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ABSTRACT

To facilitate a wide-spread acceptance of AI systems guiding decision making in
real-world applications, trustworthiness of deployed models is key. That is, it is
crucial for predictive models to be uncertainty-aware and yield well-calibrated (and
thus trustworthy) predictions for both in-domain samples as well as under domain
shift. Recent efforts to account for predictive uncertainty include post-processing
steps for trained neural networks, Bayesian neural networks as well as alterna-
tive non-Bayesian approaches such as ensemble approaches and evidential deep
learning. Here, we propose an efficient yet general modelling approach for obtain-
ing well-calibrated, trustworthy probabilities for samples obtained after a domain
shift. We introduce a new training strategy combining an entropy-encouraging
loss term with an adversarial calibration loss term and demonstrate that this re-
sults in well-calibrated and technically trustworthy predictions for a wide range
of perturbations. We comprehensively evaluate previously proposed approaches
on different data modalities, a large range of data sets including sequence data,
network architectures and perturbation strategies and observe that our modelling
approach substantially outperforms existing state-of-the-art approaches, yielding
well-calibrated predictions for both in-domain and out-of domain samples.

1 INTRODUCTION

To facilitate a wide-spread acceptance of AI systems guiding decision making in real-world appli-
cations, trustworthiness of deployed models is key. Not only in safety-critical applications such as
autonomous driving or medicine (Helldin et al., 2013; Caruana et al., 2015; Leibig et al., 2017), but
also in dynamic open world systems in industry it is crucial for predictive models to be uncertainty-
aware and yield well-calibrated (and thus trustworthy) predictions in the case of any gradual domain
shift, covering the entire spectrum from in-domain ("known unknowns") to truly out-of-domain
samples ("unknown unknowns"). In particular in industrial and IoT settings, deployed models may
encounter erroneous and inconsistent inputs far away from the input domain throughout the life-cycle;
in addition, the distribution of the input data may gradually move away from the distribution of the
training data (e.g. due to wear and tear of the assets, maintenance procedures or change in usage
patterns). The importance of technical robustness and safety in such settings is also highlighted by
the recently published ethics guidelines by the European Commission, requiring for a trustworthy AI
to be lawful, ethical and robust (technically and taking into account its social environment)1.
Recent efforts to account for predictive uncertainty include post-processing steps for trained neural
networks, where for example a validation set, drawn from the same distribution as the training data, is
used to rescale the logit vectors returned by a trained neural network such that in-domain predictions
are well calibrated (Platt, 1999; Guo et al., 2017). Orthogonal approaches have been proposed where
trust scores and other measures for out-of-distribution (OOD) detection are derived, typically also
based on trained networks (Liang et al., 2018; Jiang et al., 2018; Papernot & McDaniel, 2018); how-
ever these latter approaches are designed to detect only truly OOD samples and do not consider the
continuum of domain shifts from in-domain to truly OOD. Alternative avenues towards intrinsically
uncertainty-aware networks have been followed by training probabilistic models. In particular, a
lot of research effort has been put into training Bayesian neural networks, where typically a prior

1https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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distribution over the weights is specified and, given the training data, a posterior distribution over
the weights is inferred. This distribution can then be used to quantify predictive uncertainty. Since
exact inference is untractable, a range of approaches for approximate inference has been proposed.In
particular deterministic approaches based on variational approximations have recently received a lot
of attention and range from estimators of the fully factorized posterior (Blundell et al., 2015), to the
interpretation of Gaussian dropout as performing approximate inference with log-uniform priors and
multiplicative Gaussian posteriors (Gal & Ghahramani, 2016) and facilitating a complex posterior
using normalising flows (Louizos & Welling, 2017). Since such Bayesian approaches often come at
a high computational cost, alternative non-Bayesian approaches have been proposed, that can also
account for predictive uncertainty. These include ensemble approaches, where smooth predictive
estimates can be obtained by training ensembles of neural networks using adversarial examples
(Lakshminarayanan et al., 2017), and evidential deep learning, where predictions of a neural net are
modelled as subjective opinions by placing a Dirichlet distribution on the class probabilities (Sensoy
et al., 2018). Both for Bayesian and non-Bayesian approaches, uncertainty-awareness and the quality
of predictive uncertainty are typically evaluated by analysing the behaviour of the predictive entropy
for out-of-domain predictions in form of gradual perturbations (e.g. rotation of an image), adversarial
examples or held-out classes. However, while an increasing predictive entropy for increasingly
strong perturbations can be an indicator for uncertainty-awareness, simply high predictive entropy is
not sufficient for trustworthy predictions, since this requires well-calibrated uncertainties, with the
entropy matching the actual predictive power of the model. For example, if the entropy is too high, the
model will yield under-confident predictions and similarly, if the entropy is too low, predictions will
be over-confident. Notably, the focus of related work introduced above has been on image data and it
remains unclear how these approaches perform for other data modalities, in particular when modelling
sequences with long-range dependencies using complex architectures such as LSTMs (Hochreiter &
Schmidhuber, 1997) or GRUs (Cho et al., 2014). Here, we propose an efficient yet general modelling
approach for obtaining well-calibrated, trustworthy probabilities for both in-domain samples as well
as under domain shift that can readily be applied to a wide range of data modalities and model
architectures. More specifically, we first introduce a simple loss function to encourage high entropy
on wrong predictions and combine this with an adversarial calibration loss term. We demonstrate
on an array of perturbations that combining these two steps can allow us to train complex neural
networks that make trustworthy predictions when faced with diverse types of domain shift. Our
approach is simple and general, requiring only a small modification of existing training procedures.
Thus, our contribution in this paper is three-fold. (i) we illustrate the limitations of entropy as measure
for trustworthy predictions and introduce a new metric to quantify technical trustworthiness based on
the concept of calibration (Dawid, 1982; DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana,
2005; Naeini et al., 2015; Guo et al., 2017). (ii) we introduce a new training strategy combining
an entropy-encouraging loss with an adversarial calibration loss term and demonstrate that this
results in better calibration and technical trustworthiness of predictions for diverse types of out-of-
domain samples and perturbations, compared to the state-of-the-art. (iii) We apply the concept of
uncertainty-awareness and trustworthiness to sequence models, systematically evaluate the predictive
uncertainty of recurrent neural networks on a wide range of perturbations and demonstrate that our
approach substantially improves predictive uncertainty over existing approaches when classifying
long sequences. While previous studies only compared predictive entropy for one simple architecture
(LeNet) and typically one type of domain shift (Sensoy et al., 2018; Louizos & Welling, 2017), we
here present an extensive comparison of 4 different architectures across 10 different perturbation
strategies.

2 TOWARDS TECHNICALLY TRUSTWORTHY PREDICTIONS

2.1 LIMITATIONS OF ENTROPY AS MEASURE FOR UNCERTAINTY-AWARENESS

Recent efforts in terms of evaluating predictive uncertainty have focused on entropy as measure for
uncertainty-awareness for predictions under domain shift. While entropy quantifies the uncertainty
encoded in the model output, it is not clear what absolute entropy is required for a model to be
reliable, given a set of samples from an out-of-domain distribution. For example, a popular evaluation
strategy consists of computing the absolute entropy for out-of-domain samples generated using
perturbation strategies based on the images in the test set (e.g. gradual rotation of images) (Sensoy
et al., 2018; Louizos & Welling, 2017). In this case, the entropy should increase with rotation angle,
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as the accuracy decreases in a coordinated fashion (since the model was not trained with rotated
images) (Fig. 1). However, such evaluations alone are not sufficient to determine whether model
predictions are technically reliable (or trustworthy), since it is not clear whether accuracy and model
confidence/uncertainty are coupled in a meaningful way. Building on prior work utilising the concept
of calibration for in-domain predictions, this coupling can be quantified using reliability diagrams
(Guo et al., 2017), where the model confidence (i.e. the probability associated with the predicted
class label) is linked to accuracy in a stratified manner. For example, if a model makes a prediction
on images rotated by 20 degrees, the accuracy as well as the confidence of the predictions should
drop in a meaningful way: if a model is well calibrated, confidence and accuracy should match for
all confidence levels between 1/nclasses and 1.0. That is, for the subset of samples with confidence
between e.g. 60% and 70% the average accuracy should lie in that same range; this relationship
should hold for all intervals. Figure 1 illustrates that the accuracy decreases, while the entropy
increases if perturbed images are fed to a trained neural network (top right); however, additional
information directly linking the uncertainty or confidence of a model to its accuracy is required to
establish whether predictions are calibrated. This is illustrated by reliability diagrams in figure 1
(bottom row), showing accuracy as function of binned confidence and the expected calibration error
(ECE) curve, summarizing the calibration gap perturbations covering the entire spectrum of domain
shifts. (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005).

Figure 1: Calibration of the predictive uncertainty under domain shift. Here, a LeNet model is trained
on MNIST data and calibration of the predictive uncertainty is evaluated on images perturbed with
increasing y-zoom. Epsilon denotes the relative perturbation strength. Top: For in-domain samples
the model has a high accuracy and low entropy, for higher domain shifts wrong predictions are often
made with high confidence (left). While increasing domain shift results in a decreased accuracy
and increased entropy, it is not clear whether this increased entropy reflects a well calibrated model
confidence (right). Bottom: Only reliability diagrams and the expected calibration error (ECE) reveal
that the decline in accuracy does not match the confidence of the model. Left: Confidence matches
accuracy for most bins. Middle: Model makes overconfident predictions (red bars illustrate calibration
gap). Right: ECE curve quantifies how miss-calibration changes with increasing perturbation strength.

2.1.1 QUANTIFYING CALIBRATION UNDER DOMAIN SHIFT USING THE
EXPECTED-CALIBRATION-ERROR CURVE

We follow Guo et al. (2017) and define perfect calibration such that confidence and accuracy match
for all confidence levels:

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (1)
with Ŷ being a class prediction of a label Y and P̂ its associated confidence. This directly leads to a
definition of miss-calibration as the difference in expectation between confidence and accuracy:

Ê
P

[∣∣P(Ŷ = Y |P̂ = p)− p
∣∣] (2)
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A scalar summary measure, summarizing reliability diagrams in form of the calibration gap (red bars
in figure 1, bottom row left and middle) and also approximating eq. 2 is the expected calibration error
(ECE) (Naeini et al., 2015). The ECE takes a weighted average over the M equally spaced bins of
the reliability diagram:

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ (3)

with Bm being the set of indices of samples whose prediction confidence falls into its associated
interval Im. conf(Bm) and acc(Bm) are the average confidence and accuracy associated to Bm

respectively and n the number of samples in the dataset.
It can be shown that ECE is directly connected to miss-calibration as ECE using M bins converges to
the M-term Riemann-Stieltjes sum of eq. 2 (Guo et al., 2017).

To evaluate the robustness of a predictive model under domain shifts covering the entire spectrum
from in-domain to truly OOD samples, we define 10 distinct perturbation types (not seen during
training). Each perturbation strategy mimics a scenario where the data a deployed model encounters
stems from a distribution that gradually shifts away from the training distribution in a different
manner. For each perturbation type we compute the ECE for a range of perturbation strengths. We
then generate a ECE-perturbation curve and introduce a measure summarizing overall calibration by
computing a micro-averaged ECE across all perturbation strengths.
We assess 9 distinct image-based perturbation types including left rotation, right rotation, shift in x
direction, shift in y direction, xy shift, shear, zoom in x direction, zoom in y direction and xy zoom
for image data. In addition, we investigate robustness to random word swaps for text data. More
specifically, a perturbation is generated by first drawing a random set of words in a corpus. Next each
of these words is replaced by a word drawn at random from the vocabulary.
For all perturbation strategies, perturbed samples were generated at 10 different levels, starting
at no perturbation, until accuracy reached random levels; relative perturbation strength is denoted
by epsilon. The micro-averaged ECE for a specific perturbation strategy was computed by first
perturbing each sample in the test set at 10 different levels and then calculating the overall ECE
across all samples. By computing this micro-averaged ECE for 10 distinct perturbation types, we
quantify the ability of neural networks to to yield well-calibrated, technically robust predictions in
diverse circumstances.

2.2 A SIMPLE APPROACH FOR CALIBRATED PREDICTIVE UNCERTAINTY ESTIMATION

2.2.1 PREDICTIVE ENTROPY

To mitigate overconfident predictions displayed by conventional deep neural networks, we first
introduce a loss term encouraging a uniform distribution of the scores in case the model "does not
know". That is, after removing non-misleading evidence, we distribute the remaining probability
mass uniformly over C classes: LS =

∑n
i=1

∑C
j=1−

1
C log(pij(1− yij) + yij), with pij being the

confidence associated to the jth class of sample i, yij its one-hot encoded label.

This simple loss term increases uncertainty-awareness by encouraging an increased entropy (S) in the
presence of high predictive uncertainty, while the loss surface remains largely unchanged. This has
the advantage that our approach - in contrast to Bayesian neural networks or evidential deep learning
- can be readily applied to complex architectures based on LSTMs or GRUs. In addition, the loss
term is parameter free and thus does not require hyperparameter tuning, again facilitating easy usage.

2.2.2 ADVERSARIAL CALIBRATION

While the entropy-based loss term does encourage uncertainty-awareness, we found that it is beneficial
to introduce an additional loss term addressing model calibration directly. Explicitly encouraging
calibration for out-of-domain samples, however - e.g. via an ECE-based measure - requires knowledge
on the type of perturbed, erroneous or even adversarial samples the model is expected to encounter.
In many real-world applications it is not clear from which distribution these samples will be drawn
and, more importantly, for model predictions to be truly trustworthy requires robustness against all
such potential out-of-domain samples. That is, we would like our model to be technically robust for
inputs around an ε-neighbourhood of the in-domain training samples, for a wide range of ε and for all
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2D directions in {−1, 1}D. While inputs from a random direction are unlikely to be representative
examples for generic out-of-domain samples, by definition adversarial examples are generated along
a dimension where the loss is high. Lakshminarayanan et al. (2017) show that adversarial training can
improve the smoothness of predictions, in particular when training an ensemble of 5 neural networks
in an adversarial fashion. Here, we demonstrate that using adversarial samples to directly optimise
model calibration (rather than the squared error of one-hot encoded labels (Lakshminarayanan et al.,
2017)) results in substantially more trustworthy predictions for out-of-domain samples from a large
number of unrelated directions.
We implement the calibration loss by minimizing the ECE for samples generated using the fast
gradient sign method (FGSM) (Goodfellow et al., 2014), with ε ranging from 0 to 0.5 (sampled at 10
equally spaced bins at random). Note that we do not use the FGSM samples for adversarial training
in the sense that we do not try to minimize the reconstruction error (cross entropy) for those samples.

Ladv =

∥∥∥∥∥(
M∑

m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣)∥∥∥∥∥

2

= ‖ECE‖2
The final loss balancing a standard reconstruction loss (categorical cross entropy (CCE)) against the
entropy and adversarial calibration loss can then be written as L = LCCE + λadvLadv + λSLS

The choice of hyperparameters λadv and λS is described in the appendix along with a summary of the
algorithm.

3 EXPERIMENTAL RESULTS

We compare our approach for fast adversarial calibration to both Bayesian and non-Bayesian work
and perform an extensive set of experiments. We evaluate model trustworthiness by quantifying
model calibration for 10 distinct strategies to generate out-of-domain samples. We show that our
approach is able to yield technically trustworthy predictions across 4 datasets, 4 model architectures
and three data modalities. We first show that our modelling approach substantially outperforms
existing approaches for sequence models (sequences of pixels and sequences of words) and then
illustrate improved performance for image data.
To evaluate our modelling approach for sequence data, we fit models on the following datasets and
quantified technical robustness by computing the micro-averaged ECE:

1. Sequential MNIST. 10 classes of handwritten digits. Images are converted to pixel-wise
sequences of length 28x28.

2. 20 Newsgroups. News articles partitioned into 20 classes. News classes are modelled as
sequences of words using word embeddings. We used the 20,000 most common words as
vocabulary and a maximum word length of 2500.

We fitted LSTM and GRU models with one hidden layer for all sequence modelling tasks.
For the image classification tasks, we fitted a LeNet model to MNIST data in order to establish a fair
comparison to the state-of-the-art (Guo et al., 2017; Sensoy et al., 2018). To evaluate the performance
for more complex architectures, we further fitted a deep neural net with VGG19 architecture on the
CIFAR10 dataset. We used standard splits into training and test set for all datasets.
We compared the following modelling approaches: (i) L2-Dropout, referring to a standard neural
net with L2 regularisation as baseline, (ii) MC-Dropout corresponding to the modelling approach
presented by Gal & Ghahramani (2016), (iii) Deep Ensembles referring to an approach based on an
ensemble of neural nets trained using adversarial examples (Lakshminarayanan et al., 2017), (iv)
EDL referring to Evidential Deep Learning (Sensoy et al., 2018), (v) MNF referring to a Bayesian
neural network trained using multiplicative normalising flows Louizos & Welling (2017) and (vi)
FALCON, which is our method based on Fast AdversariaL CalibratiON.

3.1 PREDICTIVE UNCERTAINTY FOR SEQUENCE MODELING

We trained LSTM models with one hidden layer of 130 hidden units using the RMSPROP optimizer.
GRU models were trained with one hidden layer of 250 hidden units to reflect the reduced complexity
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(a) LSTM models
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(b) GRU models

Figure 2: Technical robustness of sequence models for classifying sequential MNIST data, quantified
by computing the micro-averaged expected calibration error (lower is better). FALCON results in
consistently well calibrated and robust predictions across 9 different perturbation strategies with
substantially lower micro-averaged ECEs compared to existing methods, both for LSTM and GRU
models. For fair comparison, we only show micro-averaged ECE for models with competitive
accuracy, omitting EDL (see also Table S1)

Table 1: Test accuracy and average ECE (lower is better) across all perturbation strategies for LSTM
and GRU models.

LSTM GRU
Test acc. Mean ECE Test acc. Mean ECE

L2-Dropout 0.986 0.327 0.991 0.334
MC-Dropout 0.986 0.334 0.98 0.296
Deep-Ensemble 0.99 0.222 0.99 0.168
FALCON 0.978 0.118 0.988 0.108

of GRU cells compared to LSTM cells. The Bayesian neural network based on multiplicative
normalizing flows (MNF) was developed for convolutional neural networks; since the transfer of
such a complex modelling approach from convolutional neural networks to recurrent neural networks
is out of the scope of this work, we omitted MNF in our comparison of sequence models.

Sequential MNIST For deep ensembles of LSTMs trained on sequential MNIST we found that
models did not converge when training the networks with adversarial examples; we therefore also
trained ensembles with a reduced ε of 0.005 and report performance for this modified Deep Ensemble
approach. For the deep ensemble of GRUs on sequential MNIST and the deep ensemble of LSTMs
on the 20 Newsgroups data, we report performance with standard adversarial training (ε = 0.01).
Fitting LSTM models on sequential MNIST is a challenging task (Bai et al., 2018), and it was only
possible to achieve state-of-the-art predictive power with EDL for shorter sequences (downsampling
of images before conversion to sequence). While performance of GRUs was better for all modelling
approaches, EDL also did not achieve a competitive accuracy (Table S1). We found that our approach
achieved competitive predictive power for LSTM and GRU models and substantially improved
calibration of the predictive uncertainty for both models (Figure 2, Table 1). This illustrates that in
contrast to existing approaches FALCON is able to yield well-calibrated and trustworthy predictions
without compromising on accuracy, even for challenging tasks such as classifying long sequences
with LSTMs.

20 Newsgroups To further evaluate the ability of FALCON to model sequence data, we compared
the performance of FALCON to existing approaches for an NLP task. To this end, we trained LSTMs
to classify news articles into one of 20 classes. We generated vector representations of words using
the pre-trained GLOVE embedding (length 100) and used the first 2500 words of an article as input
for an LSTM. We trained LSTMs with one hidden layer of 130 hidden units and evaluated it on a
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Figure 4: Calibration of the predictive uncertainty under domain shift generated by increasing the
y-zoom of each image in the test set in 10 steps (MNIST data). Left With increasing domain shift the
confidence of predictions with FALCON decreases such that they match accuracy (c.f. overconfident
predictions of same samples with L2 in Fig. 1). Middle: expected calibration error at 10 increasingly
large levels of y-zoom. Only EDL and FALCON maintain a low ECE across all levels of y-zoom.
Right: Entropy increases with larger y-zoom for all methods. While EDL starts at the highest entropy,
this reflects under-confident predictions for low levels of perturbation (c.f. high ECE in middle panel,
figure S3 (appendix)). Accuracy decreases with larger zoom to almost random levels.

perturbation strategy based on random word swaps. To establish a perturbation strategy with gradually
increasing perturbations, we varied the fraction of words drawn from each sample between 0% and
45% in 5% steps (gradually decreasing accuracy to random levels).
Similar to the LSTM model trained on sequential MNIST, we found that EDL did not achieve
competitive predictive power, with an accuracy of 49.3% only. In contrast, FALCON resulted in
well-calibrated predictions while maintaining a competitive accuracy of 75.7%, compared to 75.9%,
72.8% and 77.3% for L2-Dropout, MC-Dropout and Deep Ensemble respectively. As before, the
model confidence of FALCON was substantially better calibrated than existing methods (Figure 3).

3.2 PREDICTIVE UNCERTAINTY FOR IMAGE CLASSIFICATION
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Figure 3: Expected cali-
bration error for 20 News-
groups data.

We next evaluated the trustworthiness of predictions for image classifi-
cation tasks. To establish a fair comparison with state-of-the-art models,
including Bayesian neural networks, we first trained the 5 existing ap-
proaches and evaluated them on 9 different perturbation strategies (not
used during training). While with increasingly strong perturbations the
predictive entropy increased for all models, this was not necessarily
matched by a good calibration across the range of the perturbation. At the
typical example of the perturbation y-zoom, it becomes clear that for most
methods entropy did not increase sufficiently fast to match the decrease
in accuracy, resulting in increasingly overconfident predictions and an
increasing ECE for stronger perturbations (Fig. 4). While FALCON
and EDL yielded well-calibrated predictions that were robust across all
perturbation levels, it is worth noting that EDL has a substantially higher
ECE for in-domain predictions, reflecting under-confident predictions on
the test set (see also Suppl. Fig. S3). We observed this tendency of EDL
towards under-confidence when faced with new samples drawn from the
same distribution as the training data (known unknowns) also for a differ-
ent dataset and architecture (VGG19 on CIFAR10; ECEFALCON = 0.107,
ECEEDL = 0.125 on the test set). We observed a similar behaviour across all other 8 perturbation
strategies, which was reflected in the lowest micro-averaged ECE for FALCON, followed by EDL
(Figure 5; Table 2).
To evaluate the technical robustness and calibration of FALCON on a more complex architecture
for image classification, we trained a VGG19 model on the CIFAR10 dataset. We again observed a
similar trend as for the MNIST data, with FALCON yielding well calibrated predictions across all
perturbation strategies (Figure 5). Note that we omitted MNF due to the large memory requirements
stemming from the use of multiplicative normalising flows.
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(a) LeNet model for MNIST data
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(b) LeNet model for CIFAR10 data

Figure 5: Technical robustness of image classification models, quantified by computing the micro-
averaged expected calibration error (lower is better). FALCON results in consistently well calibrated
and robust predictions across 9 different perturbation strategies.

Table 2: Test accuracy and mean ECE across all 9 perturbation strategies for the LeNet model trained
on MNIST and the VGG19 model trained on CIFAR10

LeNet-MNIST VGG19-CIFAR10
Test acc. Mean ECE Test acc. Mean ECE

L2-Dropout 0.99 0.243 0.88 0.57
MC-Dropout 0.992 0.179 0.839 0.377
MNF 0.993 0.197 NA NA
Deep-Ensembles 0.98 0.242 0.847 0.334
EDL 0.989 0.102 0.876 0.197
FALCON 0.991 0.082 0.871 0.146

4 DISCUSSION AND CONCLUSION

We presented a fast, simple and generalizable approach for encouraging well-calibrated uncertainty-
awareness of deep neural networks. To this end, we combine an entropy encouraging loss-term with
an adversarial calibration loss and show on diverse data modalities and model architectures that our
approach yields well-calibrated predictions for both in-domain and out-of-domain samples generated
based on 10 distinct perturbations. We present the first detailed analysis of predictive uncertainty
for out-of-domain predictions of recurrent neural networks and identify major drawbacks of existing
methods that were developed for (and evaluated on) image classification tasks. Thus, Deep Ensembles
of LSTMs did not converge when performing adversarial training the MNIST dataset; while it was
possible to obtain meaningful predictions with very limited adversarial training, this means that higher
entropy is mostly achieved by the ensemble effect rather than benefits from adversarial training itself.
In addition, training an ensemble of neural networks increases training time linearly with the number
of networks in the ensemble, which can be substantial for applications where training of a deep
network on a large dataset can take several weeks. Similarly, EDL was only able to result in networks
with a high accuracy when trained on short sequences; both for the sequential MNIST and and 20
Newsgroups data, the EDL approach resulted in a substantially lower accuracy compared to baseline
LSTM and GRU models. This may be due to the joint goals of minimizing the prediction error and
the variance of the Dirichlet experiment generated by the neural net changing the loss surface such
that is more difficult to navigate, which can be problematic for complex models based on LSTM cells
or GRU cells. While MC dropout is easy to fit and fast, it results only in small improvements over
the L2-Dropout baseline, especially for sequence data. In contrast, our modeling approach is fast
and robust, with well-calibrated predictive uncertainty across 10 perturbations, 4 datasets, 4 model
architectures and three data modalities.
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A APPENDIX

A.1 PARAMETER AND HYPERPARAMETER SETTINGS

Deep Ensembles, MNF, and EDL were trained with default values for method-specific hyper-
parameters (e.g. number of neural networks in a Deep Ensemble). In addition, the following
hyperparameters were picked using hyperparameter searches. For all methods, the learning rate was
chosen from {1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e− 3}. In addition, for the baseline method
(L2), our method (FALCON), Deep Ensembles and EDL, dropout was chosen from {0, 0.5} and
L2-regularisation from {0.0, 0.001, 0.005, 0.01, 0.05}. For EDL we chose the KL regularisation
from {0.5, 1., 5., 15., 10., 30., 50.} . For a fair comparison with this state-of-the art model, we chose
λS from this same set of values for FALCON and λadv from {0.25, 1e− 1, 1e− 2, 1e− 3, 1e− 4}.
We also assessed the effect of λadv and found that a model fitted with λS only, resulted in substantial
improvements over the basline (L2-dropout), but λadv was required for good calibration across all
perturbations (Figure S1).
We used a batch size of 128 for all models and standard splits in train and test data for all datasets.

For the 20 Newsgroups dataset we used the keras tokenizer to format text sam-
ples, converting words into lower case, removing punctuation and special characters
!"#$%&()*+,-./:;<=>?@[\\]^_‘{}~\t\n’.

A.2 PERTURBATION STRATEGIES

In practice it is not clear what type of perturbation a model may encounter. To assess how neural
networks cope in diverse settings, we generated out-of-domain samples based on 10 different
perturbation strategies. Each perturbation strategy mimics a scenario where the data a deployed
model encounters stems from a distribution that gradually shifts away from the training distribution in
a different manner. Samples generated with maximum perturbation strength correspond for example
to corrupted or erroneous samples a deployed model may face, unperturbed samples correspond to
those drawn from the same distribution as the training data ("known unknowns"). Trustworthy AI
models should yield well-calibrated confidence scores in all those settings that it may encounter
throughout its life-cycle. We quantify this based on the expected calibration error, micro-averaged
across all perturbation strengths, including no perturbation (Tables S4-S8).
For all perturbation strategies we chose 10 levels of perturbation, starting at no perturbation, such
that accuracy levels were close to random for maximum perturbation strength (Table S3, Figure
S2). Specific levels of perturbation are listed in Table S2; for visualisation purposes we re-scaled
all perturbation-specific parameters to range from 0 to 90 (in steps of 10) and denote this general
perturbation strength as epsilon. Perturbations include image transformations (rotation, shift, zoom,
shear) as well as a word perturbation (word swap). For sequential MNIST, perturbations were
performed on the image before transforming the image to a sequence.

A.3 TRAINING ALGORITHM

Training was performed following Algorithm 1, summarizing the description in section 2.2.
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Algorithm 1 FALCON with set of perturbation levels
E = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45} (n.b. ε = 0 encourages
in-domain calibration) , mini batch size m, and training set (X,Y )

1: repeat
2: Read minibatch B = ({X1, . . . , Xm}, {Y1, . . . , Ym}) from training set
3: Randomly sample εB from E
4: Generate FGSM minibatch Badv of size m from samples in B using εB
5: Compute LCCE and LS and do one training step using mini batch B
6: Compute LECE based on Badv and do one training step using Badv

7: until training converged

A.4 SUPPLEMENTARY FIGURES AND TABLES
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Figure S1: Micro-averaged ECE for FALCON with and without the adversarial calibration loss term
with LeNet trained on MNIST.
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Figure S2: Test accuracy for the L2-Dropout model trained on the 20 Newsgroups data. Accuracy
declines gradually with increasing fraction of swapped words until it reaches random levels.
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L2-Dropout

EDL FALCON

Figure S3: Softmax probabilities of a test sample with increasingly strong perturbation (y-zoom; same
sample series as Fig. 1 and Fig. 4). Top: Predictions of L2-Dropout model start with a very high
confidence, corresponding to a good calibration (Fig. 4 Middle), however, for strong perturbations
(epsilon greater than 40) false predictions are made with a very high confidence, reflecting the typical
overconfident behaviour of the L2-Dropout model when moving away from in-domain samples.
Bottom: EDL (left) makes noticeably under-confident predictions for small domain shifts before
the entropy increases and confidence scores match accuracy. While FALCON (right) also makes
slightly under-confident predictions for in-domain samples, the corresponding confidence scores
are still substantially closer to 1 (matching the near perfect test accuracies for MNIST)). Like EDL,
FALCON does not make over-confident predictions when moving further away from the training
domain (epsilon greater 40).

Table S1: Accuracy of EDL and the L2-Dropout model for downsampled images. For longer
sequences EDL does not achieve competitive predictive power.

LSTM GRU
Img size L2-Drp EDL L2-Drp EDL

6x6 0.968 0.8203 0.964 0.9678
10x10 0.982 0.8484 0.987 0.9845
14x14 0.990 0.8223 0.989 0.9865
16x16 0.988 0.7775 0.990 0.9904
20x20 0.986 0.5513 0.991 0.9905
24x24 0.986 0.3688 0.989 0.9323
28x28 0.986 0.3907 0.991 0.8384
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Table S2: For each perturbation we varied the perturbation-specific parameter such that it ranged
from no perturbation to a maximum perturbation corresponding to an accuracy close to random. For
rotation, perturbation is the (left or right) rotation angle in degrees, shift is measured in pixels in x or
y direction, for shear the perturbation is measured as shear angle in counter-clockwise direction in
degrees, for zoom the perturbation is zoom in x or y direction. Word swap is quantified as relative
number of swapped words. Only FGSM is used during training and measured as the relative amount
of noise ε.

Perurbation Perturbation-specific parameter

FGSM 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
rot left 0 350 340 330 320 310 300 290 280 270
rot right 0 10 20 30 40 50 60 70 80 90
Shear 0 10 20 30 40 50 60 70 80 90
xyshift 0 2 4 6 8 10 12 14 16 18
xshift 0 2 4 6 8 10 12 14 16 18
xyshift 0 2 4 6 8 10 12 14 16 18
xyzoom 1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
xzoom 1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
yzoom 1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
word swap 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Table S3: Test accuracy for the L2-dropout LeNet model trained on MNIST. Accuracy is listed for
no perturbation (epsilon = 0) and maximum perturbation (epsilon = 90) on the test set. For all
perturbations accuracy declines to almost random levels.

Test Accuracy
Perturbation No perturbation Max. perturbation

rot left 0.991 0.19
rot right 0.991 0.184
shear 0.991 0.132
xshift 0.991 0.097
xyshift 0.991 0.095
xyzoom 0.991 0.087
xzoom 0.991 0.188
yshift 0.991 0.14
yzoom 0.991 0.242

Table S4: Micro-averaged ECE for LeNet model trained on MNIST

rot left rot right shear xyshift xshift yshift xyzoom xzoom yzoom

L2-Dropout 0.231 0.301 0.214 0.27 0.391 0.215 0.127 0.281 0.158
MC-Dropout 0.185 0.218 0.183 0.211 0.294 0.12 0.049 0.232 0.126
MNF 0.218 0.256 0.182 0.235 0.278 0.15 0.08 0.228 0.147
Deep-Ensembles 0.261 0.273 0.208 0.253 0.433 0.178 0.12 0.271 0.183
EDL 0.108 0.094 0.121 0.084 0.133 0.075 0.121 0.087 0.095
FALCON 0.074 0.065 0.088 0.106 0.033 0.068 0.117 0.113 0.08

Table S5: Micro-averaged ECE for VGG19 model trained on CIFAR10

rot left rot right shear xyshift xshift yshift xyzoom xzoom yzoom

L2-Dropout 0.551 0.563 0.576 0.582 0.507 0.496 0.669 0.546 0.639
MC-Dropout 0.339 0.343 0.423 0.374 0.307 0.302 0.436 0.364 0.502
Deep-Ensembles 0.321 0.326 0.332 0.325 0.293 0.333 0.373 0.314 0.392
EDL 0.144 0.15 0.262 0.132 0.13 0.164 0.32 0.206 0.267
FALCON 0.132 0.126 0.23 0.098 0.087 0.107 0.148 0.069 0.316
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Table S6: Micro-averaged ECE for LSTM model trained on sequential MNIST

rot left rot right shear xyshift xshift yshift xyzoom xzoom yzoom

L2-Dropout 0.302 0.411 0.346 0.348 0.366 0.226 0.353 0.352 0.242
MC-Dropout 0.281 0.399 0.394 0.282 0.24 0.235 0.454 0.456 0.264
Deep-Ensembles 0.221 0.363 0.24 0.194 0.145 0.206 0.24 0.221 0.172
FALCON 0.092 0.174 0.15 0.036 0.069 0.106 0.221 0.121 0.09

Table S7: Micro-averaged ECE for GRU model trained on sequential MNIST

rot left rot right shear xyshift xshift yshift xyzoom xzoom yzoom

L2-Dropout 0.301 0.435 0.354 0.388 0.332 0.259 0.345 0.327 0.266
MC-Dropout 0.289 0.414 0.379 0.319 0.255 0.253 0.287 0.188 0.279
Deep-Ensembles 0.191 0.301 0.214 0.125 0.049 0.176 0.176 0.169 0.109
FALCON (ours) 0.09 0.165 0.14 0.099 0.132 0.13 0.049 0.081 0.083

Table S8: Micro-averaged ECE for LSTM model trained on 20 Newsgroups data

Character swap

character swap
L2-Dropout 0.449
MC-Dropout 0.375
Deep-Ensembles 0.218
FALCON (ours) 0.158
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