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ABSTRACT

We introduce a novel framework for generative models based on Restricted Kernel
Machines (RKMs) with multi-view generation and uncorrelated feature learning
capabilities, called Gen-RKM. To incorporate multi-view generation, this mecha-
nism uses a shared representation of data from various views. The mechanism is
flexible to incorporate both kernel-based, (deep) neural network and convolutional
based models within the same setting. To update the parameters of the network,
we propose a novel training procedure which jointly learns the features and shared
representation. Experiments demonstrate the potential of the framework through
qualitative evaluation of generated samples.

1 INTRODUCTION

In the past decade, interest in generative models has grown tremendously, finding applications in
multiple fields such as, generated art, on-demand video, image denoising (Vincent et al., |2010),
exploration in reinforcement learning (Florensa et al.l 2018)), collaborative filtering (Salakhutdinov
et al.,[2007), inpainting (Yeh et al.}[2017) and many more.

Some examples of graphical models based on a probabilistic framework with latent variables are
Variational Auto-Encoders (Kingma & Welling| 2014)) and Restricted Boltzmann Machines (RBMs)
(Smolensky}, [1986; |Salakhutdinov & Hintonl |2009). More recently proposed models are based on
adversarial training such as Generative Adversarial Networks (GANSs) (Goodfellow et al.,|2014) and
its many variants. Furthermore, auto-regressive models such as Pixel Recurrent Neural Networks
(PixeIRNNs) (Van Den Oord et al., 2016) model the conditional distribution of every individual
pixel given previous pixels. All these approaches have their own advantages and disadvantages. For
example, RBMs perform both learning and Bayesian inference in graphical models with latent vari-
ables. However, such probabilistic models must be properly normalized, which requires evaluating
intractable integrals over the space of all possible variable configurations (Salakhutdinov & Hinton,
2009). Currently GANs are considered as the state-of-the-art for generative modeling tasks, pro-
ducing high-quality images but are more difficult to train due to unstable training dynamics, unless
more sophisticated variants are applied.

Many datasets are comprised of different representations of the data, or views. Views can corre-
spond to different modalities such as sounds, images, videos, sequences of previous frames, etc.
Although each view could individually be used for learning tasks, exploiting information from all
views together could improve the learning quality (Pu et al., 2016} [Liu & Tuzel, 2016} |Chen & De-
noyer, |2017). Also, it is among the goals of the latent variable modelling to model the description
of data in terms of uncorrelated or independent components. Some classical examples are Indepen-
dent Component Analysis; Hidden Markov models (Rabiner & Juang| |1986)); Probabilistic Principal
Component Analysis (PCA) (Tipping & Bishopl [1999); Gaussian-Process Latent variable model
(Lawrence, 2005)) and factor analysis. Hence, when learning a latent space in generative models, it
becomes interesting to find a disentangled representation. Disentangled variables are generally con-
sidered to contain interpretable information and reflect separate factors of variation in the data (e.g.
lighting conditions, style, colors, etc.). While the definition of disentanglement is not precise, many
believe a representation with statistically independent variables is a good starting point (Schmidhu-
ber} |1992; Ridgeway, 2016). Such representations extract information into a compact form which
makes it possible to generate samples with specific characteristics (Chen et al., 2018} [Bouchacourt
et al.,|2018}Tran et al., 2017;|Chen et al.,2016). Additionally, these representations have been found
to generalize better and be more robust against adversarial attacks (Alemi et al., [2017)).
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In this work, we propose an alternative generative mechanism based on the framework of Restricted
Kernel Machines (RKMs) (Suykens, [2017), called Generative RKM (Gen-RKM). RKMs yield a
representation of kernel methods with visible and hidden units establishing links between Kernel
PCA, Least-Squares Support Vector Machines (LS-SVM) (Suykens et al., 2002) and RBMs. This
framework has a similar energy form as RBMs, though there is a non-probabilistic training proce-
dure where the eigenvalue decomposition plays the role of normalization. Recently, Houthuys &
Suykens| (2018)) used this framework to develop tensor-based multi-view classification models and
Schreurs & Suykens|(2018) showed how kernel PCA fits into this framework.

Contributions. We make the following contributions: 1) A novel multi-view generative model
based on the RKM framework where multiple views of the data can be generated simultaneously.
2) Two methods are proposed for computing the pre-image of the feature vectors: with the feature
map explicitly known or unknown. We show that the mechanism is flexible to incorporate both
kernel-based, (deep) convolutional neural network based models within the same setting. 3) When
working with explicit feature maps, we propose a training algorithm that jointly performs the feature-
selection and learns the common-subspace representation in the same procedure. 4) Experiments
demonstrate that the model is capable of generating good quality images of natural objects. Further
experiments on multi-view datasets exhibit the potential of the model. Thanks to the use of kernel
PCA, the learned latent variables are uncorrelated. This resembles a disentangled representation,
which makes it possible to generate data with specific characteristics.

This paper is organized as follows. In Section 2] we discuss the Gen-RKM training and generation
mechanism when multiple data sources are available. In Section [3] we explain how the model
incorporates both kernel methods and neural networks through the use of implicit and explicit feature
maps respectively. When the feature maps are defined by neural networks, the Gen-RKM algorithm
is explained in Sectiond] In Section[5] we show experimental results of our model applied on various
public datasets. Section|6]concludes the paper along with directions towards the future work.

2 GENERATIVE RESTRICTED KERNEL MACHINES FRAMEWORK

The proposed Gen-RKM framework consists of two phases: a training phase and a generation phase
which occurs one after another.

2.1 TRAINING

Similar to Energy-Based Models (EBMs, see [LeCun et al.[ (2004) for details), the RKM objective
function captures dependencies between variables by associating a scalar energy to each configura-
tion of the variables. Learning consists of finding an energy function in which the observed con-
figurations of the variables are given lower energies than unobserved ones. Note that the schematic
representation, as shown in Fig. E]is similar to Discriminative RBMs (Larochelle & Bengio, 2008))
and the objective function J; (defined below) has an energy form similar to RBMs with additional
regularization terms.

We assume a dataset D = {x;, yi}ij\él, with z; € R4, y; € RP comprising of N data points. Here y;
may represent an additional view of x;, e.g., an additional image from a different angle, the caption
of an image or a class label. Starting from the RKM interpretation of Kernel PCA, which gives an
upper bound on the equality constrained L, Kernel PCA objective function (Suykens| [2017), and
applying the feature-map ¢; : R? — R% and ¢, : R — RP’ to the input data points, the training
objective function 7; for generative RKM is given byﬂ

N
A
Ji=> <—¢1(-’Bz‘)TUhi — da(yi) T Vhi + thThi) + %Tr(UTU) + 77—22 ™H(VV) (1)
i=1
where U € R4 *s and V' € RP/*5 are the unknown interaction matrices, and h; € R* are the

latent variables modeling a common subspace H between the two input spaces X and ) (see Fig.
[I). The derivation of this objective function is given in the Appendix[A.T] Givenn; > 0 and 1y > 0

'For convenience, it is assumed that all the feature vectors are centered in the feature space F using qg(a: =
() — vazl ¢(x;). Otherwise, a centered kernel matrix could be obtained using Eq. (Appendix
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Figure 1: Gen-RKM schematic representation modeling a common subspace H between two data
sources X and V. The ¢1, ¢2 are the feature maps (F,, and F,, represent the feature-spaces) corre-
sponding to the two data sources. While 1)1, 15 represent the pre-image maps. The interconnection
matrices U, V model dependencies between latent variables and the mapped data sources.

as regularization parameters, the stationary points of 7; are given by:

0L =0 = Mh;=UT¢1(:)+V oalys), Vi=1,...,N
9. =0 = U=2L1Y" ¢1(z)h/ @

. o N
8L =0 = V=_L51 6(y)h/.

Substituting U and V in the first equation above, denoting A = diag{\1,...,As} € R**® with
s < N, yields the following eigenvalue problem:

1 1
{Kl + KQ} H'=HTA, 3)
m 12

where H = [hy, ..., hy] € R™*N with s < N is the number of selected principal components and
K, Ky € RV*Y are the kernel matrices corresponding to data source Based on Mercer’s theo-
rem (Mercer, |1909), positive-definite kernel functions %; : R x R? — R, ky : R? x R? — R can
be defined such that ki (z;, @;) = (d1(x:), ¢1(x;)), and ka(yi, y;) = (d2(yi), d2(y;)), Vi,j =
1,..., N forms the elements of corresponding kernel matrices. The feature maps ¢; and ¢o,
mapping the input data to the high-dimensional feature space (possibly infinite) are implicitly
defined by kernel functions. Typical examples of such kernels are given by the Gaussian RBF
kernel k(z;,x;) = e~llzi=2;13/(20%) or the Laplace kernel k(xi,z;) = e lwi=®ill2/ just to
name a few (Scholkopf & Smolal 2001). However, one can also define explicit feature maps,
still preserving the positive-definiteness of the kernel function by construction (Suykens et al.,[2002).

2.2  GENERATION

In this section, we derive the equations for the generative mechanism. RKMs resembling energy-
based models, the inference consists in clamping the value of observed variables and finding con-
figurations of the remaining variables that minimizes the energy (LeCun et al., [2004). Given the
learned interconnection matrices U and V', and a given latent variable h*, consider the following
objective function:

Ty =—¢1(x*) ' UR" — ¢2(y*) ' VR + %¢1(m*)T¢1(l‘*) + %éf’z(y*)T%(’y*)a €]

with an additional regularization term on data sources. The given latent variable h* can be the
corresponding hidden variable of a training point, a newly sampled hidden unit or a specifically
determined one. Above cases correspond to generating the reconstructed visible unit, generating a
random new visible unit or exploring the latent space by carefully selecting hidden units respectively.

2While in the above section we have assumed that only two data sources (namely X and ))) are available
for learning, the above procedure could be extended to multiple data-sources. For the M views or data-sources,

this yields the training problem: [ Mo g] H"=H'A.

=1 7n,
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Here J, denotes the objective function for generation. The stationary points of 7, are characterized
by:

¢y (x*) 5)
W('Z*) = 0 — ¢2(y*) = Vh*

Using U and V' from Eq. [2] we obtain the generated feature vectors:

N N
() = (1 S 1@ ) B, Galy") = (1 3" oyl ) e ©
= 2=

To obtain the generated data, one now needs to compute the inverse images of the feature maps
¢1(+) and ¢2(+) in the respective input spaces, i.e., solve the pre-image problem. We seek to find
the functions 91 : R% +— R and 1), : RP/ — RP corresponding to the two data-sources, such that
(1 061)(x*) ~ =* and (Y2 0 $2)(y*) &~ y*, where ¢1 (x*) and ¢ (y*) are calculated using Eq. [6}

When using kernel methods, explicit feature maps are not necessarily known. Commonly used
kernels such as the radial-basis function and polynomial kernels map the input data to a very high
dimensional feature space. Hence finding the pre-image, in general, is known to be an ill-conditioned
problem (Mika et al.l [1999). However, various approximation techniques have been proposed (Bui
et al., [2019; [Kwok & Tsang, [2003}; [Honeine & Richard, 2011; [Weston et al., |2004) which could
be used to obtain the approximate pre-image & of ¢ (x*). In section we employ one such
technique to demonstrate the applicability in our model, and consequently generate the multi-view
data. One could also define explicit pre-image maps. In section[3.2] we define parametric pre-image
maps and learn the parameters by minimizing the appropriately defined reconstruction errors. The
next section describes the above two pre-image methods for both cases, i.e., when the feature map
is explicitly known or unknown, in greater detail.

{ e =0 = &i(a) =Uh",

3 IMPLICIT & EXPLICIT FEATURE MAP

3.1 IMPLICIT FEATURE MAP

As noted in the previous section, since * may not exist, we find an approximation . A possi-
ble technique is shown by (Schreurs & Suykens| (2018)). Left multiplying Eq. E] by ¢1(z})" and
d2(yr)T,¥i =1,..., N, we obtain:

1 1
kye = —K H'h*, k,. = —K,H'h*, (7
m 2
where, kg« = [k(z1,2*),...,k(xy,z*)] represents the similarities between ¢y (x*) and training

data points in the feature space, and K; € R™N*¥ represents the centered kernel matrix of X
Similar conventions follow for ) respectively. Using the kernel-smoother method (Hastie et al.
2001])), the pre-images are given by:

S0 k(g @) G = 1 (da(y?)) = S0 ka(yy, 9%y,
Ny 7 « ) — ¥2 2 - n, 7 . 9
Zj:l ki(zj, x*) Zj:l ka(yj.y*)

where l%l(wi, x*) and l%g(yi, y*) are the scaled similarities (see Eq. [8) between 0 and 1 and n,. the
number of closest points based on the similarity defined by kernels k; and k.

T =1 (d1(x¥)) = ®)

3.2 EXPLICIT FEATURE MAP

While using an explicit feature map, Mercer’s theorem still holds due to the positive semi-
definiteness of the kernel function by construction, thereby allowing the derivation of Eq. [3]
In the experiments, we use a set of (convolutional) neural networks as the feature maps ¢g(-).
Another (transposed convolutional) neural network is used for the pre-image map ¢ () (Du-
moulin & Visin, 2016). The network parameters {6, } are learned by minimizing the recon-
struction errors defined by L1(x},¥1,, (914, (z7))) and La(y], V2., (¢26, (7)) In our experi-

2
ments, we use the mean-squared errors L1 (2}, 91, (910, (7)) =  [|®F — 1, (P10, ()],



Under review as a conference paper at ICLR 2020

2 . .
and Lo(y7, V2, (¢282 (y1))) = % Hyz* - 1/1242 (¢262 (yl*))| 9 however, in principle, one can use
any other loss appropriate to the dataset. Here ¢1, (x;) and ¢z, (y;) are computed from Eq. @

i.e., the generated points in feature space from the subspace H.

Adding the loss function directly into the objective function J; is not suitable for minimization.
Instead, we use the stabilized objective function defined as Jsiqp = J: + “T’bjf where cgpqp € RT
is the regularization constant (Suykens|2017). This tends to push the objective function .7; towards
zero, which is also the case when substituting the solutions \;, h; back into 7; (see Appendix
for details). The combined training objective is given by:

N
01,52}&@% = jstab"‘% (; [L1(xF, U1, (D14, (®7))) + La(y], P2, ($2, (?ﬁ)))]) G

where ¢, € R is a regularization constant to control the stability with reconstruction accuracy. In
this way, we integrate feature-selection and subspace learning within the same training procedure.

4 THE GEN-RKM ALGORITHM

Based on the previous analysis, we propose a novel algorithm, called the Gen-RKM algorithm,
combining kernel learning and generative models. We show that this procedure is efficient to train
and evaluate. It is also scalable to large datasets when using explicit feature maps. The training
procedure simultaneously involves feature selection, common-subspace learning and inverse-map
learning. This is achieved via an optimization procedure where one iteration involves an eigende-
composition of the kernel matrix which is composed of the features from various views (see Eq.
[3). The latent variables are given by the eigenvectors, which are then passed via a pre-image map
to reconstruct the sample. The reconstruction error together with the energy function represents the
cost that needs to be minimized. Fig.|l|shows a schematic representation of the algorithm when two
data sources are available.

Thanks to training in /m mini-batches, this procedure is scalable to large datasets (sample size V)

with training time scaling super-linearly with T;,, = cmjg—il, instead of T, = c¢N7, where v ~ 3
for algorithms based on decomposition methods, with some proportionality constant c. The training

time could be further reduced by computing the covariance matrix (size (ds+py) x (d¢+py)) instead

of a kernel matrix (size % X %), when the sum of the dimensions of the feature-spaces is less than

the samples in mini-batch i.e. dy + py < % While using neural networks as feature maps, dy and
py correspond to the number of neurons in the output layer, which are chosen as hyperparameters
by the practitioner. Eigendecomposition of this smaller covariance matrix would yield U and V
as eigenvectors (see Eq. and Appendix for detailed derivation), where computing the h;
involves only matrix-multiplication which is readily parallelizable on modern GPUs:

10
To,0] Loyofl (V= VY 6, = am).....onlun). o

5 EXPERIMENTS

To demonstrate the applicability of the proposed framework and algorithm, we trained the Gen-
RKM model on a variety of datasets commonly used to evaluate generative models: MNIST (Le-
Cun & Cortes} [2010), Fashion-MNIST (Xiao et al., [2017), CIFAR-10 (Krizhevsky, [2009), CelebA
(Liu et al.| 2015) and Dsprites (Matthey et al., [2017). The experiments were performed using both
the implicit feature map defined by a Gaussian kernel and parametric explicit feature maps defined
by deep neural networks, either Convolutional or fully connected. As explained in Section [2} in
case of kernel methods, training only involves constructing the kernel matrix and solving the eigen-
value problem in Eq. |3 In principle, one could also use the latent variables directly for generation.
However, in our experiments, we fit a Gaussian mixture model (GMM) with | components to the
latent variables of the training set, and randomly sample a new point h* for generating views using
a kernel smoother. In case of explicit feature maps, we define ¢, and 1, as convolution and
transposed-convolution neural networks, respectively (Dumoulin & Visin,2016); and ¢292 and v ¢
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Algorithm 1 Gen-RKM

Input: {x;, y;}IL 1, N1, 12, feature map ¢; () - explicit or implicit via kernels k; (-, -), for j € {1, 2}

Output: Generated data *, y*

1: procedure TRAIN 1
2: if ¢; () = Implicit then 2
3: Hyperparameters: kernel specific 3
4: Solve Eq.3] 4
5: Select s principal components 5:
6: else if ¢, () = Explicit then 6:
7: while not converged do 7
8: {z,y} + {Get mini-batch} 8
9: 1(z) < x5 d2(y) <y 9
10: do steps 4-5 10
L {61(2), 62(y)} < h (Eq. [0
12: {z,y} < {1 (d1(2)), Ya2(2(y))}
13: A6 x =V, Te; AOy x =V, T
14: AC x =V, Tes Al x =V, T
15: end while
16: end if

17: end procedure

: procedure GENERATION

Select h*

if ¢;(-) = Implicit then
Hyperparameter: n,.
Compute kg~ , ky~ (Eq.
Get £, 9 (Eq.

else if ¢;(-) = Explicit then
do steps 11-12

end if

: end procedure
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(c) CIFAR-10

(d) CelebA

Figure 2: Generated samples from the model using CNN as explicit feature map in the kernel func-
tion. The yellow boxes in the first column show training examples and the adjacent boxes show the
reconstructed samples. The other images (columns 3-6) are generated by random sampling from the

fitted distribution over the learned latent variables.

.
Male
Bags under eye|
Narrow eyes
Side buns

Mouth slightly open
No beard
Narrow eyes
smiling

No beard
Big nose
[Mouth slightly ope
Oval face

Young
No beard
Narrow eyes
0’ clock shadow

Figure 3: Multi-view generation on CelebA dataset showing images and attributes.
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(a) MNIST: Implicit feature maps with Gaussian kernel are used during training. For genera-

tion, the pre-images are computed using the kernel-smoother method.
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(b) MNIST: Explicit feature maps and the corresponding pre-image maps are defined by the

Convolutional Neural Networks.
horse bird horse dog cat planehorse bird car plane ship deer

o 5 S

(c) CIFAR-10: Explicit feature maps as Convolutional Neural Networks. Pre-images are com-
puted using Transposed CNNs.

Figure 4: Multi-view Generation (images and labels) on various datasets using implicit and explicit
feature maps.

Figure 5: Exploring the learned uncorrelated-features by traversing along the eigenvectors. The first
column shows the scatter plot of latent variables using the top two principal components. The green
lines within, show the traversal in the latent space and the related rows show the corresponding
reconstructed images.

as fully-connected networks. The particular architecture details are outlined in Table [2]in the Ap-
pendix. The training procedure in case of explicitly defined maps consists of minimizing J. using
the Adam optimizer (Kingma & Bal 2014) to update the weights and biases. To speed-up learning,
we subdivided the datasets into m mini-batches, and within each iteration of the optimizer, Eq. E]
is solved to update the value of H. Information on the datasets and hyperparameters used for the
experiments is given in Table|l|in the Appendix.

Generation: Figure [2a] shows the generated images using a kernel smoother method. The first
column in yellow-boxes shows the training samples and the second column on the right shows the
reconstructed samples. The other images shown are generated by random sampling from a GMM
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over the learned latent variables. Notice that the reconstructed samples are of better quality visually
than the other images generated by random sampling. Figures and show the images
generated when the convolutional neural network and transposed-convolutional neural network was
used as the feature map and pre-image map respectively. To elucidate that the model has not merely
memorized the training examples, we show the generated images via bilinear-interpolations of the
latent variables in Appendix [A.6]

Multi-view Generation: Figures [3| & 4] demonstrate the multi-view generative capabilities of the
model. In these datasets, labels or attributes are seen as another view of the image that provides
extra information. One-hot encoding of the labels was used to train the model. Figure fa]shows the
generated images and labels when feature maps are only implicitly known i.e. through a Gaussian
kernel. Figures b fic|shows the same when using fully-connected networks as parametric functions
to encode and decode labels. We can see that both the generated image and the generated label
matches in most cases, albeit not all. Up to our knowledge, no universal evaluation metric exists
to assess such characteristic of multi-view generation. Though one can use classifiers to crudely
assess the matching, however, depending on the type of classifier and the way it was trained, the
results would vary among researchers.

Targeted Generation: Since the components of the latent variables are the eigenvectors of the
kernel matrix (see Eq. [3), one can exploit the orthogonality for targeted generation. Such targeted
generation capabilities could be useful in critical applications where the data needs to be generated
based on some prior-knowledge or with specific attributes. We explore the uncorrelated features
learned by the models on the Dsprites and celebA dataset (See Fig. [5). In our experiments, the
Dsprites training dataset comprised of 32 x 32 positions of oval and heart-shaped objects. The
number of principal components chosen were 2 and the goal was to find-out whether traversing
along the eigenvectors, corresponds to traversing the generated image in one particular direction
while preserving the shape of the object. Rows 1 and 2 of Fig. [5] show the reconstructed images
of an oval while moving along first and second principal component respectively. Notice that the
first and second components correspond to the y and = positions respectively. Rows 3 and 4 show
the same for hearts. On the celebA dataset, we train the Gen-RKM with 15 components. Rows
5 and 6 shows the reconstructed images while traversing along the principal components. When
moving along the first component from left-to-right, the hair-color of the women transforms, while
preserving the face structure. Whereas traversal along the second component, transforms a man to
woman while preserving the orientation. When the number of principal components were 2 while
training, the brightness and background light-source corresponds to the two largest variances in
the dataset. Also notice that, the reconstructed images are more blurry due to the selection of less
number of components to model H.

6 CONCLUSION AND FUTURE WORK

The paper proposes a novel framework, called Gen-RKM, for generative models based on RKMs
with extensions to multi-view generation and learning uncorrelated representations. This allows
for a mechanism where the feature map can be defined using kernel functions or (deep) neural
network based methods. When using kernel functions, the training consists of only solving an
eigenvalue problem. In the case of a (convolutional) neural network based explicit feature map,
we used (transposed) networks as the pre-image functions. Consequently, a training procedure was
proposed which involves joint feature-selection and subspace learning. Thanks to training in mini-
batches and capability of working with covariance matrices, the training is scalable to large datasets.
Experiments on benchmark datasets illustrate the merit of the proposed framework. Furthermore,
a targeted generation mechanism is demonstrated which uses the uncorrelated features modelled
by the orthogonal eigenvectors. Extensions of this work consists of adapting the model to more
advanced multi-view datatsets involving speech, images and texts; further analysis on other feature
maps, pre-image methods, loss-functions and uncorrelated feature learning. Finally, this paper has
demonstrated the applicability of the Gen-RKM framework, suggesting new research directions to
be worth exploring.
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A APPENDIX

A.1 DERIVATION OF GEN-RKM OBJECTIVE FUNCTION

Given D = {z;,y;} Y, where z; € R?, y; € R? and feature-map ¢; : R? — R and ¢ : R
RP7, the Least-Squares Support Vector Machine (LS-SVM) formulation of Kernel PCA (Suykens
et al.| [2002) for the two data sources can be written as:

U,V,e;

N
..M T 72 T 1 T
min —Tr(U U)+ -Te(V V) - — e e;

( ) 2 ( ) QAZ; (11)

st.e;=U"¢1(z;) +V a(yi) Vi=1,...,N,

where U € R4*% and V' € RP** are the interconnection matrices.

Using the notion of conjugate feature duality introduced in (Suykens|, 2017), the error variables e;
are conjugated to latent variables h; using:

1 A
ﬁeTe + 5hTh >e'h, Ve,h € R® (12)

which is also known as the Fenchel-Young inequality for the case of quadratic functions (Rockafel-
lar, [1974). By eliminating the variables e; from Eq. [T1]and using Eq. [12} we obtain the Gen-RKM
training objective function:

N
Ji=) <—¢>1(%)TU’%’ — ¢2(yi) Vhi + ;\hjhi) + 121 T™(U'U) + % T(V'V). (13)

=1

A.2 KERNEL PCA IN THE PRIMAL
From Eq. [2} eliminating the variables h; yields the following:
1

N N
m [Z 1 ()¢ () U + Z¢1(wi)¢2(yi)TV1 —\U,
i=1

=1 (14)

N N
1
P > da(yi)n (i) U + Z%(yi)%(yi)TV] =AV.
i=1 i=1
Denote @5 = [¢1(x1),...,01(xN)], Py = [P2(y1),...,02(yn)] and A = diag{\i,..., A} €
R#**¢ with s < N. Now, composing the above equations in matrix form, we get the following
eigen-decomposition problem:

Lo, 0] Llo,o)] [U U
el Laet] (V)= [V]2 13
72 x n2 Yy

Here the size of the covariance matrix is (df + ps) x (dy + py). The latent variables h; can be
computed using Eq. [2] which simply involves matrix multiplications.

A.3 STABILIZING THE OBJECTIVE FUNCTION

Proposition 1. All stationary solutions for H,A in Eq. Bof J; lead to J; = 0.

Proof. Let \;, h; are given by Eq. 3] Using Eq. [2]to substitute V" and U in Eq. [I]yields:

N N N
A 1
TV, UAH) =Y ~Shlhi+ T 7 2 hion(@) 3 ()]
1 =1 j=1

i=1

N N
7 1
+ 52 Tr o > hido(yi)" > da(yi)hy
2 =1 j=1
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N
A 1 1
S hlhi+ P ( SHKHT )+ B (S HEKGHT
= 2 2 Ui 2 3

N
A 1 1 1
=Y —-Sh/h;+ - Tr (H [Kl + KQ} HT> :
= 2 2 n 2

From Eq. 3 we get:

A 1 S Py
(VU ANH) =Y fghjhi +5 T (HH™)) =>_ f§h?hi +5 > hlhi=0.
=1 =1 =1

O

Proposition 2. Let J(x) : RV — R be a smooth function, for all x € RY and for c € R~ define
J(z) = J(z) + gJ(m)2. Assuming (1 + c¢J(x)) # 0, then x* is the stationary points of J(x) iff
x* is the stationary point for J(x).

Proof. Let x* be a stationary point of J(x), meaning that VJ(x*) = 0. The stationary points for
J(x) can be obtained from:

i
% = (VJ(x)+cJ(x)VJI(x)) = (1 +cJ(x)) VJ(x). (16)

. . dJ :
It is easy to see from Eq. [2|that if & = *, V.J(x*) = 0, we have that Tl = 0, meaning that all

the stationary points of .J(z) are stationary points of .J(z).

To show the other way, let z* be stationary point of J(x) i.e. VJ(z*) = 0. Assuming (1 +
cJ(x*)) # 0, then from Eq. [L6]for all ¢ € R, we have

(14 cJ(z*)) VJ(x*) =0,
implying that VJ(z*) = 0. O
Based on the above propositions, we stabilize our original objective function Eq. [I] to keep it

bounded and hence is suitable for minimization with Gradient-descent methods. Without the re-
construction errors, the stabilized objective function is

. E 2
Umln $+2$.

sIg

Denoting J = J; + %JE. Since the derivatives of 7; are given by Eq. |2} the stationary points of
J are:

% = (14 cwands) (- S, dr(@)h] +mV) =0 = V=025 di@)h],
8F = (14 coranTt) (= X/ da(yi) ] +772U) =0 — U= L0 da(yi)h],

oUu 1
o] _ T N T . N A =V ()
oh; — (1 + Cstabu7t) ( |4 (bl (wz) U ¢2(yz) + )\hz) =0 n UT¢2(yi)7

assuming 1 + ¢s10pJ; # 0. Elimination of V' and U yields [7711 K, + %KQ HT = HT A, which
is indeed the same solution for ¢z, = 0 in Eq.[I]and Eq.

A.4 CENTERING OF KERNEL MATRIX

Centering of the kernel matrix is done by the following equation:
K.=K-N"11"K-N'K11" + N 211"K11", (17)

where 1 denotes an /N-dimensional vector of ones and K is either K or K.
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A.5 ARCHITECTURE DETAILS

See Table [T] and [2] for details on model architectures, datasets and hyperparameters used in this
paper. The PyTorch library in Python was used as the programming language with a 8GB NVIDIA
QUADRO P4000 GPU.

Table 1: Datasets and hyperparameters used for the experiments.

Dataset N d Naubset s m o n, I
MNIST 60000 28 x 28 5000 500 50 13 4 10
Fashion-MNIST 60000 28 x 28 500 100 5 / /10
CIFAR-10 60000 32x32x3 500 500 5 / /10
CelebA 202599 128 x 128 x 3 500 15 5 / /20
Dsprites 737280 64 x 64 1024 2 5 / / /

Table 2: Details of model architectures used in the paper.

All convolutions and transposed-

convolutions are with stride 2 and padding 1. Unless stated otherwise, the layers have Parametric-
RELU (o = 0.2) activation function, except the output layers of the pre-image maps which has

sigmoid activation function.

Dataset Optimizer Architecture
(Adam) X Yy
Input 28x28x1 10 (One-hot encoding)
Conv 32x4x4;
MNIST le-3 Feature-map (fm) Conv 64x4x4; FC 15, 20 (Linear)
FC 128 (Linear)
Pre-image map reverse of fm reverse of fm
Latent space dim. 500
Input 28x28x1 10 (One-hot encoding)
Fashion Conv 32x4x4;
-MNIST le-3 Feature-map 64x4x4; FC 15,20
FC 128 (Linear)
Pre-image map (fm) reverse of fm reverse of fm
Latent space dim. 100
Input 32x32x3 10 (One-hot encoding)
Conv 64x4x4;
CIFAR-10  1e-3 Feature-map (fm) Conv 128x4x4; FC 15,20
FC 128 (Linear)
Pre-image map reverse of fm reverse of fm
Latent space dim. 500
Input 64x64x3 -
Conv 32x4x4;
CelebA  le-4 Conv 64x4x4;
Feature-map (fm) Conv 128x4x4; -
Conv 256x4x4 ;
FC 128 (Linear)
Pre-image map reverse of fm -
Latent space dim. 15
Input 64x64x1 -
. Conv 20x4x4;
Dsprites le-4 . ; Conv 40x4x4:
catwre-map (fm) oy goxaxa;
FC 300 (Linear)
Pre-image map reverse of fm -
Latent space dim. 2
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A.6 FURTHER EMPIRICAL RESULTS

In the following section, we show generated images by bilinear-interpolation of latent vectors. Given
four vectors hi, ho, hs and hy (reconstructed images from these vectors are shown at the edges of
Figs. [6] [7), the interpolated vector h* is given by:

h*=(1-a)(1—-v)h1+a(l —vy)hy +v(1 —a)hs +yahy, 0<a,y<1.

This h* is then used in step 8 of the generation procedure of Gen-RKM algorithm (see Algorithm
to compute x*.

Figure 6: Reconstructed images by bilinear-interpolation in latent space. The model was trained
using the Binary Cross-entropy reconstruction loss.
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Figure 7: CelebA: Reconstructed images by bilinear-interpolation in latent space.
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