for
an exploitaion policy πe(s, a) = Pr{at = a|st = s} to maximize the external reward. Note that the
first two steps don’t need external reward.

Maximum State Entropy Exploration. Maximum state entropy exploration (Hazan et al., 2019)
aims to search an exploration policy π∗ such that it maximizes the entropy of induced state distribu-
tion (or minimizes the KL-divergence between the uniform distribution and induced state distribu-
tion) among the class of stationary policies (i.e., π∗ ∈ argmaxΠ H[dπ]). Without any information
about tasks given by the environment, the principle of maximum state entropy exploration is safe for
exploitation.

3 IMGEP WITH MAXIMUM STATE ENTROPY EXPLORATION

In this section, we bridge the intrinsically motivated goal exploration process and maximum state
entropy exploration. We begin with practical considerations when maximizing state entropy, then
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analyze the exploration characteristics of the proposed metric of visitation counts for IMGEP. We
also discuss practical approaches based on the above analysis.

In practice, an exact density estimator for high-dimension state space is intractable, and the state
space is unknown, which leads to an empirical state distribution over visited states. The differences
are important. For example, directly optimizing the entropy of empirical state distribution over
visited states is not what we want, because it ignores the non-visited states outside of the empirical
state distribution (see the top row in Fig 2). Instead, we need to first maximize the support of
induced state distribution (i.e., discovering new states), then we maximize the entropy of induced
state distribution with full support (see the bottom row in Fig 2). In the following, we demonstrate
that selecting the states with the least visitation counts among visited states as goals can achieve the
above functions under some assumptions.

Figure 2: Histograms for normalized state visitation counts, where the x-axis represents the index
of state. Top row: directly maximizing the entropy of empirical state distribution over visited states;
Bottom row: firstly maximizing the counting measure of induced state distribution support, then
maximizing the entropy of state distribution with full support.

Let the index set {1, 2, · · · , |S|} denotes the state space S, π1:t denotes the set of policies
{π1, π2, · · · , πt} over previous iterations, πt+1 denotes the policy of next iteration, xt(i) denotes
the cumulative visitation counts of i-th state induced by history policies π1:t, and Zt =

∑|S|
i=1 xt(i)

denotes the sum of all state visitation counts. Hence, the entropy of empirical state distribution
induced by policies π1:t is defined as H[dπ1:t(s)] =

∑|S|
i=1

xt(i)
Zt

log xt(i)
Zt

(Ht for short), and the
counting measure of empirical state distribution support induced by policies π1:t is defined as
µ[dπ1:t(s)] =

∑|S|
i=1 1xt(i)≥1 (µt for short).

The theoretical analysis starts with the situation that each iteration the goal-conditioned exploration
policy can only select a state to visit. Our question is which state to visit gives the most benefits in
terms of maximum state entropy. This question is closely related to the goal generation in IMGEP.
To facilitate the analysis, let the unit vector e = [0, · · · , 1, . . . ] ∈ R|S| denotes a choice (i.e.,
e(i) = 1 indicates that the policy selects i-th state to visit). Note that xt+1 = xt + et with this
assumption.

Theorem 1 (Max Counting Measure of Support) ∀xt(i) ≥ 0, i ∈ {1, · · · , |S|}, K = {i|xt(i) =
0}; unless K = ∅, for any unit vector et such that et(i) = 1 with i ∈ K, we have µt+1 = µt + 1.

The proof is obvious and we omit here. Theorem 1 indicates visiting the non-visited states is to
maximize the counting measure of induced state distribution support. The agent can obtain potential
reward signal by discovering new states. However, we don’t know what non-visited states are and
where non-visited states locate in practice since we can’t access to the whole state space in advance.
In other words, we can’t select these non-visited states as goals since they are not contained in the
experience buffer. To deal with this problem, we assume that state density over the whole state
space are continuous, thus visited states and non-visited states are close. Intuitively, there is an
exploration boundary separating them. We can approximate the boundary using states with least
visitation counts among all visited states. In conclusion, the goal-conditioned exploration policy
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is asked to reach the exploration boundary after which it performs random actions to discover new
states.

Theorem 2 (Max Entropy) ∀xt(i) ≥ 1, i ∈ {1, · · · , |S|}; for any unit vector e∗t such that e∗t (i) =
1 with i ∈ argminj xt(j), we have e∗t ∈ argmaxet

Ht+1.

We provide the proof in the appendix A.1. Theorem 2 characterizes the behavior of visiting the
states with the least visitations when the whole state space has been explored (i.e., the stage after
maximizing the counting measure of induced state distribution support). The same mechanism
derived from Theorem 1 can also be applied to maximize the entropy of induced state distribution by
ignoring the influence of random action sequences. To summarize, despite whether the whole state
space has been traversed, the goal-condition exploration is asked to reach the exploration boundary
and perform random action sequences.

It is easy to unify above theoretical analysis via a smoothed entropy Hσ(dπ) = −Edπ
[log(dπ) + σ]

(Hazan et al., 2019). For our problem, the entropy is proper by assigning the non-visited states with
a dummy visitation counts between 0 and 1. In that case, Theorem 2 still holds and suggests firstly
selecting these non-visited states and subsequently selecting the states with least visitation counts to
maximize the smoothed state entropy.

We call the proposed method novelty-pursuit. For a complete reinforcement learning setting, the
above analysis neglects the influence of trajectories to the exploration boundary and uncontrollable
factors due to random actions after reaching the exploration boundary. But we think the practical
approximation of planning oracle (i.e, a perfect goal-conditioned policy) and an exact exploration
boundary with visitations counts are more important. In the following, we describe how to deal with
these problems.

4 METHOD

In this section, we present practical implementations for the proposed method. How to approximate
visitation counts in high-dimension space and how to estimate the state boundary is given in Section
4.1. We describe the training technique of goal-conditioned policy in Section 4.2. Finally, we
introduce an exploitation policy to learn the experience collected by the goal-conditioned exploration
policy in Section 4.3. We outline the novelty-pursuit exploration in Algorithm 1.

4.1 APPROXIMATING STATE BOUNDARY IN HIGH-DIMENSION SPACE

Generally, computing the visitation counts in high-dimension space is intractable. However, it is
possible to build some variables related to the visitation counts. For example, Random Network
Distillation (RND) (Burda et al., 2019b) shows that prediction errors given by two randomly initial-
ized network have a strong relationship to the number of training samples. Thus, we can use the
prediction errors to sort visited states. Other approaches like pseudo-counts (Bellemare et al., 2016;
Ostrovski et al., 2017) can be also applied, but we find that RND is easy to scale up.

RND is consist of two randomly initialized neural networks: a fixed network called target network
f(x;ωt), and a trainable network called predictor networkf̂(x;ωp). Both two networks take a state
s as input and output a vector with the same dimension. Each time a batch of data feed into the
predictor network to minimize the difference between the predictor network and the target network
concerning the predictor network’s parameters, shown in Equation 1.

min
ωp

1

K

K∑
i=1

||f(si;ωt)− f̂(si;ωp)||2 (1)

In practice, we employ an online learning setting to train RND and maintain a priority queue to
store states with the highest prediction errors. In particular, after a goal-conditioned policy collects
a mini-batch of transitions, this data feed to train the predictor network. Also, a state with high
prediction error will be stored into the priority queue and the state with the least prediction error
will be removed out of the priority queue if full. This process repeats and no historical data will be
reused to train the predictor network. Besides, each iteration a state will be selected from the priority
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Algorithm 1 Exploration by Novelty-Pursuit
Input: predictor network update interval K; goal-conditioned policy update interval M ; mini-
batch size of samples for goal-condtioned policy N ;
Initialize parameter θ for goal-condtioned exploration policy πg(s, g, a; θ).
Initialize parameter ωt for target network f(x;ωt), and ωp for predictor network f̂(x;ωp).
Initialize a replay buffer Dg for πg , and a priority queue Q to store novely state.
for each iteration do

Reset the environment and get the observation o0;
Choose a goal g from priority queue Q, and set goal success = False;
for each timestep t do

if goal success == True then
Choose an random action at; # Explore on the state boundary

else
Choose an action at from πg(st, g, at; θ); # Go to the state boundary

end if
Send at to the environment and get ret , st+1;
Update goal success(st+1, g);
# Store new states and update the predictor network
if t%K == 0 then

Store transitions {sk, g, ak, rek}tk=t−K into replay buffer Dg;
Calculate prediction errors for {sk}tk=t−K and store them into priority queue Q;
Update predictor network f̂(x;ωp) using {sk}tk=t−K ;

end if
# Update πg with reward shaping
if t%M == 0 then

Update πg with {sk, gk, ak, rik}Kk=1 sampled from Dg;
end if

end for
end for

queue as a goal for the goal-conditioned policy. After achieving the goal, the exploration policy will
perform random actions to discover new states. Consider the bias due to approximation, we sample
goals from a distribution based on their prediction errors (e.g., softmax distribution).

4.2 TRAINING TECHNIQUES FOR GOAL-CONDITIONED POLICY

Before we describe the training techniques for the goal-conditioned policy, we emphasize that train-
ing this policy doesn’t require the external reward signal from the environment. But we additionally
use the external reward for the goal-conditioned policy (i.e., r′ = rext+αrg) to reduce the mismatch
behaviors between the goal-conditioned policy and the exploitation policy.

Following multi-goal reinforcement learning (Andrychowicz et al., 2017; Plappert et al., 2018a), we
manually extract goal information from state space. Specifically, each state s is associated with an
achieved goal of ag, and the desired goal is denoted as g. To avoid ambiguity, a goal-conditioned
policy πg(s, a, g; θ)

1 is asked to accomplish a desired goal g. For our settings, the achieved goal is
coordinate information, and achieved goal of a novel state is considered as the desired goal when
feeding to a goal-conditioned policy.

r(agt, gt) =

{
1 if d(agt, gt) < ϵ
0 otherwise (2)

A proper intrinsic reward function for the goal-conditioned policy is an indicator function with some
tolerance, shown in Equation 2. If the ”distance” between the achieved goal ag and the desired goal
g is less than some threshold ϵ, the goal-conditioned policy receives a positive reward otherwise
zero. Note that this function is also be used to judge whether agents reach the state boundary.

1With the respect of input to a goal-conditioned policy, s contains ag to keep notations simple.
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However, the training of goal-conditioned policy is slow if this sparse reward function is used. Next,
we introduce some techniques to deal with this problem.

r(agt, gt) = d(agt−1, gt)− d(agt, gt) (3)

Rewarding shaping introduces additional training rewards to guide the agent. Reward shaping is
invariant to the optimal policy if shaping reward function is a potential function (Ng et al., 1999).
Specifically, we define the difference of two consecutive distances (between the achieved goal and
the desired goal) as shaping reward function, shown in Equation 7. Since shaping reward function
is dense, it can lead to substantial reductions in learning time. Verification of the optimal goal-
conditioned policy is invariant between this function and the indicator reward function is given in the
appendix A.2. Alternatively, one can use also Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) to train the goal-conditioned policy via replacing each episode with an achieved goal
rather than one that the agent was trying to achieve. But one should be careful since HER changes
the goal distribution for learning.

Each iteration the goal-conditioned policy is assigned with a goal selected from the priority queue.
The goal is unchanged during an episode until it succeeds. However, random actions generated after
goal success is unconditioned, and these samples are helpful when new states are selected as goals.
Inspired by HER, we specify the last state as the goal for these action sequences, which is beneficial
when new states are selected as goals.

4.3 EXPLOITING EXPERIENCE FROM EXPLORATION POLICY

For evaluation, we additionally train an unconditioned exploitation policy, which only takes the state
as input. This policy learns experience collected by the exploration policy to overcome hard explo-
ration in an off-policy learning fashion. At the same time, the exploitation policy also interacts with
the environment to mitigate the side effect of exploration error (Fujimoto et al., 2019), a phenomenon
that off-policy learning degenerates when data from the exploration policy is not correlated to the
experience generated by the exploitation policy. Note that exploitation policy is trained with an RL
objective to maximize expected discounted external return.

5 EXPERIMENT

In this section, we aim to answer the following research questions: (1) Does novelty-pursuit effec-
tively maximize the state entropy? (2) Do the proposed goal-selection criterion and training tech-
niques improve performance for IMGEP? (3) How does the performance of novelty-pursuit compare
with the state-of-the-art approaches in complex environments? We conduct experiments from the
simple maze environments, Mujoco tasks, to long-horizon video games of SuperMarioBros to eval-
uate the proposed method. Detailed policy network architecture and hyperparameters are given in
the appendix A.4 and A.5, respectively.

5.1 ENVIRONMENT SETTINGS

Here we briefly describe the environment settings (see Figure 3 for illustrations). Detailed settings
are given in the appendix A.3.

Empty Room & Four Rooms. An agent navigates in the maze of 19×19 to find the exit (Chevalier-
Boisvert et al., 2018). The agent receives a time penalty until it finds the exit and receives a positive
reward. The maximum reward for both two environments is +1, and the minimum reward is −1.
Note that the observation for RND is a local-view image with shape of (7, 7, 3).

FetchReach. A 7-DOF Fetch Robotics arm (simulated in the Mujoco (Todorov et al., 2012)) is
asked to grip spheres above a table. There are 4 spheres on the table, and the robot receives a
positive reward of +1 when its gripper catches a sphere (the sphere will disappear after being caught)
otherwise it receives a time penalty. The maximum reward for is +4, and the minimum reward is
−1.

SuperMarioBros. A Mario agent with raw image observation explores to discover the flag. The
reward is based on the score given by the NES simulator (Kauten, 2018) and is clipped into −1 and
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(a) Empty Room (b) Four Rooms (c) FetchReach (d) SuperMarioBros

Figure 3: Illustration of four environments.

+1 except +50 when getting a flag. There are 24 stages in the game, but we only focus on the 1-1,
1-2, and 1-3.

5.2 COMPARISON OF EXPLORATION EFFICIENCY

In this section, we study the exploration efficiency in terms of the state distribution entropy. We
focus on the Empty Room environment because it is tractable to calculate the state distribution
entropy. Note that we don’t use any external reward. We consider the following baselines: 1)
random: select actions uniformly; 2) bonus: a policy based on the exploration bonus using the
prediction error of RND; 3) novelty-pursuit: the proposed method; 4) novelty-pursuit-planning: the
proposed method with a perfect goal-conditioned policy; 5) novelty-pursuit-count: the proposed
method with selecting goals based on visitation counts rather than the prediction errors; 6) novelty-
pursuit-oracle: combination of two oracles used in 4) and 5); 7) maximum: the maximum state
entropy over the whole state space. The results are summarized in Table 1.

Table 1: Entropy of state distribution at timesteps 20k.

random bonus novelty-pursuit novelty-pursuit-
planning

novelty-pursuit-
counts

novelty-pursuit-
oracle maximum

5.12 5.12 5.35 5.47 5.43 5.63 5.67

First, we can see that novelty-pursuit achieves a higher entropy than random and bonus strategy.
Second, when the planning oracle and visitation counts are available, the novelty-pursuit improves
by 0.12 and 0.08, respectively. Third, the combination of two oracles gives a near-perfect perfor-
mance (the gap between the maximum state entropy is only 0.04). This result demonstrates that
goal-condition exploration behaviors presented by novelty-pursuit can maximize the state entropy
and validates the analysis in Section 3.

5.3 ABLATION STUDY OF GOAL-SELECTION AND TRAINING TECHNIQUES

In this section, we study the factors that contribute to our method by ablation experiments. Firstly,
we focus on the criterion of goal-section in IMGEP. We compare novelty-pursuit with two other
goal-selection methods: 1) random-selection: selecting states randomly from the experience buffer;
2) learning-progress: selecting a feasible state (goal success rate is between 0.3 and 0.7) with prob-
ability of 0.8 and an arbitrary visited state with the probability of 0.2, which is adopted from (Flo-
rensa et al., 2018). Results on the Empty Room are shown in Figure 4. Secondly, we study how
goal-conditioned policy learning affect performance. We compare HER and the reward-shaping
with distance reward (i.e., reward based on L1 norm in our problem) used in (Forestier et al., 2017).
Results on the Empty Room are shown in Figure 5.

From Figure 4, we see that IMGEP doesn’t work when randomly selecting goals, but novelty-pursuit
gives a greater boost compared to the learning-progress. We think the reason is that this heuristic
method is brittle to the estimation of goal success rate and lack an explicit exploration objective.
From Figure 5, we find that the IMGEP with HER or reward shaping outperforms than the IMGEP
with distance reward. As discussed in Ng et al. (1999), reward based on distance may change the
optimal behavior of goal-condition exploration policy, thus hurts the performance for IMGEP.
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Figure 4: Comparison of goal-selection
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Figure 5: Comparison of training mechanisms
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Figure 6: Average results over 5 seeds on the Empty Room, Four Rooms and FetchReach environ-
ments.

5.4 EVALUATION ON COMPLEX ENVIRONMENTS

In this section, we compare different methods in terms of external reward. We will see that without
sufficient and efficient exploration, the policy may be stuck into the local optimum. Two baseline
methods using reinforcement learning are considered: 1) vanilla: a vanilla policy; 2) bonus: the
state-of-the-art method that combines the external reward and intrinsic reward (i.e., the prediction
error given by RND).

First, we consider the previously used Empty Room and the Four Room environments. The results
are shown in Figure 6. We see that the vanilla policy hardly finds the exit. Novelty-pursuit is
comparative to bonus and outperforms bonus on the Four Rooms environment, where we observe
that bonus is somewhat misled by the intrinsic reward though we have tried many weights to balance
the external reward and intrinsic reward.

Secondly, we consider the FetchReach environment and results are shown in Figure 6. We see that
novelty-pursuit can consistently grip 4 spheres while other methods sometimes fail to efficiently
explore the whole state space to grip 4 spheres.
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Figure 7: Average results over 3 seeds on SuperMarioBros.
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Figure 8: Trajectory visualization on SuperMarioBros-1-3. Trajectories are plotted in green cycles
with the same number of samples. Top row: vanilla; Middle row: bonus; Bottom row: novelty-
pursuit.

Finally, we consider the SuperMarioBros environments, which is very hard to discover the flag due
to long horizon. Learning curves are plotted in Figure 7 and the final performance is listed in Table
2. On SuperMarioBros-1-1 and SuperMarioBros-1-3, novelty-pursuit outperforms other methods.
There are dense rewards on SuperMarioBros-1-2 (i.e., the agent can easily get scores), thus all
methods perform well. We observe that novelty-pursuit can easily get the flag on SuperMarioBros-
1-1 and both of bonus and novelty-pursuit can occasionally get the flag on SuperMarioBros-1-2. It
is very hard to explore SuperMarioBros-1-3 since the agent easily dies and receives a penalty. We
plot trajectories of different methods on SuperMarioBros-1-3 in Figure 8. It is evident that novelty-
pursuit achieves a deeper exploration than other methods. We attribute it to the disentanglement of
exploration and exploitation.

Table 2: Final Performance over 3 seeds on SuperMarioBros.

novelty-pursuit bonus vanilla
SuperMarioBros-1-1 36.02 ± 8.19 17.74 ± 7.84 8.43 ± 0.14
SuperMarioBros-1-2 33.30 ± 6.13 33.19 ± 1.53 29.64 ± 2.02
SuperMarioBros-1-3 8.14 ± 0.55 0.20 ± 0.14 -0.07 ± 0.01

6 RELATED WORK

Exploration. Traditionally, the exploration strategy is based on the exploitation policy that receives
an external reward from the environment. Traditional exploration methods include injecting noise
on action space (Mnih et al., 2015; Lillicrap et al., 2016) or parameter space (Plappert et al., 2018b;
Fortunato et al., 2018), and adding the policy’s entropy regularization (Schulman et al., 2017; Mnih
et al., 2016).

For tabular Markov Decision Process, there are lots of work utilizing confidence based reward to
balance exploration and exploitation (Kearns & Singh, 2002; Strehl & Littman, 2008; Kolter & Ng,
2009; Lattimore & Hutter, 2014). Several exploration strategies for deep RL based approximation
visitation counts have been proposed in high-dimension space (Bellemare et al., 2016; Ostrovski
et al., 2017). Another type of exploration is curiosity-driven exploration. These methods track the
uncertainty of dynamic (Stadie et al., 2015; Pathak et al., 2017; Burda et al., 2019a;b) to explore
intrinsic states. Deep (temporally extended) exploration via tracking the uncertainty of value func-
tion is studied in (Osband et al., 2016). Besides, maximum (policy) entropy reinforcement learning
encourages exploration by maximizing the cumulative sum of external reward and policy entropy
(Ziebart et al., 2008; Haarnoja et al., 2017; O’Donoghue et al., 2016; Haarnoja et al., 2018).

Recently, Hazan et al. (2019) introduce a new exploration objective: maximum state entropy. They
provide an efficient algorithm when restricted to a known tabular MDP (a density estimator oracle
is required for an unknown tabular MDP) and gives the theoretical analysis. We derive the criterion
of goal generation based on the principle of maximum state entropy.
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Our method is based on the framework of intrinsically motivated goal exploration processes
(IMGEP) (Baranes & Oudeyer, 2009; Forestier et al., 2017; Péré et al., 2018). Go-Explore (Ecoffet
et al., 2019) is reminiscent of IMGEP and achieves dramatic improvement on the hard exploration
problem of Montezumas Revenge. But with the assumption that the environments are resettable or
deterministic and many hand-engineering designs, Go-explore is restricted to specific environments.

Goal-conditioned Policy. By taking environment observation and desired goal as inputs, the goal-
conditioned policy is expected to accomplish a series of tasks. Schaul et al. (2015) propose the uni-
versal value function approximator (UVFA) and train it by bootstrapping from the Bellman equation.
However, training goal-condtioned policy is also still a challenging problem due to goal-condition
reward is sparse (e.g. 1 for success, 0 for failure). Andrychowicz et al. (2017) propose hindsight
experience replay (HER) by replacing each episode with an achieved goal rather than one that the
agent was trying to achieve. This operation introduces more reward signals and serves as an implicit
curriculum. Florensa et al. (2018) use a generator network to adaptively produce artificial feasible
goals. We also use a goal-conditioned policy, but goals are selected from the experience buffer rather
than being specified in advance. What’s more, we utilize the technique of reward shaping (Ng et al.,
1999) to accelerate training.

Learning from experience. Off-policy reinforcement learning algorithms such as DQN(Mnih et al.,
2015), DDPG (Lillicrap et al., 2016), and ACER (Wang et al., 2017), reuse experience to improve
data efficiency. Besides, how to additionally utilize (good) experience to overcome exploration
dilemma is studied in (Oh et al., 2018; Goyal et al., 2019). These works are perpendicular to ours
since we focus on how to discover these valuable states.

7 CONCLUSION

This paper bridges intrinsically motivated goal exploration process (IMGEP) and maximum state
entropy exploration. We propose a method called novelty-pursuit from the connection. We demon-
strate that exploration efficient of the proposed method called novelty-pursuit, and show that the
chance of finding the (near-) optimal policy is high.

We notice that for high-level abstraction environments, it may not easy to extract goal information
by hand. In that case, an unsupervised goal representation learning may be helpful. We also note
that current training techniques based on an RL objective may not efficient for utilizing experience
collected by the exploration policy. We leave these for future works.
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Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33nd International Conference on Machine Learning, pp. 1928–
1937, 2016.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the 16th International Conference
on Machine Learning, 1999.
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A APPENDIX

A.1 PROOF OF THEOREM 2

Suppose we have two choices xi and xj , we want to compare the difference between the entropy
Hxi

[dπ1:t+1] visiting xi and the entropy Hxj
[dπ1:t+1] by visiting xj . Let Z =

∑
i xt(i) denotes

visitation counts over all states. To simplify notation, we omit the subscript t for visitation counts.
By definition, the difference is:

g(xi, xj) = Hxi [dπ1:t+1]−Hxj [dπ1:t+1]

= −xi + 1

N + 1
log

xi + 1

N + 1
− xj

N + 1
log

xj

N + 1
+

xj + 1

N + 1
log

xj + 1

N + 1
+

xi

N + 1
log

xi

N + 1

= (
xj + 1

N + 1
log

xj + 1

N + 1
− xj

N + 1
log

xj

N + 1
)− (

xi + 1

N + 1
log

xi + 1

N + 1
− xi

N + 1
log

xi

N + 1
)

(4)

Let f(x) = x+1
N+1 log

x+1
N+1 − x

N+1 log
x

N+1 , which yields

g(xi, xj) = f(xj)− f(xi) (5)

By looking at the derivative of f(x), we know that f(x) is a monotonically increasing function.
Thus, ∀xi < xj , we have that g(xi, xj) > 0.

f ′(x) =
1

N + 1
log(1 +

1

x
) > 0 (6)

In conclusion, unless xi is minimal, we can always choose xj < xi such that that g(xi, xj) < 0.
Hence, visiting the states with the smallest visitation counts is optimal.

A.2 REWARD SHAPING FOR MULTI-GOAL REINFORCEMENT POLICY

Reward shaping is invariant to the optimal policy under some conditions (Ng et al., 1999). Here we
verify that reward shaping introduced by us doesn’t change the optimal policy for goal-conditioned
policy. Adding up shaping rewards gives:

T∑
t=1

− d(agt, g) + d(agt+1, g)

= −d(ag1, g) + d(ag2, g)− d(ag2, g) + d(ag3, g) + · · · − d(agT , g) + d(agT+1, g)

= −d(ag1, g) + d(agT+1, g)

(7)

For the optimal policy, d(agT+1, g) = 0, while d(ag1, g) is a constant. Thus optimal policy induced
by sparse goal-conditioned reward is invariant to this reward shaping.

A.3 ENVIRONMENT PREPOSSESSING

Maze. Different from (Chevalier-Boisvert et al., 2018), we only use the image and coordination
information as inputs. We only consider four actions: turn left, turn right, move forward and move
backward. The maximum episode length is 190 for Empty Room, and 500 for Four Rooms. Each
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time the agent receives a time penalty of 1/max episode length and receives +1 when finding the
exit.

FetchReach. We implement this environment based on FetchReach-v0 in Gym (Brockman et al.,
2016). The maximum episode length is 50. The locations of four spheres are (1.20, 0.90, 0.65),
(1.10, 0.72, 0.45), (1.20, 0.50, 0.60), and (1.45, 0.50, 0.55). When sampling goals, we remove
spheres outside of the table i.e., the valid x range: (1.0, 1.5), the valid y range is (0.45, 1.05), and
valid z range is (0.45, 0.65).

SuperMarioBros. We implement this environment based on (Kauten, 2018) with Gym wrappers.
Prepossessing includes grey-scaling, observation downsampling, external reward clipping (except
that 50 for getting flag), stacked frames of 4, and sticky actions with a probability of 0.25. The
maximum episode length is 800. The environment restarts when the agent dies.

A.4 NETWORK ARCHITECTURE

We use the convolutional neural network (CNN) for Empty Room, Four Rooms, and video games of
SuperMarioBros, and multi layer perceptron (MLP) for FetchReach environment. Network archi-
tecture design and parameters are based on baselines (Dhariwal et al., 2017). For each environment,
RND uses a similar network architecture. The predictor network has additional MLP layers than the
predictor network.

A.5 HYPERPARAMETERS

Table 3 gives hyperparameters for ACER (Wang et al., 2017) on the maze and SuperMarioBros (the
learning algorithm is RMSProp (Tieleman & Hinton, 2012)). DDPG (Lillicrap et al., 2016) used
in Fetch Reach environments is based on the HER algorithm implemented in baselines (Dhariwal
et al., 2017) expect that the actor learning rate is 0.0005. We run 4 parallel environments for DDPG
and the size of the priority queue is also 100. As for the predictor network, the learning rate of
predictor network is 0.0005 and the optimization algorithm is Adam (Kingma & Ba, 2015) for all
experiments, and the batch size of training data is equal to the product of rollout length and the
number of parallel environments.

Table 3: Hyperparameters of our method based on ACER on the maze and SuperMarioBros.
Hyperparameters Empty Room Four Rooms SuperMarioBros

Rollout length 20 20 20
Number of parallel environments 4 4 8

Learning rate 0.0007 0.0007 0.00025
Learning rate schedule linear linear constant

γ 0.95 0.95 0.95
Entropy coefficient 0.10 0.10 0.10

Size of priority queue 100 100 20
Total training steps 200K 500K 20M

For goal-conditioned policy, the weight α to balance the goal-conditioned reward and the external
reward is 1 for all environments except 2 for SuperMarioBros. For bonus method used in Section
5, the weight β to balance the intrinsic reward and the external reward (i.e., r′ = rext + βrint)
is 0.1 for Empty Room and Four Rooms, 0.01 for FetchReach, 1.0 for SuperMarioBros-1-1 and
SuperMarioBros-1-3, and 0.1 for SuperMarioBros-1-2. We also do a normalization for the intrinsic
reward by dividing the intrinsic rewards via a running estimate of the standard deviation of the sum
of discounted intrinsic rewards.
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