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ABSTRACT

Network quantization is one of the most hardware friendly techniques to enable
the deployment of convolutional neural networks (CNNs) on low-power mobile
devices. Recent network quantization techniques quantize each weight kernel in a
convolutional layer independently for higher inference accuracy, since the weight
kernels in a layer exhibit different variances and hence have different amounts
of redundancy. The quantization bitwidth or bit number (QBN) directly decides
the inference accuracy, latency, energy and hardware overhead. To effectively
reduce the redundancy and accelerate CNN inferences, various weight kernels
should be quantized with different QBNs. However, prior works use only one
QBN to quantize each convolutional layer or the entire CNN, because the design
space of searching a QBN for each weight kernel is too large. The hand-crafted
heuristic of the kernel-wise QBN search is so sophisticated that domain experts
can obtain only sub-optimal results. It is difficult for even deep reinforcement
learning (DRL) Deep Deterministic Policy Gradient (DDPG)-based agents to find
a kernel-wise QBN configuration that can achieve reasonable inference accuracy.
In this paper, we propose a hierarchical-DRL-based kernel-wise network quanti-
zation technique, AutoQ, to automatically search a QBN for each weight kernel,
and choose another QBN for each activation layer. Compared to the models quan-
tized by the state-of-the-art DRL-based schemes, on average, the same models
quantized by AutoQ reduce the inference latency by 54.06%, and decrease the
inference energy consumption by 50.69%, while achieving the same inference ac-
curacy.

1 INTRODUCTION

Although convolutional neural networks (CNNs) have been the dominant approach |Sandler et al.
(2018) to solving a wide variety of problems such as computer vision and recommendation sys-
tems, it is challenging to deploy CNNs to mobile devices having only limited hardware resources
and tight power budgets, due to their huge essential computing overhead, e.g., an inference of Mo-
bileNetV2 [Sandler et al.| (2018) involves 6.9M weights and 585M floating point operations.

Several approaches such as pruning [He et al.| (2018)) and low-rank approximation Denton et al.
(2014) are proposed to reduce the inference computing overhead of CNNs. Network quantiza-
tion [Wang et al.| (2019); Lin et al.| (2017) becomes one of the most hardware friendly CNN accel-
eration techniques by approximating real-valued weights and activations to Q@ BN-bit fixed-point
representations, and performing inferences using cheaper fixed-point multiple-accumulation (MAC)
operations, where QQ BN is the quantization bit number.

Instead of using one QBN for the whole CNN, the layer-wise network quantization [Wang et al.
(2019); Elthakeb et al.| (2018)) assigns a QBN to the weights of each convolutional layer, and searches
another QBN for the activations of the same layer to decrease the inference computing overhead.
But the inference cost of the layer-wise quantized CNNss is still prohibitive for low-power mobile
devices powered by batteries. Recent works [Zeng et al.| (2019); |(Choukroun et al.| (2019b); [Zhang
et al.| (2018); [Li et al. (2019); [Krishnamoorthi (2018)); [Sasaki et al.| (2019)) find that various weight
kernels of a convolutional layer exhibit different variances shown in Figure|l|and hence have differ-
ent amounts of redundancy. Therefore, they quantize each weight kernel independently for higher
accuracy by calculating a Q BN-element scaling factor vector for each kernel, rather than globally
quantize all the kernels of a layer as a whole. To reduce different amounts of redundancy among
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Figure 1: The weight distribution of kernels. Figure 2: Inference accuracy and latency.

different weight kernels, these kernel-wise network quantization techniques should have searched a
QBN for each kernel of each layer in a CNN. However, the search space of choosing a QBN for each
weight kernel is too large, so prior kernel-wise network quantization [Zeng et al.| (2019)); Choukroun
et al.| (2019b)); Zhang et al.|(2018)); |Li et al.|(2019)); Krishnamoorthi| (2018)); [Sasaki et al.|(2019) still
uses the same QBN for the entire CNN. As Figure [2| shows, compared to the layer-wise quantized
model, on the same FPGA accelerator [Umuroglu et al.| (2019a), the kernel-wise quantized model
(assigning a QBN to each weight kernel and choosing a QBN for each activation layer) improves
the inference accuracy by ~ 2% with the same computing overhead (inference latency).

How to decide a QBN for each weight kernel is the most important task of the kernel-wise network
quantization, since the QBNs have a large impact on the inference accuracy, latency and hardware
overhead. Determining a QBN for each weight kernel via hand-crafted heuristics is so sophisticated
that even machine learning experts can obtain only sub-optimal results. Recent works [Wang et al.
(2019); |[Elthakeb et al.| (2018)) automatically select a QBN for each layer of a CNN through a deep
reinforcement learning (DRL) agent without human intervention. However, it is still difficult for
low-power mobile devices such as drones and smart glasses to adopt the layer-wise quantized CNN
models. These mobile devices are very sensitive to the bit-width of fixed-point MAC operations
and memory access during inferences due to their limited battery lifetime and hardware resources.
Kernel-wise network quantization assigning a QBN to each weight kernel and searching a QBN for
each activation layer of a CNN becomes a must to enable the efficient deployment of deep CNNs
on mobile devices by reducing the inference computing overhead. Although it is straightforward
to perform kernel-wise quantization via DRL, it takes ultra-long time for a DRL agent to find a
proper QBN for each weight kernel of a CNN. As CNN architectures are becoming deeper, it is
infeasible to employ rule-based domain expertise or conventional DRL-based techniques to explore
the exponentially enlarging search space of kernel-wise network quantization.

In this paper, we propose a hierarchical-DRL-based agent, Auto(Q), to automatically and rapidly
search a QBN for each weight kernel and choose a QBN for each activation layer of a CNN for
accurate kernel-wise network quantization. AutoQ comprises a high-level controller (HLC) and a
low-level controller (LLC). The HLC chooses a QBN for each activation layer and generates a goal,
the average QBN for all weight kernels of a convolutional layer, for each layer. Based on the goal,
the LLC produces an action, QBN, to quantize each weight kernel of the layer. The HLC and LLC
simultaneously learn by trials and errors, i.e., penalizing inference accuracy loss while rewarding a
smaller QBN. We also build a state space, a goal and an action space, an intrinsic reward and an
extrinsic reward for AutoQ. Instead of proxy signals including FLOPs, number of memory access
and model sizes, we design the extrinsic reward to take the inference latency, energy consumption
and hardware cost into consideration.

2 BACKGROUND AND RELATED WORK

Quantization. Recent works |[Lin et al.[(2016); Zhou et al.|(2017); Jacob et al.|(2018)); McKinstry
et al| (2018)); [Zhang et al.| (2018)) quantize the real-valued weights and activations to fixed-point
representations, so that the model size is reduced and inferences can use low-cost fixed-point MAC
operations. To further reduce inference computing overhead, prior works|Kim & Smaragdis| (2016);
Xu et al| (2018)); |Guo et al,| (2017); [Tang et al,| (2017); |[Rastegari et al.| (2016); [Lin et al.| (2017)
quantize weights and activations into multi-bit binary codes of {-1, +1}s. Rather than real-valued
MAG:s, inferences of these quantized models depend on bit-wise logic operations, i.e., XNORs and
popcounts. These traditional quantization techniques either simply assign a single QBN to the whole
CNN or require domain experts to determine a QBN for each layer of a CNN.



Under review as a conference paper at ICLR 2020

Table 1: The search space size of network quantization. QBN € [0, 32], where 0 means the com-
ponent is pruned. 14y, 1S the layer number of the network.
| quantization granularity [[ search space size (weight X activation) |

network-wise 33 x 33
layer-wise 33Mayer % 33Mlayer

. Tayer -
kernel-wise 332217 Couti x 33Mayer

Kernel-wise quantization. As Table E] shows, almost all prior works [Lin et al.| (2016); [Kim &
Smaragdis| (2016); Rastegari et al.| (2016); [Lin et al.| (2017)); \Guo et al.| (2017); |[Zhou et al.| (2017);
Jacob et al.| (2018); [Tang et al.[(2017); Xu et al.| (2018); McKinstry et al.[(2018)); Zhang et al.[(2018))
categorized as the network-wise quantization focus on searching a QBN € [0, 32] for all weights,
and searching another QBN for all activations in a CNN. Totally, there are only 1089 combinations
of the QBN configuration for the network-wise quantization. The layer-wise quantization Wang
et al.| (2019) searches a QBN € [0, 32] for all weights of a convolutional layer, and decides another
QBN for all activations of the same layer. The QBN search space size of the layer-wise quantization
substantially increases to 33™ever x 33™aver where njqy e, is the layer number of a CNN. Recent
works [Zeng et al.| (2019); (Choukroun et al| (2019b); Zhang et al.|(2018); |[Li et al.| (2019); Krish-
namoorthi (2018)); Sasaki et al.| (2019) observe various weight kernels of a convolutional layer have
different amounts of redundancy, and quantize each weight kernel independently for higher accu-
racy. To exploit different amounts of redundancy among different weight kernels, these kernel-wise
network quantization techniques should have searched a QBN for each kernel of each convolutional
layer, and assigned a QBN for each activation layer in a CNN. However, the search space size of the

. T Mayer , . .
kernel-wise network quantization is 33%i=1""" Couti x 33™aver where c,yy; 1 the number of weight
kernels (output channels) of the ith layer. No prior work tries to search such huge design space.

Table 2: The comparison of DRL-based techniques for quantization and pruning.

| feature [[AMC|ReLeQ [HAQ [ AutoQ |
search for activations and weights || X X v v
kernel-wise quantization X X X v
hierarchical DRL X X X v
shaped intrinsic reward X X X v

AutoML. Recent works take advantage of DRL Baker et al.| (2016); |[Zoph et al| (2017), genetic
algorithm |Suganuma et al.|(2017); |Stanley & Miikkulainen| (2002) and Bayesian Optimization |Kan-
dasamy et al.| (2018)); [Stewart & Stalzer| (2018) to automatically architect CNNs for higher infer-
ence accuracy. Their network architectures outperform many human-designed neural networks.
The weight channel pruning is automatically conducted by DRL He et al. (2018]) and genetic algo-
rithm |[Wang et al.{(2018). ReLeQ [Elthakeb et al.| (2018)) quantizes only the weights of each layer of a
CNN by DRL, while HAQ|Wang et al.| (2019)) performs the layer-wise quantization for both weights
and activations via a DRL agent. No prior quantization or pruning work relies on hierarchical DRL.
Table [2] compares AutoQ against prior DRL-based techniques for quantization and pruning. Au-
toQ is the first work to automatically quantize each weight kernel and each activation layer of a
pre-trained CNN model for mobile devices by hierarchical DRL.

3 AutoQ

Overview. We do not aim to present a new network quantization technique, but we formulate the
search of a QBN for each weight kernel and each activation layer as a hierarchical DRL problem.
We propose a two-level hierarchical DRL technique, AutoQ, to automatically quantize the weights
in the kernel-wise manner and the activations in the layer-wise fashion. We build the state space,
action and goal space, extrinsic and intrinsic reward functions and a hierarchical DRL agent for
AutoQ. Although we use the state-of-the-art learned quantization technique, LQ-Nets |[Zhang et al.
(2018), to quantize weight kernels and activation layers with the QBNs found by AutoQ, future
novel quantization techniques can be easily integrated to AutoQ to improve the inference accuracy
of the quantized networks. In the extrinsic reward, besides the inference latency and energy Wang
et al. (2019), AutoQ also considers the FPGA area overhead critical to low-cost mobile devices.

Working Flow. For an n;qy.--layer CNN, the weight is defined as W € R™tever X Cout X Cin XtWw Xha
where 14y, is the number of layers; c,,; denotes the number of kernels (output channels); c;,
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Figure 3: The working flow of AutoQ (HLC: high-level controller, LLC: low-level controller).

means the number of input channels; w,, indicates the kernel width; and h,, is the kernel height.
The activation is defined as A € R™aver X¢inXwWaXha here 1, is the feature map width; and h,
means the feature map height. The working flow of AutoQ is shown in Figure[3] AutoQ consists of a
high-level controller (HLC) and a low-level controller (LLC). The HLC quantizes the network layer
by layer, while the LLC searches a QBN for each weight kernel in a layer. @ At first, AutoQ re-
ceives an observation state|r, k) from the environment that is the quantized network model, where
stateir, k) includes the information of the CNN architecture. ® The HLC makes a goal gy, that
is the QBN for the activation layer L;. The flow then jumps to @. Or the HLC generates a goal g7,
which is the average QBN of all weight kernels in the layer L; for the LLC. ® The LLC produces an
action aiL, K] QBN, for the weight kernel K; of the layer L;. For the entire layer L;, the LLC aims
to reach the goal g, of the HLC. @ The environment sends the network quantization and hardware
configuration to the fast and accuracy machine-learning-based hardware overhead estimator. @ The
hardware overhead estimator returns the energy consumption, area overhead and inference latency
for the current quantization and hardware configuration. ® With the hardware overhead and infer-
ence accuracy, the environment generates an extrinsic reward eRd[r, x ;) for AutoQ to evaluate the
LLC action. @ Based on all actions of LLC for the layer L;, the HLC provides an intrinsic reward
1Rd,, to tell how well the goal is implemented by the LLC.

State Space. A state state|r, k) (Observation) is represented by

State[Li,Kj] = (Lia Kj7 Cin, Couts Skernely Sstrides S feature bdwv bw/aa 9L, 15 a[Li,KJ,l]) (1)

where L; is the layer index; K; means the weight kernel index; c;,, indicates the number of input
channels; c,.¢ denotes the number of kernels; sierne; 18 the kernel size; sg4r4qe 1s the stride; s feqture
is the input feature map size; bg,, binarily indicates depthwise convolution or not; b,,/, binarily
represents weight or activation; g, _, is the goal (average QBN) of the last layer; and ajr,,, K] is
the action (QBN) of the last kernel in the L; layer. For each variable in state|r,, k], we normalize
it to [0, 1]. If the layer is a fully-connected layer, we set Sgerner = 1, Sstride = 0, and bg,, = 0.

Goal and Action Space. The HL.C produces the average QBN for all weight kernels of each layer
or the QBN for each activation layer as a goal, while the LLC generates a QBN for each weight
kernel in a layer as an action. The HLC goal g, for the L; layer uses a continuous space and can
be any real value between 1 and goal,, 4., Where goal,, ., is the maximum average QBN for a layer
and we set it to 8. If the L; layer is an activation layer, we round the real-valued gy, to the discrete
value of roundup(l + gr, - (9oalmas — 1)). Although the LLC action is an integer between 0 and
actionm,qz, it still uses a continuous space to capture the relative order, i.e., 2-bit is more aggressive
than 3-bit, where action,q, is the maximum QBN for a kernel and we set it to 8. For the K; kernel
of the L; layer, the LLC generates the continuous action ra[z, k) that is in the range of [0, 1], and
round it up to the discrete value a|r, k) = roundup(m[Li,Kj] - actionmaz )-

Extrinsic Reward. After an action az, f ] is taken, AutoQ arrives at a new state state(r, ;]
and receives an extrinsic reward e Rd from the environment. The HLC aims to maximize the accu-

. e Coutiti—1 .
mulative extrinsic reward eRd =}, >~ ’yeZRldp it eRd|p, k), where Yera € [0,1) is a decay
factor. The immediate extrinsic reward can be represented by

accuracy(NC)Vace
lat(NC,HC)¥t - en(NC, HC)¥e - area(NC, HC)¥a

where NC is the network configuration; HC' means the hardware configuration, e.g., memory band-
width; accuracy(NC) indicates the inference accuracy; lat is the inference latency of the network
NC running on the hardware HC'; en represents the inference energy of NC' running on HC
area is the FPGA area (hardware cost) used by NC on HC'; t4cc, Y1, e and 1), are user-defined
factors deciding the impact of inference accuracy, latency, energy and FPGA area on the extrinsic

eRd[L“Kj](NC, HC) = log( ) ()
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reward. By different values of user-defined factors, AutoQ implements the resource-constrained
and accuracy-guaranteed searches. For resource-constrained applications, e.g., low-power drones,
AutoQ sets Pgec = 1, ¥ = 0, ¥, = 0 and ¥, = 0 to achieve the best accuracy given the maximum
amount of hardware resources (latency, energy, and FPGA area). This extrinsic reward offers no
incentive for lower QBNs, so AutoQ reduces the QBN by limiting the action space. AutoQ allows
arbitrary action at the first few layers and starts to limit the action when it finds that the hardware
resource budget is insufficient even after using the smallest QBN for all the following layers. For
accuracy-guaranteed applications, e.g., fingerprint locks, AutoQB sets ¥gcc = 2, Y < 1, ¥ < 1
and 1), < 1 to obtain the shortest latency, the minimal energy, and the smallest hardware cost with
no accuracy loss.

Intrinsic Reward. Based on the goal g1, produced by the HLC for the L; layer, the LLC generates
Cout actions a[L; Ko ~ O[L; K., 1] at the states state[Li,Ko] ~ stateir, k, . _4]- AutoQ then

arrives the state state|r, r. 1] where it receives an intrinsic reward iRd and maximizes the
out

accumulative intrinsic reward iRd = 3,7} };dliRd[ L..K,]» Where yira € [0,1) is a decay factor.
The LLC produces actions to help the HLC to maximize the extrinsic reward, so it should aim to
complete the goal of the HLC and to maximize the extrinsic reward. But at the beginning of the
AutoQ training, the extremely low extrinsic reward due to the random goals of the HLC prevents the
LLC from efficiently learning from the environment. We propose a shaped reward as the intrinsic
reward for the LLC to take both the goal completion and the extrinsic reward into consideration, and
to enable fine-grained low-level behavior learning. The intrinsic reward can be represented by

Cout— Cout—1

1
iRdp, = (1= C) - (<llgr, - Cout — Y ar,i;ll2) +¢- > eRdp, k, 3)
=0 =0

where ( is a user-defined factor dynamically enlarging from 0.1 to 0.8 as the number of training
epochs increases. When ( is small, the HLC has stronger influence on the LLC. On the contrary,
when ¢ = 1, the LLC maximizes only the accumulative extrinsic reward.

Hardware Overhead Estimator. A recent work Wang et al.| (2019) estimates the hardware latency
and energy by physical FPGA accelerators. However, a typical synthesis for a CNN model on a
FPGA costs > 30 minutes |Gopinath et al.|(2019). Invoking a FPGA synthesis for each action will
make AutoQ unacceptably slow. We adopt fast and accurate FPGA latency, area [Liu & Carloni
(2013) and power |Zhou et al.[(2019) models to predict the inference latency, energy and FPGA area
for an arbitrary configuration of network and hardware. These machine-learning-based models are
highly accurate and can estimate the hardware overhead to compute the extrinsic reward of AutoQ
within several milliseconds.

Hierarchical DRL. AutoQ uses a Hlerarchical Reinforcement learning with Off-policy correction
(HIRO) Nachum et al.|(2018)), to implement the HLC and the LLC. The LLC is trained by incorpo-
rating gr,, into the standard TD3 method Nachum et al.| (2018). So the low-level Q-value function
QFEC is to minimize the error e .o (state(r, k), 9L, (L, K, State(r, k,,.])» Which is

LLC 2

(Qo, o (stater,; k1,91, a1L; k) — iRdL; — YiRa - QﬁLLLCC (stater,; k; 41, 9L;) Hiffc (State[Li,K_j+1]7QLi))()A‘)
where pZEC s trained to maximize Q57C . We further augment ;Z~C  with Gaussian noises by
éLLC LLC frrc éLLC
collecting the actions as N (ug,r., Tayr, x,) ), where N is a Gaussian distribution, and Tar, x;) 18
the variance. During the exploitation, Tarr, k) is initialized to 0.5 and decayed after each episode
i K

exponentially. The HLC converts a series of high-level transition tuples

(S[Ls, Ko Koy, 1] ILis ALi KoK, 1] €RA(L, Ko Ko, )0 S[Ligr, o)) &)
to state-goal-reward transitions
(S[L:,K0]» 9L Z eRd(L, Ky:K.,,, _1]s S[Lit1.Ko)) (6)

where a1, k., ,_,] denotes the sequence of ajz, ) ~ a, K., ] and eRd[L'iyKU:Kcout—l]
means the sequence of eRd[y, r,) ~ eRd|r,, Ke,,,—1]- AutoQ stores these state-goal-reward transi-
tions into the replay buffer. However, since transitions obtained from the past LLCs do not accurately
reflect the actions that would occur if the same goal was used with the current LLC, AutoQ has to
introduce a correction translating old transitions into ones that agree with the current LLC. AutoQ
re-labels the high-level transition (sz, ], 91;) > eRd(L, koK., 1] S[L,.1,Ko]) With a different

goal g, chosen to maximize the probability 115" (ajL, ry:x 11S1L, KoikK.o,,, —1]s 9L;)- AutoQ

Cout—1
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computes 10 candidate goals sampled randomly from a Gaussian distribution centered at gr,,, and
selects the minimal goal to re-label the experience.

Quantization and Finetuning. During a search, we quantize the model by the learned quantization
technique Zhang et al.|(2018)), and finetune the quantized model for ten epochs to recover the accu-
racy using stochastic gradient descent (SGD) with a fixed learning rate of 10~ and momentum of
0.9. We randomly select 100 categories from the ImageNet to accelerate the model finetuning. After
the search is done, we quantize the model with the best policy found by AutoQ and finetune it on
the full dataset.

Implementation Details. An AutoQ agent, i.e., HLC or LLC, consists of an actor network and
a critic network. Both share the same architecture, i.e., two hidden layers, each of which has 300
units. For the actor network, we add an additional sigmoid function producing an output in the range
of [0, 1]. We use a fixed learning rate of 10~ for the actor network and 103 for the critic network.
AutoQ trains the networks with the batch size of 64 and the replay buffer size of 2000. AutoQ first
explores 100 episodes with a constant noise, i.e., 5a[Li,Kj] = 0.5 for the LLC and 69[%] = 0.5 for

the HL.C, and then exploits 300 episodes with exponentially decayed noise.

Storage Cost. We need to record a 4-bit QBN ranging from 0 to 8 for each activation layer and
each weight kernel of a convolutional layer. The storage overhead of AutoQ is ~ 0.1% of the size
of various CNN models. For instance, ResNet-18 found by resource-constrained AutoQ requires
8.3MB to store its quantized model in Table[3] The storage overhead of AutoQ is only 0.07%.

4 EXPERIMENTAL RESULTS

Experimental Settings. To evaluate AutoQ, we selected several CNN models including ResNet-18,
ResNet-50, SqueezeNetV1 [landola et al.[(2016) and MobileNetV2 Sandler et al.|(2018)). The CNN
models are trained on ImageNet including 1.26M training images and tested on 50K test images
spanning 1K categories of objects. We evaluated the inference performance, energy consumption
and FPGA area of the CNN models quantized by AutoQ on a Xilinx Zyng-7020 embedded FPGA.
On the FPGA, we implemented a temporal CNN accelerator [Umuroglu et al.| (2019b) that uses
bit-serial multipliers, each of which computes with one-bit digits from multiple weights and their
corresponding activations in parallel at one time, and then accumulates their partial products.

Table 3: Network Quantization by AutoQ (A-QBN: the average QBN of activations; W-QBN: the
average QBN of weights; LAT: inference latency).

resource-constrained accuracy-guaranteed

model scheme top-1 | top-5 [ A-QBN | W-QBN | LAT top-1 | top-5 | A-QBN | W-QBN | LAT
err (%) | err(%) | (bit) (bit) (ms) || err (%) | err(%) (bit) (bit) (ms)

network-wise 32.7 12.32 4 4 296.8 327 12.32 4 4 296.8

ResNet-18 layer-wise 31.8 11.92 332 4.63 290.9 325 11.90 3.37 3.65 189.6
kernel-wise 30.22 | 11.62 4.12 3.32 286.3 [| 32.6 11.82 3.02 2.19 125.3

original 30.10 | 11.62 16 16 1163 30.10 | 11.62 16 16 1163

network-wise || 27.57 9.02 4 4 616.3 || 27.57 | 9.02 4 4 616.3

ResNet-50 layer-wise 26.79 | 832 423 3.51 6123 || 27.49 | 9.15 4.02 3.12 486.4
T kernel-wise 25.53 | 7.92 3.93 4.02 610.3 [| 27.53 | 9.12 3.07 2.21 327.3
original 2520 | 7.82 16 16 2357 2520 | 7.82 16 16 2357

network-wise || 45.67 | 23.12 4 4 43.1 45.67 | 23.12 4 4 43.1

S NetV1 layer-wise 44.89 | 21.14 3.56 4.27 42.1 45.63 | 23.04 3.95 328 25.5
queezeRe Kernel-wise || 43.51 | 20.89 | 405 | 376 | 416 || 4534 | 23.02 | 329 | 232 | 125
original 43.10 | 20.5 16 16 127.3 || 43.10 | 20.5 16 16 127.3

network-wise || 31.75 | 11.67 4 4 374 31.35 | 11.67 4 4 374

MobileNetV2 layer-wise 30.98 | 10.57 3.57 4.22 36.9 31.34 | 10.57 3.92 3.21 23.9

kernel-wise 29.20 | 9.67 4.14 3.67 36.1 [| 31.32 | 11.32 | 3.3 2.26 10.2
original 2890 | 9.37 16 16 123.6 || 28.90 | 9.37 16 16 123.6

4.1 OVERALL PERFORMANCE

Resource-constrained Quantization. We make AutoQ perform the resource-constrained searches
by imposing a latency constraint and setting ¥, = 1, ¥; = 0, 1 = 0 and ¥, = 0 in the extrinsic
reward. With such a setting, AutoQ aims to search for the best inference accuracy given the longest
latency constraint, which is set to the inference latency of the 4-bit network-wise quantized CNN
models. We compare the kernel-wise AutoQ quantized models against the layer-wise Hardware-
Aware Automated Quantization (HAQ) Wang et al.[(2019) quantized models and the 4-bit network-
wise quantized models in Table[3] We used the LQ-Nets quantization|Zhang et al.| (2018) to quantize
and finetune the models in all three schemes. The network-wise scheme uses 4-bit to quantize the



Under review as a conference paper at ICLR 2020

whole models, while the layer-wise scheme searches a QBN for weights of each layer, and chooses
another QBN for activations of the same layer. AutoQ chooses a QBN for each weight kernel, and
selects another QBN for each activation layer of a CNN. In Table [3] the average QBN of weights
(W-QBN) can be calculated by

B S Weight QBN x,
Niayer (7)
Zi:l Ceouti
where c,q¢; is the number of output channels in the layer L; and Weight_Q BN, (L K] is the QBN
for the K ;th weight kernel in the layer L;. The average QBN of activations (A-QBN) is computed

S ST Act. QBN

a

o , where Act_Q)BNy,, is the QBN for all activations of the layer L;. Compared

to the layer-wise quantization, AutoQ improves the top-1 inference accuracy by > 1.25% when
spending almost the same inference latency. Compared to the 16-bit full-precision models, the
models quantized by AutoQ degrade the inference accuracy by at most only 0.41%, but reduce the
inference latency by 71.2% on average.

Accuracy-guaranteed Quantization. We run AutoQ to do the accuracy-guaranteed searches by
setting ¥y = 2, Yy = 0.5, ¥, = 0 and 9, = 0 in the extrinsic reward. Such an extrinsic reward
drives AutoQ to quantize the models to achieve the shortest inference latency without significant
accuracy loss. Compared to the layer-wise scheme, AutoQ substantially reduces the inference la-
tency by 42.2% while achieving a similar (averagely -0.1%) top-1 inference accuracy. Compared
to ResNet-18 and ResNet50, the compact models such as SqueezeNetV1 suffer from larger top-1
accuracy degradation, i.e., -0.3% in a accuracy-guaranteed search of AutoQ.
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4.2 DETAILED ANALYSIS

Kernel-wise Search. AutoQ can assign a QBN to each kernel of a convolutional layer. The aver-
age weight QBN and the average activation QBN of each ResNet-18 layer found by an accuracy-
guaranteed AutoQ search are shown in Figure[d] Both the network-wise and layer-wise quantization
techniques use only one QBN to quantize all weight kernels in a convolutional layer, and quantize
all activations of the layer by another QBN. On the contrary, AutoQ searches a QBN for each weight
kernel. Compared to a CNN model quantized by the network-wise or layer-wise quantization tech-
nique, the same model quantized by the kernel-wise AutoQ can achieve similar inference accuracy
but with a smaller average QBN in each layer. We also show the weight kernel QBNs of the L4
layer of ResNet-18 produced by resource-constrained AutoQ searches in Figure[5] AutoQ automati-
cally identifies which weight kernel has a smaller (larger) variance and thus less (more) redundancy,
so that it can assign a larger (smaller) QBN to the weight kernel. For instance, as Figure [I] shows,
compared to the 53th weight kernel (top-right), the 52th weight kernel (top-left) of ResNet-18 has
a smaller weight distribution variance. Therefore, in Figure[5] AutoQ assigns a smaller QBN to the
52th weight kernel but provides the 53th weight kernel a larger QBN.

Hierarchical DRL Agent with Shaped In-

trinsic Reward. We evaluated and compared Emo% f— DDPG — HIRO — AutoQ

our hierarchical-DRL-based AutoQ against 3 80%

the traditional one-level DDPG-based DRL 28:;"

adopted by a recent layer-wise quantization 5 20%

technique, HAQ |Wang et al.| (2019). The re- £ 0%—5—55 100 150 200 250 300 350
ward comparison of different techniques during = Training Episodes .

the kernel-wise quantization on MobileNetV2 Figure 6: The DRL scheme comparison.

is shown in Figure[6] HAQ and AutoQ both support resource-constrained searches, but HAQ cannot
support accuracy-guaranteed searches. So their rewards are just the inference accuracy. Through the
goals of the HLC and the actions of the LLC, AutoQ can find a QBN for each weight kernel and
achieve > 70% accuracy much faster than the DDPG-based DRL, i.e., it reaches ~ 70% accuracy
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after only 200 episodes. However, the DDPG-based DRL is stuck with 20% inference accuracy until
250 episodes. The hierarchical-DRL-based AutoQ significantly accelerates the search space explo-
ration of the kernel-wise network quantization. Although AutoQ uses a prior hierarchical DRL agent
HIRO Nachum et al.| (2018)) to search a QBN for each weight kernel, we propose a novel shaped
intrinsic reward considering both the completion of the HLC goals and the extrinsic reward to ac-
celerate the search. The intrinsic reward of HIRO takes only the completion of the HLC goals into
consideration. The LLC of HIRO cannot directly learn from the environment. Therefore, compared
to AutoQ, it takes extra 200 episodes for HIRO to reach only 60% accuracy as shown in Figure[6]

Extrinsic Reward. Unlike the reward of the DDPG-based layer-wise HAQ [Wang et al.| (2019)
considering only the inference accuracy, the extrinsic reward of AutoQ can balance the trade-off be-
tween the inference accuracy, latency, energy consumption and FPGA area by enabling the accuracy-
guaranteed search. By setting ¥, = 2, ¥y = 0.5, ¥ = 0.5 and ¥, = 0.5, AutoQ takes the in-
ference accuracy, latency, energy and FPGA area into consideration during an accuracy-guaranteed
search. For instance, AutoQ can find two kernel-wise QBN configurations having similar inference
accuracy, latency and energy for MobileNetV2. We cannot differentiate these two configurations
by using only the HAQ reward. However, the first configuration consumes 94% of the FPGA area,
while the other configuration occupies 85% of the FPGA area. AutoQ can identify the second QBN
configuration as a better choice via its extrinsic reward.
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Figure 7: The comparison of latency and energy between temporal and spatial CNN accelerators.

Quantization Granularity. Besides the temporal CNN accelerator [Umuroglu et al.| (2019b)), the
kernel-wise quantized models found by the accuracy-guaranteed AutoQ can reduce the inference
latency on a spatial CNN accelerator, BitFunsion |[Sharma et al.[ (2018)), that relies on a 2D systolic
array of the fusion units spatially summing the shifted partial products of weights and activations.As
Figure[7)shows, compared to the layer-wise quantized models, on average, the kernel-wise quantized
models reduce the inference latency by 39.04% and decrease the inference energy by 33.34% on the
spatial CNN accelerator. Therefore, the kernel-wise quantized models greatly reduce the inference
latency and energy on both the temporal and spatial CNN accelerators. Prior works Mellempudi et al.
(2017); \IChoukroun et al.| (2019a) suggest it is possible to divide a weight kernel into several sub-
kernels and quantize each sub-kernel independently. We also use AutoQ to search a QBN for each
weight sub-kernel. As Figure [/| shows, the sub-kernel-wise quantized models cannot improve the
inference latency or energy on the spatial CNN accelerator consisting of systolic computing arrays.
Each dot-product operation of a sub-kernel-wise quantized model has to be split into several dot-
product operations to be accumulated together. A systolic computing array still has to be designed
to accommodate the weight sub-kernel with the largest QBN in a kernel. Therefore, we can see that
it is difficult for the fine-grained quantization schemes choosing a QBN for each weight unit that is a
part of a kernel to further reduce the inference latency or energy on both the temporal and the spatial
CNN accelerators.

5 CONCLUSION

In this paper, we propose a hierarchical-DRL-based kernel-wise network quantization technique,
AutoQ, consisting of a HLC and a LLC. The HLC automatically searches an average weight QBN
and an average activation QBN for each convolutional layer. Based on the average weight QBN, the
LLC generates a QBN for each weight kernel in each layer. We also create a state space, a goal and
action space, an intrinsic reward and an extrinsic reward to support AutoQ. Particularly, our shaped
intrinsic reward enables the LLC to learn efficiently from the environment by considering both the
HLC goal completion and the environment extrinsic reward. Moreover, the extrinsic reward of
AutoQ can balance the inference accuracy, latency, energy consumption and FPGA area. Compared
to the models quantized by the state-of-the-art DRL-based schemes, on average, the same models
quantized by AutoQ reduce the inference latency by 54.06%, and decrease the inference energy
consumption by 50.69%, while achieving the same inference accuracy.
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