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ABSTRACT

Combining domain knowledge models with neural models has been challenging.
End-to-end trained neural models often perform better (lower Mean Square Error)
than domain knowledge models or domain/neural combinations, and the combi-
nation is inefficient to train. In this paper, we demonstrate that by composing
domain models with machine learning models, by using extrapolative testing sets,
and invoking decorrelation objective functions, we create models which can pre-
dict more complex systems. The models are interpretable, extrapolative, data-
efficient, and capture predictable but complex non-stochastic behavior such as
unmodeled degrees of freedom and systemic measurement noise. We apply this
improved modeling paradigm to several simulated systems and an actual physical
system in the context of system identification. Several ways of composing domain
models with neural models are examined for time series, boosting, bagging, and
auto-encoding on various systems of varying complexity and non-linearity. Al-
though this work is preliminary, we show that the ability to combine models is a
very promising direction for neural modeling.

1 INTRODUCTION

Modeling has been used for many years to explain, predict, and control the real world. Traditional
models include science/math equations, algorithms, simulations, parametric models which capture
domain knowledge, and interpolative models such as cubic splines or polynomial least squares
among others which do not have explanatory value but can interpolate between known values well.
The nonpredictable part of the signal is captured by a stochastic noise model.

The domain/physical models predict n l-dimensional output vectors, Y ∈ Rn×l given n k- dimen-
sional input vectors, X ∈ Rn×k with adjustable parameters, θ used to obtain the best fit (first term
in Eq. 1). The unmodeled non-deterministic part of the data is often attributed to random noise fit to
various stochastic modelsN (φ) with parameters φ (2nd term, Eq. (1)). This traditional approach has
been very successful. The advantages of a good model include high data efficiency, interpretable,
the ability to extrapolate to predict outputs from inputs beyond the range of the training input data,
and composable (multiple models can be combined to solve more complex problems).

Y = f(X; θ) +N (φ) +NN(X;W ) (1)

However, this traditional approach has limitations. Complex systems often have degrees of freedom
which are not modeled by the traditional models. These unmodeled degrees of freedom or sys-
tematic errors of the measurement are not modeled adequately by the noise model. In addition, the
parameters of the physical models, θ can be in error or be time dependent. In these cases the behavior
of unmodeled part of the system is not random and thus the usual combined deterministic-stochastic
model is inadequate.

Neural models NN(X;W ), e.g. neural network models, are fundamentally just another form of
parametric models where X are the inputs and W are the weight parameters. However, neural
modes have unique properties to exploit. First, neural models can handle high dimensional input-
output relations with complex patterns. Second, like interpolative models such as cubic splines or
polynomials, NNs are sufficiently expressive to fit many possible relations but are often not good at
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extrapolation, (see below).Trask et al. (2018) Third, neural models do not require handcrafting basis
functions. Hence, neural models have the potential for describing unmodeled degrees of freedom,
systematic errors, and nonstationary behavior.

In this paper, neural modeling is combined with traditional modeling to achieve the advantages of
both traditional and neural models and compensate for the problems mentioned above using follow-
ing steps. (1) Composing Hybrid Models. We examine several ways of creating hybrid models:
boosting, ensemble, and cyclical autoencoder (Fig. 1). Combining domain models and neural mod-
els requires assumptions about relationship between various system and noise. For example, Eq. (1)
makes an implicit assumption that the models are composed by addition but there are many other
possible assumptions. Unlike most boosting approaches, we use different model classes and loss
functions for the various stages. (2) Extrapolation Testing. An extension to the traditional machine
learning approach of dividing the data set into test and training portions is extended to include both
interpolative and extrapolative testing sets as a stringent test of modeling power. (3) Stochastic Loss.
Unlike previous approaches, the quality of the hybrid models to produce truly stochastic residuals is
enforced using novel loss functions that enforce appropriate correlation of residuals.

In this work, this paradigm is applied to system-identification (SysID) for simulated and real sys-
tems. The results demonstrate that these models decompose into deterministic, predictable, and
stochastic components and can handle more complex systems

2 RELATED AND PREVIOUS WORK

The use of a combination of traditional models and neural models has been investigated before. Psi-
chogios & Ungar (1992) used an extended Kalman filtering and a multilayer perceptron. Talmoudi
et al. (2008) used Khonen neural networks as form of cluster analysis to help in traditional models.
Zhang (2003) used hybrid ARIMA neural network to explain data. Pathak et al. (2018) investi-
gated a liquid state plus physics model hybrid. Most of these papers do not use the latest machine
learning approaches in particular, boosting as a general principle for a modeling paradigm or the
most effective current neural models. In this earlier work, the models are evaluated by MSE over an
interpolative testing set (discussed below). Thus in previous work, the flexibility of neural models
to interpolate with enough parameters and training has resulted in the conclusion that end-to-end
neural models without domain/physics modeling nearly always exhibit the lower MSE and there-
fore there is no advantage for incorporating domain knowledge. In addition, the important issues of
how to compose the hybrid models, evaluate their ability to incorporate prior knowledge, to provide
interpretability in terms of modeled, unmodeled predictable, and unpredictable components, and to
evaluate their ability to extrapolate vs interpolation, were not adequately addressed. These relatively
new issues are addressed in this work.

Various approaches for composing models include following. Jacovi et al. (2019) generated super-
vised data using a blackbox physics model to fit a neural model used to back propagate the errors to
the input models. Innes et al. (2019),Innes (2018) propagate the errors through parametric physics
models using automatic differentiation. This works for small models but doesn’t scale well, solve
the more complex domain problems, address extrapolation or exhibit noise model consistency. Sa-
hoo et al. (2018) introduces the idea of specific functional neurons computing model function which
slow computation by mixing NN and nonlinear least squares as well as limited modeling capabil-
ity. Amos & Kolter (2017) constructed a nonlinear least squares layer to fit several interactions of
a model as part of a larger neural network. Other work Zhou et al. (2017) incorporated a physics
model by adapting the inputs to the model using a neural network to adjust the outputs to be the
desired results. None of these address the issue of training protocols, interpreting the neural com-
ponent, or investigating the statistical properties of the residuals. Bengio et al. (2006) looked at
boosting one stage of a neural layer and Finally, Huang et al. (2017) has investigated the problem of
composing through boosting. Like most boosting, the model class and loss function where the same
for each stage and no attempt to connect with the larger modeling paradigm was attempted.

3 COMPOSING HYBRID MODELS

To form hybrid models, we consider a few promising ways combine a domain model with neural
networks and stochastic models: a) sequential, b) parallel, and c) cyclic training as shown in Fig. 1.
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Figure 1: Various ways of creating hybrid domain/neural models. 1) Sequential boosting. 2) Parallel
( bagging or ensemble) and 3) Cyclic (variational autoencoding training

3.1 SEQUENTIAL METHOD

The sequential or boosting method generalizes the traditional modeling splitting the output into
deterministic and stochastic components. In this model composition procedure, the parameters, θ
of one or more domain/physics models are trained by selecting a loss function discussed in the
next section. The next stage is implemented by selecting another model using residuals and and
previous inputs as the new input and selecting a loss to boost (train) the next stage parameters. This
process can be iterated a number of times. Normally boosting uses one model class such as trees
but importantly in our case, the weak learner is the domain model(s) for the first stages followed
neural model boosting to create a hybrid. The final residuals are ascribed to stochastic models.
More precisely, the boosting method is implemented as follows. A sequence of M learners is used to
refine the predicted output. The weak or base models consist of physics/deterministic models which
are followed by NN models to capture the predictable but complex portion

f̂ (x) = f̂M (x) =

M∑
i=0

f̂i (x) (2)

where M is the number of iterations, f̂0 is the initial guess and f̂i are the boosts.

f̂t (x)←− f̂t−1 (x) + ht (x, θt) (3)
where

θt = arg min
θ

[
Ψt

(
y, f̂t−1 (x) + ht (x, θ)

)]
(4)

where Ψt(., .) is a loss function for stage t discussed below. In summary, the sequential method
involves a number of stages where a model is fitted to the residuals using a stage specific loss
function. Generally, the domain models are applied first followed by the neural models.

3.2 ENSEMBLE METHOD

In the parallel (ensemble) modeling (Fig. 1(2), the various models are trained in one stage to min-
imize the loss between the system and the model. Both θ and W are trained simultaneously. This
has the advantage of finding a global optimum but is more compute intensive.

3.3 CYCLIC METHOD

In this hybrid method, for each training stage, a model is selected with a loss function as in se-
quential, but a second decoder NN model is learned as well which provides a cyclical loss term to
replicate the input. This cyclical training is performed for each stage. So the method is similar to
the sequential method in terms of stages of domain then NN learning. This method often improves
training and provides a decoder/inverse model of use inverse modeling and is related to the implicit
deep equilibrium layers of Bai et al. (2019). There are of course other ways compose models but
these methods provide a direct connection with the additive decomposition of Eq. (1).
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Figure 2: Interpolating training and test sets, and extrapolating test sets defined by a complex hull

4 STOCHASTIC MODELING

In order to fit or the parameters, the loss function, Ψ(.,.) for each learning/fitting stage must be
selected. For the domain model training, the ensemble model or the first stages, the usual MSE
function

Ψt (y, f (x)) =

N∑
i=1

r2i = ρ0 (5)

is sufficient where ρi is the ith lag of the autocorrelation function of the residual

ri = yi − f(xi) (6)

In general however, the MSE does not insure that the residuals after training are compatible with the
stochastic model. The stochastic model normally assumes independent, identical distributed (IID)
random variables. The residuals are compared to the stochastic model using an autocorrelation
function usually a zero mean Gaussian with variance σ2. Introducing a new objective namely a
Ljung-Box (LJB) loss function

Ψt (y, f (x)) = n(n+ 2)

L∑
k=1

ρ2k
n− k

(7)

ensures uncorrelated residuals and compatibility with the stochastic model. L is a hyper parameter
which should be larger than possible correlations. If residual correlations are expected, the expected
correlation can be built into the LJB function. Thus, to create and train a hybrid model, domain
and NN models are selected. For each stage of learning, a loss function is selected to drive the
outputs towards a desired goal. Decorrelation loss functions are used to control the correlations of
the residuals.

5 INTERPOLATIVE TRAINING/EXTRAPOLATIVE TESTING

Finally, having selected models and a loss function, the training and testing data must be selected.
For the most part, previous work has sampled the testing set from the same input region as the train-
ing set. Because of the interpolating ability of large parameter neural models, the models achieve
a lower MSE than domain and hybrid domain/neural models. But this measure of quality does not
measure the extrapolation ability of domain models. Thus, a new method for creating testing data
is used. (Fig. 2). An interpolating test set is created by sampling from the convex hull at different
points than the training set. An extrapolating test set is created by sampling outside the training
convex hull. Extrapolative testing identifies those models which generalize to larger input domains
and discriminates against those models which memorize the data. Indeed, in the results below, high
parameter models look good for interpolative but not for extrapolative data.

The alternative of performing end-to-end of all the models at once is an significant alternative.
However, this procedure is often very inefficient because the switch from neural models to nonlinear
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Figure 3: RMSE in db for the inverse pendulum problem using an interpolative test set for various
models, model hybrids, and loss functions during training as described in the text

domain models is not an efficient use of GPUs. Moreover, one can guide the output of each stage
and maintain intepretability by training in stages.

In summary, the modeling procedure selects one or more models, combines them in parallel or
sequentially, selects a training set, and uses a loss function to train this stage. The process is repeated,
preferable with complementary models to the previous ones and another loss function, fit to the
residuals or outputs of the previous stage. A decorrelation loss function insures consistent Eq. (1)
decomposition.

6 RESULTS

The above process for modeling complex phenomena is applied to system identification for a number
of different mechanical problems in time series prediction, an area where machine learning has not
had as much success Makridakis et al. (2018).

In particular, problems from the OpenAI gym (Brockman et al. (2016)), the inverse pendulum and
a double pendulum are simulated as a function of time with Gaussian noise added. Finally, the
procedures are applied to an actual DC motor system with backlash. In order to create a system-id
data set, a series of actuations excite the system, and the resulting response simulated or measured.
Training and testing data sets consist of the previous state x(t+ 1), the actuation u(t), and resid-
uals r(t). The outputs are the next time step residual values r(t + 1). The state of each system
includes various degrees of freedom such as the angle, angular velocity, and acceleration. The ac-
tuation time series include a training set and an interpolative testing set from a restricted range of
actuations restricting amplitude and/or frequency. The extrapolative test set is created by increasing
the amplitude and/or the frequency of actuation for the various models and the actual physical motor.
The training time series is used to fit/train various models including a physics model, a linear state
space model, a dense neural network, an recursive neural network (RNN) and a cyclical model. The
physics model and the linear state space model are also used as the first stage in hybrid models and
RNN, dense NN and cyclical NN are used as to fit the residuals with either MSE or LjungBox error
(LJB) as the objective function.

6.1 INVERSE PENDULUM

The inverted pendulum swingup problem is a classic problem in the control literature. To create a
physics model we introduce some errors into the model (mass of the pendulum was changed to 5
from 1 and length change to 10 from 1) to insure an error to be captured by other models. Otherwise,
the physics model fits nearly perfectly. Model inputs are: cos Θ(t), sin Θ(t), Θ̇(t), U(t) (Applied
Torque) and outputs are cos Θ(t+ 1), sin Θ(t+ 1), Θ̇(t+ 1)
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Figure 4: RMSE in db for the inverse pendulum problem using an extrapolative test set for various
models, model hybrids, and loss functions during training as described in the text

We train our models on a constrained training dataset of size 25000 points with control actions
between -1.0 to 1.0. The performance of different model compositions on a interpolative validation
dataset is shown in Fig. 3.

We then create an extrapolation dataset of size 25000 utilizing the entire space of control action
space i.e. between -2 to 2. The performances of the models on this dataset is shown in Fig. 4.

In Fig. 3, the box plot of root mean square residuals (RMSE) between the predicted state and the
observed state in db = 20log10|RSME| is plotted for various models showing the median, 25/75
percentile and the 5/95 percentile along with the arithmetic mean (triangle) over the testing time
period. As expected, the dense NN and the RNN do very well compared with the nonlinear physics
model. Boosting the physics model with a linear state space model helps reduce the median but
the variation (error bars) is still large. Boosting with a dense NN and in particular, an RNN greatly
reduces the median and variance of the residuals. The cyclical autocorrelation also does a good job
reducing the interpolative testing errors. The LJB loss boosting results in a worse MSE as expected
because the LJB attempts to minized the residual correlations.

For the extrapolative testing set, the models exhibit greater variation(Fig. 4). Except for State 2,
the physics models do better than the linear model, and the various single neural network models,
Dense and RNN. These results validate the claim that physics models even with incorrect values
extrapolate better than NN models. Because db is log, small plotted changes are actually quite
significant. In (Fig. 4), even when the NNs or linear are boosted, the median errors are larger.
Because the problem is nonlinear, the extrapolated linear model prediction errors are rather large.
Only the physics model boosted with an RNN and trained with a LBJ loss function competes with the
other physics models. Thus, the combination of the physics plus the neural network models improve
on the pure NN models and on the physics models as well. We also note that in general, the MSE
for the extrapolative data sets are larger than the interpolative data sets as expected. In summary, the
results for the inverted pendulem confirm that hybrid domain(physics) models augemented with NN
models results in better fits especially for the extrpolative data sets.

6.2 DOUBLE PENDULUM

Next we look at the double pendulem to further demonstrate that the hybrid modeling can capture
unmodeled degrees of freedom. We create a simulation of a double pendulum in free fall under
gravity. The model system consists of a large pendulum with a small pendulum at the end starting at
90 degrees and oscillates without actuation. The data is interpolative because the testing is within the
range of training data. Model inputs are: Θ(t), Θ̇(t), Θ̈(t) and outputs are Θ(t+ 1), Θ̇(t+ 1), Θ̈(t+
1). The physics, dense and RNN fit the state of pendulum as if it were a single large pendulum.
The RMSE for the physics model is significantly reduced by boosting the physics model with neural
models, in particular the RNN reduces the error (see Fig. 9 in appendix). Fig. 5 shows how the hybrid
improves the autocorrelation function of the residuals. In the first set, the autocorrelation function
for only the physics model for a single pendulum fit to the double pendulum residuals are plotted.
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Physics Model Physics Boosted RNN Model Physics Boosted RNN Model LJB Cost Function

Figure 5: AutoCorrelation the double pendulum physics model–LSE loss function (left), physics
model boosted by RNN (middle) and physics model boosted by a RNN trained with Ljung-Box
LJB) loss function.

Figure 6: RMSE in db for a real DC motor with backlash for an interpolative test set for various
models

Because the second pendulum motion is not modeled, the residual autocorrelation function exhibits
the oscillation of the unmodeled motion. In the second panel, the physics model boosted by the RNN
with MSE as the loss function shows that the RNN is successfully modeling the oscillation of the
second smaller pendulum as the autocorrelation function exhibits reduced amplitude oscillations.
When the LJB loss function is used for the RNN boosting phase, the autocorrelation function (with
zero lag suppressed) is very close to uncorrelated and the variance of the residuals is in fact the noise
added to the simulation. Thus, we have successfully captured the large motion with a physics model,
the second pendulum (the unmodeled degrees of freedom) with the RNN, and the unpredictable
signal components with a consistent IID stochastic model. This result confirms the ability to capture
structured disturbances.

6.3 DC MOTOR

Finally, we apply the hybrid modeling to actual physical systems. A DC motor was coupled to a
rotary encoder with a 3D-printed shaft. The shaft was divided into two pieces and these two pieces

Figure 7: RMSE in db for a real DC motor with backlash for an exterpolative test set for various
models
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Linear Model Linear Boosted RNN Model Linear Boosted RNN Model LJB Cost Function

Figure 8: AutoCorrelation residuals for a real DC motor with backlash–a linear(physics) state space
model trained with a LSE loss (left), a linear(physics) state space model boosted by an RNN with
LSE loss (middle) and a linear(physics) state space model boosted by an RNN with a Ljung Box
loss

were coupled through gearing that purposely exhibited substantial backlash. The voltage was con-
trolled through Pulse Width Modulation (PWM) with polarity which allowed for a range of speeds
and direction changes. Position and velocity data of the shaft was collected from the encoder using
a National Instruments DAQ board. For data collection, the Arduino controller was programmed to
randomly vary the speed and polarity of the motor collecting data inputs: Θ(t), Θ̇(t), U(t) (Volt-
age.) paired with model outputs: Next time step Θ(t+ 1), Θ̇(t+ 1). This input,output pair data was
fit to a linear state space model, (i.e. a physics model) where the linear coefficients are interpretable
in terms of motor/load moment of inertia, friction, winding resistance, and motor inductance. The
data was also modeled using RNN, dense NN, and various hybrid models. Fig. 6 shows that the
dense NN and RNN are able to capture some of the backlash. The linear/physics model boosted
by an RNN using cyclic training does the best for the interpolative data set with 10 Hz excitation.
For the extrapolative data in Fig. 7, the frequency of excitation pulses were 100 Hz. As expected,
the RMSE is larger for the extrapolated data set. Boosting by a NN, particularly the RNN, captures
the delay of the backlash and the MSE is much smaller. In Fig. 8, the modeling shows how the
domain model picks up some of the behavior(left), the RNN captures the backlash (middle), and
the LJB loss function forces the residual to match the IID assumptions (right). Thus, these results
demonstrate that for both simulated and real systems, the boosting of domain models with neural
models utilizing whitening loss functions, results in consistent, interpretable, extrapolating models.

7 CONCLUSIONS AND FUTURE DIRECTIONS

Combining neural models with physics(domain) and stochastic models greatly expand the ability
to model complex phenomena particularly for control. The expanded hybrid models incorporate
the domain knowledge, interpretability, data efficiency and extrapolability of domain models with
neural models which can model complex, high dimension, but predictable uncontrolled, unmodeled
degrees of freedom of the system and of the measurement system (systematic noise). Using boosting,
novel whitening objective functions, and extrapolative/interpolative testing sets, these hybrid models
capture the behavior of more complex models in a meaningful decomposition. These models help
solve the problems of unmodeled non-stochastic components of system behavior. For future work,
measures such as signal-to-noise, error rates etc can be generalized to the case of non-stochastic
neural modeled behavior. The combined modeling solves problems with structure noise. In the field
of control, stability bounds for control systems can be implemented by using these models in the
context of robust control.
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treated as a single pendulum with the second pendulum as unmodeled degree of freedom
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Appendices
A NEURAL NET MODEL DETAILS

Hyperparameter discussion are presented here. All models are trained on Keras (Chollet et al.
(2015)) with TensorFlow (Abadi et al. (2016)) as the backend. Trained models are saved based
on performance on a validation dataset created from the Interpolative convex set. The initial learn-
ing rate is set at 0.01 and the learning rate is halved if the validation loss plateaus for 10 consecutive
epochs. Early Stopping is effected if the models do not show any reduction in validation loss for 30
consecutive epochs. Optimizer used is Adam (Kingma & Ba (2014)) and models are trained with
mini batch of size 512. Batch Normalization (Ioffe & Szegedy (2015)) is used at the input stage of
all models. All trained Dense Models have 10 Hidden Layers with 256 weights in each layer. All
trained RNN models have 10 Hidden layers with 50 recurrent weight blocks in each layer.

B DOUBLE PENDULUM RMSE

The interpolative double pendulum results are shown in Fig. 9.
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