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ABSTRACT

Learning overcomplete representations finds many applications in machine learn-
ing and data analytics. In the past decade, despite the empirical success of heuris-
tic methods, theoretical understandings and explanations of these algorithms are
still far from satisfactory. In this work, we provide new theoretical insights for sev-
eral important representation learning problems: learning (i) sparsely used over-
complete dictionaries and (ii) convolutional dictionaries. We formulate these prob-
lems as ℓ4-norm optimization problems over the sphere, and study the geometric
properties of their nonconvex optimization landscapes. For both problems, we
show the nonconvex objectives have benign (global) geometric structures, which
enable development of efficient optimization methods finding the target solutions.
Finally, our theoretical results are justified by numerical simulations.

1 INTRODUCTION

The performance of modern machine learning and data analytical methods heavily depends on ap-
propriate data representations (or features) which capture hidden information underlying the data.
While we used to craft representations by hand in the past, it has been demonstrated that learned
representations from the data show much superior performance (Elad, 2010). Therefore, unsuper-
vised learning of latent representations of high-dimensional data becomes a fundamental problem in
signal processing, machine learning, theoretical neuroscience and many other fields (Bengio et al.,
2013). Moreover, overcomplete representations for which the number of latent features exceeds the
data dimensionality, have shown better representation of the data in various applications compared
to complete representation (Lewicki & Sejnowski, 2000; Chen et al., 2001; Rubinstein et al., 2010).
In this paper, we study the following overcomplete representation learning problems.

• Overcomplete dictionary learning (ODL). One of the most important unsupervised representa-
tion learning problems is learning sparsely used dictionaries (Olshausen & Field, 1997), which
finds many applications in image processing and computer vision (Wright et al., 2010; Mairal
et al., 2014). The task is given data

Y
loomoon

data

“ A
loomoon

dictionary

¨ X
loomoon

sparse code

, (1.1)

we want to learn the compact representation (or dictionary) A P Rnˆm along with the sparse
code X P Rmˆp. For better representation of the data, it is often more desired that the dictionary
A is overcomplete, i.e., m ą n.

• Convolutional dictionary learning (CDL). The convolutional form of sparse representations
(Bristow et al., 2013; Garcia-Cardona & Wohlberg, 2018) replaces the unstructured dictionary
A with a set of convolution filters ta0ku

K
k“1, inspired by deconvolutional networks (Zeiler et al.,

2010). Namely, the problem is that given multiple circulant convolutional measurements

yi “

K
ÿ

k“1

a0k
loomoon

filter

f xik
loomoon

sparse code

, 1 ď i ď p, (1.2)

one wants to learn the filters ta0ku
K
k“1 along with the sparse codes. The problem resembles a lot

similarities to classical ODL. Indeed, one can show that Equation (1.2) reduces to Equation (1.1)
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in overcomplete settings by reformulation (Huang & Anandkumar, 2015). The interest of study-
ing CDL was spurred by the development of more efficient methods for the computationally-
expensive convolutional sparse coding (CSC) problem (Bristow et al., 2013), and has led to a
number of applications in which the convolutional form provides state-of-art performance (Gu
et al., 2015; Papyan et al., 2017b; Lau et al., 2019). Recently, the connection between CSC and
convolutional neural network has also been extensively studied (Papyan et al., 2017a; 2018).

In addition, variants of finding overcomplete representations appear in many other problems beyond
the dictionary learning problems we introduced here, such as overcomplete tensor decomposition
(Anandkumar et al., 2017; Ge & Ma, 2017), overcomplete ICA (Lewicki & Sejnowski, 1998; Le
et al., 2011), and short-and-sparse blind deconvolution (Zhang et al., 2017; 2018; Kuo et al., 2019).

Prior arts on dictionary learning (DL). In the past decades, numerous heuristic methods have
been developed for solving DL (Lee et al., 2007; Aharon et al., 2006; Mairal et al., 2010). Despite
their empirical success (Wright et al., 2010; Mairal et al., 2014), theoretical understandings of when
and why these methods work are still limited.

When the dictionary A is complete (Spielman et al., 2012) (i.e., square and invertible, m “ n), by
the fact that the row space of Y equals to that of X (i.e., rowpY q “ rowpXq), Sun et al. (2016a)
reduces the problem to finding the sparsest vector in the subspace (Demanet & Hand, 2014; Qu et al.,
2016). By considering a (smooth) variant of the following ℓ1-minimization problem over the sphere,

min
q

1

p

›

›qJY
›

›

1
, s.t. q P Sn´1, (1.3)

Sun et al. (2016a) showed that the nonconvex problem has no spurious local minima when the spar-
sity level1 θ P Op1q, and every local minimizer q‹ is a global minimizer where qJ

‹ Y corresponds to
one row of X . The new discovery has led to efficient, guaranteed optimization methods for complete
DL from random initializations (Sun et al., 2016b; Bai et al., 2018; Gilboa et al., 2019).

However, all these methods critically rely on the fact that rowpY q “ rowpXq for complete A, there
is no obvious way to generalize the approach to the overcomplete setting m ą n. On the other
hand, for learning incoherent overcomplete dictionaries, with sparsity θ P Op1{

?
nq and stringent

assumptions on X , most of the current theoretical analysis results are local (Geng et al., 2011;
Arora et al., 2015; Agarwal et al., 2016; Chatterji & Bartlett, 2017), in the sense that they require
complicated initializations that could be difficult to implement in practice. Therefore, the legitimate
question remains: why do heuristic methods solve ODL with simple initializations?

Contributions. In this work we study the geometry of nonconvex landscapes for overcom-
plete/convolutional DL, where our result can be simply summarized by the following slogan.

There exists a nonconvex formulation for ODL/CDL with benign optimization lanscape, that
descent method can learn overcomplete/convolutional dictionaries with simple2 initializations.

Our approach follows the spirit of Sun et al. (2016a), while we overcome the aforementioned ob-
stacles for overcomplete dictionaries by directly finding columns of A instead of recovering sparse
rows of X . We achieve this by reducing the problem to maximizing the ℓ4-norm3 of Y Jq over the
sphere, which is known to promote the spikiness of the solution (Zhang et al., 2018; Li & Bresler,
2018; Zhai et al., 2019). In particular, we show the following results for ODL and CDL, respectively.

1. For the ODL problem, when A is unit norm tight frame and incoherent, our nonconvex objective
is strict saddle (Ge et al., 2015; Sun et al., 2015b) in the sense that any saddle point can be
escaped by negative curvature and all local minimizers are globally optimal. Furthermore, every
local minimizer is close to a column of A.
1Here, the sparsity level θ denotes the proportion of nonzero entries in X .
2Here, for ODL simple means random initializations; for CDL, it means simple data-driven initializations.
3The use of ℓ4-norm can also be justified from the perspective of sum of squares (SOS) (Barak et al., 2015;

Ma et al., 2016; Schramm & Steurer, 2017). One can utilize properties of higher order SOS polynomials
(such as 4-th order polynomials) to correctly recover columns of A. But the complexity of these methods are
quasi-polynomial, and hence much more expensive than the direct optimization approach we consider here.
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2. For the CDL problem, when the filters ta0ku
K
k“1 are incoherent, a similar nonconvex objective is

strict saddle over a sublevel set, within which every local minimizer is close to a target solution.
Moreover, we develop a simple data-driven initialization that falls into this sublevel set.

Our analysis on ODL provides the first global characterization for nonconvex optimization landscape
in the overcomplete regime. On the other hand, our result also gives the first provable guarantee for
CDL. Indeed, under mild assumptions, our landscape analysis implies that with simple initializa-
tions, any descent method that can escape saddle points4 provably finds global minimizers that are
close to our target solutions for both problems. Moreover, our result opens up several interesting
directions on nonconvex optimization that are worth of further investigations.

2 OVERCOMPLETE DICTIONARY LEARNING

In this section, we start stating our result with ODL. In Section 3, we will show how our geometric
analysis here can be extended to CDL in a nontrivial way.

2.1 BASIC ASSUMPTIONS

We study the DL problem in Equation (1.1) under the following assumptions for A P Rnˆm and
X P Rmˆp. In particular, our assumption for the dictionary A can be viewed as a generalization of
orthogonality in the overcomplete setting (Mixon, 2016).
Assumption 2.1 (Tight frame and incoherent dictionary A) We assume that the dictionary A is
unit norm tight frame (UNTF) (Mixon, 2016), in the sense that

n

m
AAJ “ I, }ai} “ 1 p1 ď i ď mq, (2.1)

and its columns satisfy the µ-incoherence condition. Namely, let A “ ra1 a2 ¨ ¨ ¨ ams,

µpAq :“ max
1ďi ­“jďm

ˇ

ˇ

ˇ

ˇ

B

ai

}ai}
,

aj

}aj}

Fˇ

ˇ

ˇ

ˇ

P p0, 1q, (2.2)

where the coherence is small, µpAq ! 1.

Assumption 2.2 (Random Bernoulli-Gaussian X) We assume entries of X „i.i.d. BGpθq5, that

X “ B d G, Bij „i.i.d. Berpθq, Gij „i.i.d. N p0, 1q,

where the Bernoulli parameter θ P p0, 1q controls the sparsity level of X .

Remark 1. The coherence parameter µ plays an important role in shaping the optimization land-
scape. A smaller coherence µ implies that the columns of A are less correlated, and hence easier
for optimization. For matrices with ℓ2-normalized columns, classical Welch bound (Welch, 1974;
Foucart & Rauhut, 2013a) suggests that the coherence µ is lower bounded by µpAq ě

b

m´n
pm´1qn ,

which is achieved when A is equiangular tight frame (Sustik et al., 2007). For a generic random6

matrix A, w.h.p. it is approximately UNTF, with coherence µpAq «

b

logm
n roughly achieving

the order of Welch bound. For a typical dictionary A under Assumption 2.1, this suggests that the
coherence parameter µpAq often decreases w.r.t. the feature dimension n.

2.2 PROBLEM FORMULATION

We solve DL in the overcomplete regime by considering the following problem

min
q

φDLpqq :“ ´
cDL

p

›

›qJY
›

›

4

4
“ ´

cDL

p

›

›qJAX
›

›

4

4
, s.t. }q}2 “ 1, (2.3)

where cDL ą 0 is a normalizing constant. At the first glance, our objective looks similar to Equa-
tion (1.3) in complete DL, but we tackle the problem from a very different aspect – we directly find

4Recent results show that methods such as trust-region (Absil et al., 2007; Boumal et al., 2018), cubic-
regularization (Nesterov & Polyak, 2006), curvilinear search (Goldfarb et al., 2017), and even gradient descent
(Lee et al., 2016) can provably escape strict saddle points.

5Here, we use BGpθq for abbreviation of Bernoulli-Gaussian distribution, with sparsity level θ P p0, 1q.
6For instance, when A is random Gaussian matrix, with each entry aij „i.i.d. N p0, 1{nq.
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(a) φTpqq, n “ 3, m “ 4 (b) φDLpqq, n “ 3, m “ 4

Figure 1: Plots of landscapes φTpqq and φDLpqq over S2. Both function values are normalized to
r0, 1s. The overcomplete dictionary A is generated to be UNTF, with n “ 3 and m “ 4. The sparse
coefficient X „ BGpθq with θ “ 0.1 and p “ 2 ˆ 104. Black dots denote columns of A (target).

columns of A instead of recovering sparse rows of X , that we explain below. Given UNTF A and
random X „ BGpθq, our intuition of solving Equation (2.3) originates from the fact (Lemma D.1)

EX rφDLpqqs “ φTpqq ´
θ

2p1 ´ θq

´m

n

¯2

, φTpqq :“ ´
1

4

›

›AJq
›

›

4

4
, (2.4)

where φTpqq can be reviewed as the objective for 4th order tensor decomposition in Ge & Ma (2017).
When p is large, this tells us that optimizing Equation (2.3) is approximately maximizing ℓ4-norm
of ζ “ AJq over the sphere (see Figure 1). If q equals to one of the target solutions (e.g., q “ a1),

ζpqq :“ AJq “

„

}a1}
2

loomoon

“1

aJ
1 a2

loomoon

|¨| ă µ

¨ ¨ ¨ aJ
1 am

loomoon

|¨| ă µ

ȷJ

,

then ζ is spiky when µ is small (in other words, A is incoherent). Recently, it is known that maxi-
mizing ℓ4 norm over the sphere promotes the spikiness of ζ (Zhang et al., 2018; Li & Bresler, 2018;
Zhai et al., 2019), so that we expect global minimizers of Equation (2.3) are close to columns of A.
Ge & Ma (2017) proved that for φTpqq there is no spurious local minimum at a sublevel set that has
objective value close to the global minimum, but without providing valid initialization.
However, as the problem is nonconvex, the challenge still remains: can simple descent methods solve
Equation (2.3) to global optimality? In this work, we show that the answer is affirmative. Under
proper assumptions, we show that our objective actually has benign global geometric structure,
explaining why descent method with random initialization solves the problem to the target solutions.

2.3 GEOMETRIC ANALYSIS OF NONCONVEX OPTIMIZATION LANDSCAPE

To characterize the landscape of φDLpqq over the sphere Sn´1, let us first introduce some basic tools
from Riemannian optimization (Absil et al., 2009a). For any function f : Sn´1 ÞÑ R, we have

grad fpqq :“ PqK∇fpqq, Hess fpqq :“ PqK
`

∇2fpqq ´ xq,∇fpqqy I
˘

PqK

to be the Riemannian gradient and Hessian7 of fpqq. In addition, we partition Sn´1 into two regions

RN :“
!

q P Sn´1
ˇ

ˇ φTpqq ě ´ξDL µ2{3 }ζpqq}
2
3

)

,

RC :“
!

q P Sn´1
ˇ

ˇ φTpqq ď ´ξDL µ2{3 }ζpqq}
2
3

)

,

for some fixed numerical constant ξDL ą 0. Unlike the approach in Sun et al. (2016a), our partition
and landscape analysis are based on function value φTpqq instead of target solutions. This is because
in overcomplete case the optimization landscape is more irregular compared to that of the complete
case, which introduces extra difficulties for explicit partition of the sphere. In particular, for each
region we show the following results.

7The Riemannian derivatives are similar to ordinary derivatives in Euclidean space, but they are defined in
the tangent space of the manifold M “ Sn´1. We refer readers to Absil et al. (2009a) for more details.
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Theorem 2.3 (Global geometry of nonconvex landscape for ODL) Suppose we have

K :“ m{n, θ P
`

m´1, 3´1
˘

, ξDL ą 26, µ ă 40´1, (2.5)

and assume Y “ AX such that A and X satisfy Assumption 2.1 and Assumption 2.2, respectively.

1. (Negative curvature in RN) W.h.p. over the randomness of X , whenever

p ě CθK4n6 logpθn{µq and K ď 3 ¨

´

1 ` 6µ ` 6ξ
3{5
DLµ

2{5
¯´1

,

any point q P RN exhibits negative curvature in the sense that

D v P Sn´1, s.t. vJ HessφDLpqqv ď ´3 }ζ}
4
4 }ζ}

2
8 .

2. (No bad critical points in RC) W.h.p. over the randomness of X , whenever

p ě CθK3 max
␣

µ´2,Kn2
(

n3 logpθn{µq and K ď ξ
3{2
DL{8,

every critical point qc of φDLpqq in RC is either a strict saddle point that exhibits negative
curvature for descent, or it is near one of the target solutions (e.g. a1) such that

xa1{ }a1} , qcy ě 1 ´ 5ξ
´3{2
DL .

Here C ą 0 is a universal constant.

Remark 2. A combination of our geometric analysis for both regions provides the first global
geometric analysis for ODL with θ P Op1q, which implies that φDLpqq has no spurious local mini-
mizers over Sn´1: any critical point is either a strict saddle point that can be efficiently escaped, or it
is near one of the target solutions. Moreover, recent results show that nonconvex problems with this
type of optimization landscapes can be solved to optimal solutions by using (noisy) gradient descent
methods with random initializations (Lee et al., 2016; Jin et al., 2017; Lee et al.). In addition, we
point out several limitations of our result for future work.
• As we only characterized properties of critical points, our result does not directly lead to conver-

gence rate for descent methods. To show polynomial-time convergence, as suggested by Sun et al.
(2016a; 2018); Li & Bresler (2018); Kuo et al. (2019), we need finer partitions of the sphere and
uniform controls of derivatives in each region8. We leave this for future work.

• Our analysis in RN says that when µ is sufficiently small9 the maximum overcompleteness K
allowed is roughly K “ 3, which is smaller than that of RC (which could be a large constant).
We believe this is mainly due to loose bounds for norms of A in RC. Moreover, our experiment
result in Section 4 suggests that there is a substantial gap for K between our theory and practice:
the phase transition in Figure 2a shows that gradient descent with random initialization works
even in the regime m ď n2. We leave improvement of our result as an open question.

Brief sketch of analysis. From Equation (2.4), we know that φDLpqq reduces to φTpqq in large
sample limit as p Ñ 8. This suggests an expectation and concentration type of analysis: (i) we first
characterize critical points and negative curvature for the deterministic function φTpqq in RC and
RN (see Appendix B); (ii) for any small δ ą 0, we show the measure concentrates in the sense that
for a finitely large p ě rΩpδ´2polypnqq,

sup
qPSn´1

}gradφDLpqq ´ gradφTpqq} ď δ, sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ď δ

holds w.h.p. over the randomness of X . Thus we can turn our analysis of φTpqq to that of φDLpqq

by a perturbation analysis (see Appendix C & D). Here, it should be noticed that gradφDLpqq

and HessφDLpqq are 4th-order polynomial of X , which are heavy-tailed empirical processes over
q P Sn´1. To control suprema of heavy-tailed processes, we developed a general truncation and
concentration type of analysis similar to Zhang et al. (2018); Zhai et al. (2019), so that we can utilize
classical bounds for sub-exponential random variables (Boucheron et al., 2013) (see Appendix F).

8Our preliminary investigation indicates that our premature analysis is not tight enough to achieve this.
9From Remark 1, for a typical A, we expect µ P rOppnKq´1{2q to be diminishing w.r.t. n.
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3 CONVOLUTIONAL DICTIONARY LEARNING

3.1 PROBLEM FORMULATION

Recall from Section 1, the basic task of CDL is that given convolutional measurements in the form
of Equation (1.2), we want to recover kernels ta0ku

K
k“1. Here, by reformulating10 CDL in the form

of ODL, we generalize our analysis from Section 2.3 to CDL with a few new ingredients.

Reduction from CDL to ODL. For any z P Rn, let Cz P Rnˆn be the circulant matrix generated
from z. From Equation (1.2), the properties of circulant matrix imply that

Cyi
“ CřK

k“1 a0kfxik
“

K
ÿ

k“1

Ca0k
Cxik

“ A0 ¨ Xi, 1 ď i ď p,

with A0 “ rCa01 Ca02 ¨ ¨ ¨ Ca0K s and Xi “
“

CJ
xi1

CJ
xi2

¨ ¨ ¨ CJ
xiK

‰J
, so that

A0 P RnˆnK is overcomplete and structured. Thus, contencating all Cyi , we have
“

Cy1
Cy2

¨ ¨ ¨ Cyp

‰

loooooooooooooomoooooooooooooon

Y PRnˆnp

“ A0 ¨ rX1 X2 ¨ ¨ ¨ Xps
loooooooooooomoooooooooooon

XPRnKˆnp

ùñ Y “ A0 ¨ X.

This suggests that we can view the CDL problem as ODL: if we can recover a column of the over-
complete dictionary A0, we find one of the filters a0k p1 ď k ď Kq up to a circulant shift11.

Nonconvex problem formulation and preconditioning. To solve CDL, one may consider the
same objective Equation (2.3) as ODL. However, for many applications our structured dictionary
A0 could be badly conditioned and not tight frame, which results in bad optimization landscape and
even spurious local minimizers. To deal with this issue, we whiten our data Y by preconditioning12

PY “ PA0X, P “

”

`

θK2np
˘´1

Y Y J
ı´1{2

. (3.1)

For large p, we approximately have P «
`

K´1A0A
J
0

˘´1{2
(see Appendix E.5), so that

PY «
`

K´1A0A
J
0

˘´1{2
A0 ¨ X “ A ¨ X, A :“

`

K´1A0A
J
0

˘´1{2
A0,

where A is automatically tight frame with K´1AAJ “ I . This suggests to consider

min
q

φCDLpqq :“ ´
cCDL

np

›

›qJ pPY q
›

›

4

4
, s.t. }q}2 “ 1, (3.2)

for some normalizing constant cCDL ą 0, so that is close to optimizing

pφCDLpqq :“ ´
cCDL

np

›

›qJAX
›

›

4

4
« φCDLpqq,

for a tight frame dictionary A (we make this rigorous in Appendix E.4). To study the problem,
we make assumptions on the sparse signals xik „i.i.d. BGpθq similar to Assumption 2.2, and we
assume A0 and A satisfy the following properties which serve as counterparts to Assumption 2.1.

Assumption 3.1 (Properties of A0 and A) We assume the filter matrix A0 has minimum singular
value σminpA0q ą 0 with bounded condition number κpA0q :“ σmaxpA0q{σminpA0q. In addition,

we assume the columns of A are mutually incoherent: maxi ­“j

ˇ

ˇ

ˇ

A

ai

}ai}
,

aj

}aj}

Eˇ

ˇ

ˇ
ď µ.

3.2 GEOMETRIC ANALYSIS AND NONCONVEX OPTIMIZATION

Optimization landscape for CDL. We characterize the geometric structure of φCDLpqq over

RCDL :“
!

q P Sn´1
ˇ

ˇ φTpqq ď ´ξCDL µ2{3κ4{3pA0q }ζpqq}
2
3

)

, (3.3)

for some fixed numerical constant ξCDL ą 0, where ζpqq “ AJq and φTpqq “ ´4´1 }ζpqq}
4
4 as

introduced in Equation (2.4). We show φCDLpqq satisfies the following properties.
10Similar formulation ideas also appeared in (Huang & Anandkumar, 2015) with no theoretical guarantees.
11The CDL problem exhibits shift symmetry in the sense that a0k fxik “ sℓ ra0ksfs´ℓ rxiks, where sℓ r¨s

denotes a circulant shift operator by length ℓ. This suggests that solving CDL up to a shift is sufficient.
12Again, the θ here is only for normalization purpose, which does not affect optimization landscape. Similar

P is also considered in Sun et al. (2016a); Zhang et al. (2018); Qu et al. (2019).
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Algorithm 1 Finding one filter with data-driven initialization

Input: data Y P Rnˆp

Output: a filter a‹

1: preconditioning. Cook up the preconditioning matrix P in Equation (3.1).
2: initialization. Initialize qinit “ PSn´1 pPyℓq with a random sample yℓ, 1 ď ℓ ď p.
3: optimization with escaping saddle points. Optimize Equation (3.2) to a local minimizer q‹,

by using a descent method such as Goldfarb et al. (2017) that escapes strict saddle points.
4: return an estimated filter a‹ “ PSn´1

`

P´1q‹

˘

.

Theorem 3.2 (Local geometry of nonconvex landscape for CDL) Let us denote m :“ Kn, and
let C0 ą 5 and η ă 2´6 be some constants. Suppose we have

θ P
`

m´1, 3´1
˘

, ξCDL “ C0 ¨ η´2{3, µ ă 40´1,

and assume that Assumption 3.1 and xik „i.i.d. BGpθq hold. There exists some constant C ą 0,
w.h.p. over the randomness of xiks, whenever

p ě CθK2µ´2n4 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

log6pn{µq and K ă C0,

every critical point qc in RCDL is either a strict saddle point that exhibits negative curvature for
descent, or it is near one of the target solutions (e.g. a1) such that xa1{ }a1} , qcy ě 1 ´ 5κ´2η.

Remark 3. The analysis is similar to that of ODL in RC (see Appendix D). In contrast, our sample
complexity p and RCDL have extra dependence on κpA0q due to preconditioning in Equation (3.1).
On the other hand, because our preconditioned dictionary A is tight frame but not necessarily UNTF,
in the worst case we cannot exclude existence of spurious local minima in Rc

CDL

Ş

Sn´1 for CDL.

From geometry to optimization. Nonetheless, in Algorithm 1 we cook up a simple data-driven
initialization qinit such that qinit P RCDL. Since RCDL does not have bad local minimizers, by
proving that all iterates stay within RCDL, it suffices to show global convergence of Algorithm 1.
We initialize q by randomly picking a preconditioned data sample Pyℓ with ℓ P rps, and set

qinit “ PSn´1 pPyℓq , s.t. ζinit “ AJqinit «
?
KPSnK´1

`

AJAxℓ

˘

. (3.4)

For generic A, small µpAq implies that AJA is close to a diagonal matrix13, so that ζinit is spiky
for sparse xℓ. Therefore, we expect large }ζinit}

4
4 and qinit P RCDL by leveraging sparsity of xℓ.

Proposition 3.3 (Convergence of Algorithm 1 to target solutions) With m “ Kn, suppose

c1
logm

m
ď θ ď c2

µ´2{3

κ4{3m logm
¨ min

"

κ4{3

µ4{3
,

Kµ´4

m2 logm

*

. (3.5)

W.h.p. over the randomness of xiks, whenever

p ě CθK2µ´2 max
␣

K6κ6pA0q{σ2
minpA0q, n

(

n4 log6 pm{µq ,

we have qinit P RCDL, and all future iterates of Algorithm 1 stay within RCDL and converge to an
approximate solution (e.g., some circulant shift sℓ ra01s of a0k with 1 ď ℓ ď n) in the sense that

›

›PSn´1

`

P´1q‹

˘

´ sℓ ra01s
›

› ď ϵ,

where ϵ is a small numerical constant. Here, c1, , c2, C ą 0 are some constants.

Remark 4. Our result (Equation (3.5)) suggests that there is a tradeoff between µ and θ for op-
timization. For generic filters (e.g. drawn uniformly from the sphere), we approximately have14

µ P rOpm´1{2q and κ P Op1q, so that our theory suggests the maximum sparsity allowed is
θ P rOpm´2{3q. For other smoother filters which may have larger µ and κ, the sparsity θ allowed
tends to be smaller. Improving Equation (3.5) is the subject of future work. On the other hand, our
result guarantees convergence to an approximate solution of constant error. We left exact recovery
for future work. Finally, although we write CDL in the matrix-vector form, the optimization could
be implemented very efficiently using fast Fourier transform (FFT) (see Appendix G).
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(c) ODL: Recovery probability vs. p.
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(d) ODL: Recovery probability vs. θ.

Figure 2: Simulations for ODL. (a) θ “ 0.1; (b) n “ 64; (c) n “ 64, θ “
0.1; (d) m “ 3n, p “ 5 ˆ 104.

(a) Filter 1

(b) Filter 2

(c) Filter 3

Figure 3: CDL Simulation.
Parameters: n “ 64, θ “ 0.1,
K “ 3, p “ 1 ˆ 104.

4 EXPERIMENTS

In this section, we experimentally demonstrate our proposed formulation and approach for ODL and
CDL. We solve our nonconvex problems in Equation (2.3) and Equation (3.2) using optimization
methods15 with random initializations introduced in Appendix G.

Experiments on ODL. We generate data Y “ AX , with dictionary A P Rnˆm being UNTF16,
and sparse code X P Rmˆp „i.i.d. BGpθq. To judge the success recovery of one column of A, let

ϱe “ min
1ďiďm

p1 ´ |xq‹,ai{ }ai}y|q .

We have ϱe “ 0 when q‹ “ PSn´1paiq, thus we assume a recovery is successful if ϱe ă 5 ˆ 10´2.
• Overcompleteness. First, we fix θ “ 0.1, and test the limit of the overcompleteness K “ m{n

we can achieve by plotting the phase transition on pm,nq in log scale. To get rid of the influence
of sample complexity p, we run our algorithm on φTpqq which is the sample limit of φDLpqq. For
each pair of pm,nq, we repeat the experiment for 12 times. As shown in Figure 2a, it suggests that
the limit of overcompleteness is roughly m « n2, which is much larger than our theory predicts.

• Recovering full matrix A. Second, although our theory only guarantees recovery of one column
of A, Figure 2b suggests that we can recover the full dictionary A by repetitive independent trials.
As the result shows, Opm logmq independent runs suffice to recover the full A.

• Recovery with varying θ and p. Our simulation in Figure 2c implies that we need more samples
p when the overcompleteness K increases. Meanwhile, Figure 2d shows successful recovery even
when sparsity θ « 0.3. The maximum θ seems to remain as a constant when n increases.

Experiments on CDL. Finally, for CDL, we generate measurement according to Equation (1.2)
with K “ 3, where the filters ta0ku

K
k“1 are drawn uniformly from the sphere Sn´1, and xik „i.i.d.

BGpθq. Figure 3 shows that our method can approximately recover all the filters by running a few
number of repetitive independent trials.

13This is because the off diagonal entries are bounded roughly by
?
Kµ, which are tiny when µ is small.

14See Figure 3 of Zhang et al. (2018) for an illustration of these estimations.
15For simplicity, we use power method (see Algorithm 3) for optimizing without tuning step sizes. In practice,

we find both power method and Riemannian gradient descent have similar performance.
16The UNTF dictionary is generated by Tropp et al. (2005): (i) generate a standard Gaussian matrix A0, (ii)

from A0 alternate between preconditioning the matrix and normalize the columns until convergence.
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APPENDIX

The Appendix is organized as follows. In Appendix A, we introduce the basic notations and tech-
nical tools for analysis. Appendix B provides a determinsitic characterization of the optimization
landscape in population. In Appendix C, we turn our analysis of Appendix B into finite sample ver-
sion. Appendix D and Appendix E provide the detailed proof for ODL and CDL, respectively. The
detailed concentration bounds are postponed to Appendix F. Finally, Appendix G provides some
ideas of optimization methods.

A NOTATIONS AND BASIC TOOLS

A.1 BASIC NOTATIONS

Throughout this paper, all vectors/matrices are written in bold font a/A; indexed values are written
as ai, Aij . We use Sn´1 to denote an n-dimensional unit sphere in the Euclidean space Rn. We
let rms “ t1, 2, ¨ ¨ ¨ ,mu. We use d to denote Hadamard product between two vectors/matrices.
For v P Rn, we use vdr to denote entry-wise power of order m, i.e., vdr “ rvr1, ¨ ¨ ¨ , vrns

J. Let
Fn P Cnˆn denote a unnormalized n ˆ n DFT matrix, with }Fn} “

?
n, and F´1

n “ n´1F ˚
n . In

many cases, we just use F to denote the DFT matrix.

Some basic operators. We use Pv and PvK to denote projections onto v and its orthogonal com-
plement, respectively. We let PSn´1 to be the ℓ2-normalization operator. To sum up, we have

PvKu “ u ´
vvJ

}v}
2 v, Pvu “

vvJ

}v}
2u, PSn´1v “

v

}v}
.

Circular convolution and circulant matrices. The convolution operator f is circular with
modulo-m: pa f xqi “

řm´1
j“0 ajxi´j . For v P Rm, let sℓrvs denote the cyclic shift of v with

length ℓ. Thus, we can introduce the circulant matrix Cv P Rmˆm generated through v P Rm,

Cv “

»

—

—

—

—

—

–

v1 vm ¨ ¨ ¨ v3 v2
v2 v1 vm v3
... v2 v1

. . .
...

vm´1
. . .

. . . vm
vm vm´1 ¨ ¨ ¨ v2 v1

fi

ffi

ffi

ffi

ffi

ffi

fl

“ rs0 rvs s1 rvs ¨ ¨ ¨ sm´1 rvss . (A.1)

Now the circulant convolution can also be written in a simpler matrix-vector product form. For
instance, for any u P Rm and v P Rm,

u f v “ Cu ¨ v “ Cv ¨ u, Cufv “ CuCv.

In addition, the correlation between u and v can be also written in a similar form of convolution
operator which reverses one vector before convolution.

Basics of Riemannian derivatives. Here, we give a brief introduction to manifold optimization
over the sphere, and the forms of Riemannian gradient and Hessian. We refer the readers to the book
(Absil et al., 2009b) for more backgrounds. Given a point q P Sn´1, the tangent space TqSn´1

is defined as TqSn´1 .
“

␣

v | vJq “ 0
(

. Therefore, we have the projection onto TqSn´1 equal to
PqK . For a function fpqq defined over Sn´1, we use grad f and Hess f to denote the Riemannian
gradient and the Hessian of f , then we have

grad fpqq
.
“ PqK∇fpqq, Hess fpqq

.
“ PqK

`

∇2fpqq ´ xq,∇fpqqy I
˘

PqK ,

where ∇fpqq and ∇2fpqq are the normal first and second derivatives in Euclidean space. For
example, for the function φTpqq defined in Equation (2.4), direct calculations give that

gradφTpqq “ ´PqKA
`

AJq
˘d3

“ ´PqK

m
ÿ

k“1

`

aJ
k q

˘3
ak,

HessφTpqq “ ´PqK

”

3A diag
´

`

AJq
˘d2

¯

AJ ´
›

›AJq
›

›

4

4
I
ı

PqK .
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A.2 BASIC TOOLS

Lemma A.1 (Norm Inequality) If p ą r ą 0, then for x P Rn, we have

}x}p ď }x}r ď n1{r´1{p }x}p .

Lemma A.2 Let z, r P R. We have

p1 ` zqr ď 1 ` p2r ´ 1qz, @ z P r0, 1s, r P Rzp0, 1q,

p1 ` zqr ď 1 ` rz, @ z P r´1,`8q, r P r0, 1s,

where the second inequality reverse when r P Rzp0, 1q.

Lemma A.3 (Moments of the Gaussian Random Variable) If X „ N
`

0, σ2
X

˘

, then it holds for
all integer m ě 1 that

E r|X|
m

s ď σm
X pm ´ 1q!!, k “ tm{2u.

Lemma A.4 (Noncentral moments of the χ Random Variable) If Z „ χ pmq, then it holds for
all integer p ě 1 that

E rZps “ 2p{2Γ pp{2 ` m{2q

Γ pm{2q
ď p!! mp{2.

Lemma A.5 (Bernstein’s Inequality for R.V.s (Foucart & Rauhut, 2013b)) Let X1, . . . , Xp be
i.i.d. real-valued random variables. Suppose that there exist some positive numbers R and σ2

X
such that

E r|Xk|
m

s ď
m!

2
σ2
XRm´2, for all integers m ě 2.

Let S .
“ 1

p

řp
k“1 Xk, then for all t ą 0, it holds that

P r|S ´ E rSs| ě ts ď 2 exp

ˆ

´
pt2

2σ2
X ` 2Rt

˙

.

Lemma A.6 (Bernstein’s Inequality for Random Vectors (Sun et al., 2015a)) Let x1, . . . ,xp P

Rd be i.i.d. random vectors. Suppose there exist some positive number R and σ2
X such that

E r}xk}
m

s ď
m!

2
σ2
XRm´2, for all integers m ě 2.

Let s “ 1
p

řp
k“1 xk, then for any t ą 0, it holds that

P r}s ´ E rss} ě ts ď 2pd ` 1q exp

ˆ

´
pt2

2σ2
X ` 2Rt

˙

.

Lemma A.7 (Bernstein’s Inequality for Bounded R.M.s, Theorem 1.6.2 of Tropp et al. (2015))
Let X1,X2, ¨ ¨ ¨ ,Xp P Rd1ˆd2 be i.i.d. random matrices. Suppose we have

}Xi} ď R almost surely, max
␣›

›E
“

XiX
J
i

‰›

› ,
›

›E
“

XJ
i Xi

‰›

›

(

ď σ2
X , 1 ď i ď p.

Let S “ 1
p

řp
i“1 Xi, then we have

P p}S ´ E rSs} ě tq ď pd1 ` d2q exp

ˆ

´
pt2

2σ2
X ` 4Rt{3

˙

.

Lemma A.8 (Bernstein’s Inequality for Bounded Random Vectors) Let x1,x2, ¨ ¨ ¨ ,xp P Rd

be i.i.d. random vectors. Suppose we have

}xi} ď R almost surely, E
”

}xi}
2
ı

ď σ2
X , 1 ď i ď p.

Let s “ 1
p

řp
i“1 xi, then we have

P p}s ´ E rss} ě tq ď d exp

ˆ

´
pt2

2σ2
X ` 4Rt{3

˙

.
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Lemma A.9 (Lemma A.4 of (Zhang et al., 2018)) Let v P Rd with each entry following i.i.d.
Berpθq distribution, then

P p|}v}0 ´ θd| ě tθdq ď 2 exp

ˆ

´
3t2

2t ` 6
θd

˙

.

Lemma A.10 (Matrix Perturbation Bound, Lemma B.12 of (Qu et al., 2019)) Suppose B ą 0
is a positive definite matrix. For any symmetric perturbation matrix ∆ with }∆} ď 1

2σminpBq, it
holds that

›

›

›
pB ` ∆q

´1{2
´ B´1{2

›

›

›
ď

4 }∆}

σ2
min pBq

,

›

›

›
pB ` ∆q

1{2
B´1{2 ´ I

›

›

›
ď

4 }∆}

σ
3{2
min pBq

,

where σminpBq denotes the minimum singular value of B.

Lemma A.11 For any q, q1, q2 P Sn´1, we have
›

›PqK
›

› ď 1, }Pq1
´ Pq2

} ď 2 }q1 ´ q2} .

Proof The first is obvious, and for the second inequality we have
›

›

›
PqK

1
´ PqK

2

›

›

›
“

›

›q1q
J
1 ´ q2q

J
2

›

› ď
›

›q1q
J
1 ´ q1q

J
2

›

› `
›

›q1q
J
2 ´ q2q

J
2

›

› ď 2 }q1 ´ q2} ,

as desired.

Lemma A.12 For any nonzero vectors u and v, we have
›

›

›

›

u

}u}
´

v

}v}

›

›

›

›

ď
2

}v}
}u ´ v} .

Proof We have
›

›

›

›

u

}u}
´

v

}v}

›

›

›

›

“
1

}u} }v}

›

› }v} u ´ }u} v
›

›

“
1

}u} }v}

›

› }v} u ´ }v} v ` }v} v ´ }u} v
›

›

ď
1

}u} }v}
p}v} }u ´ v} ` }v} |}u} ´ }v}|q ď

2

}u}
}u ´ v} ,

as desired.

B ANALYSIS OF ASYMPTOTIC OPTIMIZATION LANDSCAPE

In this part of the appendix, we present the detailed analysis of the optimization landscape of the
asymptotic objective

min
q

φTpqq “ ´
1

4

›

›AJq
›

›

4

4
, s.t. q P Sn´1

over the sphere. We denote the overcompleteness of the dictionary A P Rnˆm and the correlation
of columns of A with q by

K :“
m

n
, ζpqq :“ AJq “ rζ1 ¨ ¨ ¨ ζms

J
.

Without loss of generality, for a given q P Sn´1, we assume that

|ζ1| ě |ζ2| ě ¨ ¨ ¨ ě |ζm| .
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Assumption. We assume that the dictionary A is tight frame with ℓ2-norm bounded columns

1

K
AAJ “ I, }ai} ď M p1 ď i ď mq. (B.1)

We also assume that the columns of A satisfy the µ-incoherence condition. Namely, we have

µpAq :“ max
1ďi ­“jďm

ˇ

ˇ

ˇ

ˇ

B

ai

}ai}
,

aj

}aj}

Fˇ

ˇ

ˇ

ˇ

P p0, 1q, (B.2)

such that µ is sufficiently small. Based on the function value of the objective φTpqq, we partition
the sphere into two regions

RCpq; ξq “

!

q P Sn´1 | }ζ}
4
4 ě ξµ2{3 }ζ}

2
3

)

, (B.3)

RNpq; ξq “

!

q P Sn´1 | }ζ}
4
4 ď ξµ2{3 }ζ}

2
3

)

, (B.4)

where ξ ą 0 is some scalar. In the following, for appropriate choices of K, µ, and ξ, we first show
that RC does not have any spurious local minimizers by characterizing all the critical points within
the region. Second, under more stringent condition that A is ℓ2 column normalized, for the region
RN we show that there exhibits large negative curvature throughout the region, such that there is no
local/global minimizer within RN.

B.1 GEOMETRIC ANALYSIS OF CRITICAL POINTS IN RC

In this subsection, we show that all the critical points of φTpqq in RC are either ridable saddle points,
or satisfy second-order optimality condition and are close to the target solutions.

Proposition B.1 Suppose we have

KM ă 4´1 ¨ ξ3{2, M3 ă η ¨ ξ3{2, µ ă
1

20
(B.5)

for some constant η ă 2´6. Then any critical point q P RC, with gradφTpqq “ 0, either is a
ridable (strict) saddle point, or it satisfies second-order optimality condition and is near one of the
components e.g., a1 in the sense that

B

a1

}a1}
, q

F

ě 1 ´ 5ξ´3{2M3 ě 1 ´ 5η.

First, in Appendix B.1.1 we characterize some basic properties of critical points of φTpqq. Based
on this, we prove Proposition B.1 in Appendix B.1.2.

B.1.1 BASIC PROPERTIES OF CRITICAL POINTS

Lemma B.2 (Properties of critical points) For any point q P Sn´1, if q is a critical point of φTpqq

over the sphere, then it satisfies

fpζiq “ ζ3i ´ αiζi ` βi “ 0 (B.6)

for all i P rms with ζpqq “ AJq, where

αi :“
}ζ}

4
4

}ai}
2 , βi :“

ř

j‰i xai,ajy ζ3j

}ai}
2 . (B.7)

Proof For any point q P Sn´1, if q is a critical point of φTpqq over the sphere, then its Riemannian
gradient satisfies

gradφTpqq “ PqKAζd3 “ 0 ùñ Aζd3 ´ }ζ}
4
4 q “ 0.

Multiple aJ
i (1 ď i ď m) on both sides of the equality, we obtain

}ai}
2
ζ3i ´ }ζ}

4
4 ζi `

ÿ

j‰i

xai,ajy ζ3j “ 0.

15
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√

α−

√

α

z

f(z)

f(
√

α)f(−
√

α)

O

2β

α

√

α−
2β

α
−

√

α−
2β

α

f(−
√

α−
2β

α
)

f(
√

α−
2β

α
)f(2β

α
)

f(0) f(z) = β

Figure 4: Illustration of fpzq in Equation (B.8) when β ą 0.

By replacing αi and βi defined in Equation (B.7) into the equation above, we obtain the necessary
condition in Equation (B.6) as desired.

Since the roots of fpzq correspond to the critical points of φTpqq, we characterize the properties of
the roots as follows.

Lemma B.3 Consider the following cubic polynomial
fpzq “ z3 ´ αz ` β (B.8)

with

0 ă |β| ď
1

4
α3{2, α ą 0. (B.9)

Then the roots of the function fpzq is contained in one of the nonoverlapping intervals:

I1 :“

"

z P R
ˇ

ˇ

ˇ

ˇ

|z| ď
2 |β|

α

*

, I2 :“

"

z P R
ˇ

ˇ

ˇ

ˇ

ˇ

ˇz ´
?
α
ˇ

ˇ ď
2 |β|

α

*

,

I3 :“

"

z P R
ˇ

ˇ

ˇ

ˇ

ˇ

ˇz `
?
α
ˇ

ˇ ď
2 |β|

α

*

.

Proof By our construction |β| ď 1
4α

3{2 and α ą 0 in Equation (B.9), it is obvious that the intervals
I1, I2, and I3 are nonoverlapping. Without loss of generality, let us assume that β is positive. We
have

fp
?
αq “ fp´

?
αq “ fp0q “ β ą 0. (B.10)

Thus, as illustrated in Figure 4, if we can show that

f

ˆ

2β

α

˙

ă 0, f

ˆ

´
?
α ´

2β

α

˙

ă 0, f

ˆ

?
α ´

2β

α

˙

ă 0, (B.11)

then this together with Equation (B.10) suffices to show that there exists at least one root in each
of the three intervals I1, I2, and I3. Next, we show Equation (B.11) by direct calculations. First,
notice that

f

ˆ

2β

α

˙

“

ˆ

2β

α

˙3

´ β “
β

α3

`

8β2 ´ α3
˘

“
β

α3

ˆ

1

2
α3 ´ α3

˙

ď ´
1

2
β ă 0,

Second, we have

f

ˆ

´
?
α ´

2β

α

˙

“

ˆ

´
?
α ´

2β

α

˙3

´ α

ˆ

´
?
α ´

2β

α

˙

` β

“ ´8
β3

α3
´ α3{2 ´ 6β ´

12β2

α3{2
` α3{2 ` 3β “ ´

8β3

α3
´

12β2

α3{2
´ 3β ă 0.

Similarly, we have

f

ˆ

?
α ´

2β

α

˙

“ ´
8β3

α3
`

12β2

α3{2
´ 3β “ β

ˆ

´
8β2

α3
`

12β

α3{2
´ 3

˙

ă ´
8β3

α3
ă 0.

This proves Equation (B.11). Similar argument also holds for β ă 0. Thus, we obtain the desired
results.
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B.1.2 GEOMETRIC CHARACTERIZATIONS OF CRITICAL POINTS IN RC

Based on the results in Appendix B.1.1, we prove Proposition B.1, showing that there is no spurious
local minimizers in RC.

Proof [Proof of Proposition B.1] First recall from Lemma B.2, we defined

αi “
}ζ}

4
4

}ai}
2 ą 0, βi “

ř

j‰i xai,ajy ζ3j

}ai}
2 .

Then for any q P RC, we have

|βi|

α
3{2
i

“

ˇ

ˇ

ˇ

ř

j‰i xai,ajy ζ3j

ˇ

ˇ

ˇ
}ai}

}ζ}
6
4

ď
µM3 }ζ}

3
3

}ζ}
6
4

ď M3ξ´3{2, (B.12)

where for the first inequality we used the fact that for any i P rms, }ai} ď M and
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j‰i

xai,ajy ζ3j

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j‰i

B

ai

}ai}
,

aj

}aj}

F

ζ3j

ˇ

ˇ

ˇ

ˇ

ˇ

}ai} max
1ďjďm

}aj} ď µM2
m
ÿ

i“1

|ζi|
3

“ µM2 }ζ}
3
3 ,

and the last inequality derives from the fact that q P RC. Thus, by Equation (B.5) and Equa-
tion (B.12), we obtain

M3ξ´3{2 ď
1

4
ùñ

|βi|

α
3{2
i

ď
1

4
.

This implies that the condition in Equation (B.9) holds, so that we can apply Lemma B.3 to char-
acterize the critical points. Based on Lemma B.3, we classify critical points q P RC into three
categories

1. All |ζi| (1 ď i ď m) are smaller than 2|βi|

αi
;

2. Only |ζ1| is larger than 2|β1|

α1
;

3. At least |ζ1| and |ζ2| are larger than 2|β1|

α1
and 2|β2|

α2
, respectively.

For Case 1, Lemma B.4 shows that this type of critical point does not exist under the assumption
in Equation (B.5). For Case 2, under the same assumption, Lemma B.5 implies that such a critical
point q P RC satisfies the second-order optimality condition, and it is near one of the target solution
with

B

a1

}a1}
, q

F

ě 1 ´ 5ξ´3{2M3 ě 1 ´ 5η.

for some η ă 2´6. Finally, for Case 3, Lemma B.6 proves that this type of critical points q P RC

is ridable saddle, for which the Riemannian Hessian exhibits negative eigenvalue. Therefore, the
critical points in RC are either ridable saddle or near target solutions, so that there is no spurious
local minimizer in RC.

In the following, we provided more detailed analysis for each case.

CASE 1: NO CRITICAL POINTS WITH SMALL ENTRIES.

First, we show by contradiction that if q P RC and is a critical points, then there is at least one
coordinate, e.g., |ζ1| ě

2|β1|

α1
. This implies that Case 1 (i.e., all |ζi| (1 ď i ď m) are smaller than

2|βi|

αi
) is impossible to happen. In other words, this means that any critical point q P RC should be

close to superpositions of columns of A.

Lemma B.4 Suppose we have

M4{3K1{3 ă 4´1{3ξ.

17
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If q P RC is a critical point, then there exists at least one i P rms such that the entry ζi of ζpqq

satisfies

|ζi| ě
2 |βi|

αi
.

Proof Suppose there exists a q P RC such that all entries ζi satisfying |ζi| ă
2|βi|

αi
. Then we have

max
1ďiďm

|ζi| “ }ζ}8 ď
2
ˇ

ˇ

řm
k“2 xa1,aky ζ3k

ˇ

ˇ

}ζ}
4
4

ď
2M2µ }ζ}

3
3

}ζ}
4
4

.

This implies that

}ζ}
4
4 ď }ζ}

2
8 }ζ}

2
ď

4M4µ2 }ζ}
6
3

}ζ}
8
4

}ζ}
2

ùñ }ζ}
12
4 ď 4M4µ2 }ζ}

6
3 }ζ}

2

ùñ }ζ}
4
4 ď 41{3M4{3K1{3µ2{3 }ζ}

2
3 ,

where we used the fact that }ζ}
2

“ K according to Equation (B.1). Thus, by our assumption, we
have

M4{3K1{3 ă ξ{41{3 ùñ }ζ}
4
4 ă ξµ2{3 }ζ}

2
3 .

This contradicts with the fact that q P RC.

CASE 2: CRITICAL POINTS NEAR GLOBAL MINIMIZERS

Second, we consider the case that there exists only one big ζ1, for which the critical point satisfies
second-order optimality and is near a true component.

Lemma B.5 Suppose ξ is sufficiently large such that

M3 ă η ¨ ξ3{2, KM ă 4´1 ¨ ξ3{2, (B.13)

for some constant η ă 2´6. For any critical point q P RC, if there is only one entry in ζ such that
ζ1 ě

2|β1|

α1
,

B

a1

}a1}
, q

F

ě 1 ´ 5ξ´3{2M3 ě 1 ´ 5η.

Moreover, such a critical point q P RC satisfies the second-order optimality condition: for any
v P Sn´1 with v K q,

vJ HessφTpqqv ě
1

20
}ζ}

4
4 .

Proof We first show that under our assumptions the critical point q P RC is near a target solution.
Following this, we prove that q also satisfies second-order optimality condition.

Closeness to target solutions. First, if q is a critical point such that there is only one ζ1 ě
2|β1|

α1
,

we show that such q is very close to a true component. By Lemma B.2 and Lemma B.3, we know
that ζ1 needs to be upper bounded by

ζ21 ď

ˆ

?
α1 `

2 |β1|

α1

˙2

“

˜

}ζ}
2
4

}a1}
`

2
ˇ

ˇ

řm
k“2 xa1,aky ζ3k

ˇ

ˇ

}ζ}
4
4

¸2

ď
}ζ}

4
4

}a1}
2

˜

1 `
2µ }ζ}

3
3 }a1}

2
max1ďjďm }aj}

}ζ}
6
4

¸2

.
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By using the fact that q P RC and }aj} ď M p1 ď j ď mq, we have

}a1}
2
ζ21 ď

˜

1 `
2µ }ζ}

3
3 }a1}

2
max1ďjďm }aj}

}ζ}
6
4

¸2

}ζ}
4
4 ď

´

1 ` 2ξ´3{2M3
¯2

}ζ}
4
4 . (B.14)

On the other hand, by using the fact that |ζk| ď
2|βk|

αk
for all k ě 2, we have

ζ41 ě }ζ}
4
4 ´ ζ22

m
ÿ

k“2

ζ2k ě }ζ}
4
4 ´

4 |β2|
2

α2
2

K ě }ζ}
4
4

˜

1 ´
4µ2 }ζ}

6
3

}ζ}
12
4

KM4

¸

ě }ζ}
4
4

`

1 ´ 4ξ´3KM4
˘

. (B.15)

Combining the lower and upper bounds in Equation (B.14) and Equation (B.15), we obtain
B

a1

}a1}
, q

F2

“
ζ21

}a1}
2 ě

1 ´ 4ξ´3KM4

`

1 ` 2ξ´3{2M3
˘2 ě

`

1 ´ 4ξ´3KM4
˘

1 ` 6ξ´3{2M3

“ 1 ´ 2ξ´3M3
´

3ξ3{2 ` 2KM
¯

ě 1 ´ 8ξ´3{2M3 ě 1 ´ 8η,

where the second inequality follows by Lemma A.2, and the last inequality follows from Equa-
tion (B.13). This further gives
B

a1

}a1}
, q

F

ě
1 ´ 8ξ´3{2M3

`

1 ´ 8ξ´3{2M3
˘1{2

ě
1 ´ 8ξ´3{2M3

1 ´ 4ξ´3{2M3
“ 1 ´ 5ξ´3{2M3 ě 1 ´ 5η. (B.16)

Second-order optimality condition. Second, we check the second order optimality condition for
the critical point. Let v P Sn´1 be any vector such that v K q, then

vJ HessφTpqqv “ ´3vJAdiag
`

ζd2
˘

AJv ` }ζ}
4
4

“ ´3 xa1,vy
2
ζ21 ´ 3

m
ÿ

k“2

xak,vy
2
ζ2k ` }ζ}

4
4

ě ´3 xa1,vy
2
ζ21 ´ 3ζ22

›

›AJv
›

›

2
` }ζ}

4
4

“ ´3 xa1,vy
2
ζ21 ´ 3Kζ22 ` }ζ}

4
4 (B.17)

Next, we control xa1,vy
2
ζ21 and Kζ22 in terms of }ζ}

4
4, respectively. By Equation (B.14) and

xq,vy “ 0,

xa1,vy
2

¨ ζ21 “

B

a1

}a1}
´ q,v

F2
´

}a1}
2
ζ21

¯

ď

›

›

›

›

a1

}a1}
´ q

›

›

›

›

2
´

1 ` 2ξ´3{2M3
¯2

}ζ}
4
4

“ 2

ˆ

1 ´

B

a1

}a1}
, q

F˙

´

1 ` 2ξ´3{2M3
¯2

}ζ}
4
4

ď 10ξ´3{2M3
´

1 ` 2ξ´3{2M3
¯2

}ζ}
4
4 ď

1

4
}ζ}

4
4 . (B.18)

On the other hand, for q P RC, using Equation (B.13) we have

Kζ22 ď K
4 |β2|

2

α2
2

ď 4KM4µ
2 }ζ}

6
3

}ζ}
12
4

¨ }ζ}
4
4 ď 4KM4ξ´3 }ζ}

4
4 ď

1

15
}ζ}

4
4 . (B.19)

Thus, combining the results in Equation (B.17), Equation (B.18), and Equation (B.19), we obtain

vJ HessφTpqqv ě

ˆ

1 ´
3

4
´

1

5

˙

}ζ}
4
4 ě

1

20
}ζ}

4
4 .

This completes our proof.
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CASE 3: CRITICAL POINTS ARE RIDABLE SADDLES.

Finally, we consider the critical points q P RC that at least two entries |ζ1| and |ζ2| are larger than
2|β1|

α1
and 2|β2|

α2
, respectively. For this type of critical points in RC, we show that they are ridable

saddle points: the Hessian is nondegenerate and exhibits negative eigenvalues.

Lemma B.6 Suppose we have

M3 ă η ¨ ξ3{2, µ ă
1

20
, (B.20)

for some constant η ă 2´6 For any critical point q P RC, if there are at least two entries in ζpqq

such that |ζi| ą
2|βi|

αi
pi P rmsq, then q is a strict saddle point: there exists some v P Sn´1 with

v K q, such that

vJ HessφTpqqv ď ´ }ζ}
4
4 .

Proof Without loss of generality, for any critical point q P RC, we assume that ζ1 “ aJ
1 q and

ζ2 “ aJ
2 q are the two largest entries in ζpqq. We pick a vector v P span

!

a1

}a1}
, a2

}a2}

)

such that

v K q with v P Sn´1. Thus,

vJ HessφTpqqv “ ´3vJAdiag
`

ζd2
˘

AJv ` }ζ}
4
4

ď ´3 }a1}
2
ζ21

B

a1

}a1}
,v

F2

´ 3 }a2}
2
ζ22

B

a2

}a2}
,v

F2

` }ζ}
4
4 .

Since |ζ1| ě
2|β1|

α1
and |ζ2| ě

2|β2|

α2
, by Lemma B.2, Lemma B.3, and the fact that q P RC, we have

}a1}
2
ζ21 ě }a1}

2

ˆ

?
α1 ´

2 |β1|

α1

˙2

ě

˜

1 ´
2µM2 }ζ}

3
3 }a1}

}ζ}
6
4

¸2

}ζ}
4
4

ě

´

1 ´ 2ξ´3{2M3
¯2

}ζ}
4
4 .

In the same vein, we can also show that

}a2}
2
ζ22 ě

´

1 ´ 2ξ´3{2M3
¯2

}ζ}
4
4 .

Therefore, combining the results above, we obtain

vJ HessφTpqqv ď }ζ}
4
4

«

1 ´ 3
´

1 ´ 2ξ´3{2M3
¯2

˜

B

a1

}a1}
,v

F2

`

B

a2

}a2}
,v

F2
¸ff

.

As v P span
!

a1

}a1}
, a2

}a2}

)

, we can write

v “ c1
a1

}a1}
` c2

a2

}a2}

for some coefficients c1, c2 P R. As v P Sn´1, we observe

}v}
2

“ c21 ` c22 ` 2c1c2

B

a1

}a1}
,

a2

}a2}

F

“ 1 ùñ c21 ` c22 ě 1 ´ 2 |c1c2|µ ě 1 ´ 4µ,

where the last inequality follows from Lemma B.7. Thus, we observe
B

a1

}a1}
,v

F2

`

B

a2

}a2}
,v

F2

“

ˆ

c1 ` c2

B

a1

}a1}
,

a2

}a2}

F˙2

`

ˆ

c2 ` c1

B

a1

}a1}
,

a2

}a2}

F˙2

“
`

c21 ` c22
˘

`
`

c21 ` c22
˘

B

a1

}a1}
,

a2

}a2}

F2

` 4c1c2

B

a1

}a1}
,

a2

}a2}

F

ě 1 ´ 4µ ´ p1 ´ 4µqµ2 ´ 4
1 ` µ

1 ´ µ2
µ

ě 1 ´ 10µ
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By the fact in Equation (B.20) and combining all the bounds above we obtain

vJ HessφTpqqv ď

„

1 ´ 3
´

1 ´ 2ξ´3{2M3
¯2

p1 ´ 10µq

ȷ

}ζ}
4
4 ď ´

1

4
}ζ}

4
4 .

This completes the proof.

Lemma B.7 Suppose
ˇ

ˇ

ˇ

A

a1

}a1}
, a1

}a1}

Eˇ

ˇ

ˇ
ď µ with µ ă 1{2. Let v P span

!

a1

}a1}
, a2

}a2}

)

such that

}v} “ 1 and v “ c1
a1

}a1}
` c2

a2

}a2}
, then we have

|c1c2| ď
1 ` µ

1 ´ µ2
,

Proof By the fact that
ˇ

ˇ

ˇ

A

v, a1

}a1}

EA

v, a2

}a2}

Eˇ

ˇ

ˇ
ď 1, we have

ˇ

ˇ

ˇ

ˇ

ˆ

c1 ` c2

B

a1

}a1}
,

a2

}a2}

F˙ˆ

c2 ` c1

B

a1

}a1}
,

a2

}a2}

F˙ˇ

ˇ

ˇ

ˇ

ď 1,

which further implies that
ˇ

ˇ

ˇ

ˇ

ˇ

c1c2 `
`

c21 ` c22
˘

B

a1

}a1}
,

a2

}a2}

F

` c1c2

B

a1

}a1}
,

a2

}a2}

F2
ˇ

ˇ

ˇ

ˇ

ˇ

ď 1.

Since }v} “ 1, we also have

c21 ` c22 “ 1 ´ 2c1c2

B

a1

}a1}
,

a2

}a2}

F

.

Combining the two (in)equalities above, we obtain

1 ě

ˇ

ˇ

ˇ

ˇ

ˇ

c1c2 `

B

a1

}a1}
,

a2

}a2}

F

´ c1c2

B

a1

}a1}
,

a2

}a2}

F2
ˇ

ˇ

ˇ

ˇ

ˇ

ě |c1c2|

˜

1 ´

B

a1

}a1}
,

a2

}a2}

F2
¸

´

ˇ

ˇ

ˇ

ˇ

B

a1

}a1}
,

a2

}a2}

Fˇ

ˇ

ˇ

ˇ

ě |c1c2|
`

1 ´ µ2
˘

´ µ.

Thus, we obtain the desired result.

B.2 NEGATIVE CURVATURE IN RN

Finally, we make more stringent assumption on A that each column of A is ℓ2 normalized, i.e.,

}ai} “ 1, 1 ď i ď m.

We show that the function φTpqq exhibits negative curvature in the region RN. Namely, the Rie-
mannian Hessian for any points q P RN has a negative eigenvalue, such that the Hessian is negative
in a certain direction.

Lemma B.8 Suppose each column of A is ℓ2 normalized and

K ď 3
´

1 ` 6µ ` 6ξ3{5µ2{5
¯´1

.

For any point q P RN, there exists some direction d P Sn´1, such that

dJ HessφTpqqd ă ´4 }ζ}
4
4 }ζ}

2
8 .
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Proof By definition, we have

aJ
1 HessφTpqqa1

“ ´ 3aJ
1 PqKAdiag

`

ζd2
˘

A˚PqKa1 ` }ζ}
4
4

›

›PqKa1

›

›

2

“ ´ 3aJ
1 Adiag

`

ζd2
˘

AJa1 ` 6 }ζ}8 ζJ diag
`

ζd2
˘

AJa1 ´ 3 }ζ}
2
8 }ζ}

4
4 ` }ζ}

4
4

´

}a1}
2

´ }ζ}
2
8

¯

ď ´ 3 }ζ}
2
8 }a1}

4
` 6 }ζ}

4
8 }a1}

2
` 6µ }ζ}8 }ζ}

3
3 ´ 3 }ζ}

2
8 }ζ}

4
4 ` }a1}

2
}ζ}

4
4 ´ }ζ}

2
8 }ζ}

4
4

“ ´ 3 }ζ}
2
8 ` 6 }ζ}

4
8 ` 6µ }ζ}8 }ζ}

3
3 ´ 4 }ζ}

2
8 }ζ}

4
4 ` }ζ}

4
4

ď }ζ}
2
8

´

´3 ` 6 }ζ}
2
8 ` 6µ }ζ}

2
´ 4 }ζ}

4
4 ` }ζ}

2
¯

“ }ζ}
2
8

´

´3 ` 6 }ζ}
2
8 ` 6µK ´ 4 }ζ}

4
4 ` K

¯

where for the second inequality we used the fact that }ζ}
4
4 ď }ζ}

2
8 }ζ}

2, and for the last equality we
applied that }ζ}

2
“ qJAAJq “ K. Moreover, as q P RN, we have

}ζ}
2
8 ď }ζ}

2
4 ď ξ1{2µ1{3 }ζ}3

}ζ}3 “

˜

m
ÿ

k“1

|ζk|
3

¸1{3

ď }ζ}
1{3
8 K1{3.

Thus, we obtain

}ζ}
2
8 ď ξ1{2µ1{3 }ζ}

1{3
8 K1{3 ùñ }ζ}

2
8 ď ξ3{5 pµKq

2{5
.

Hence, we have

aJ
1 HessφTpqqa1 ď }ζ}

2
8

´

´3 ` 6ξ3{5 pµKq
2{5

` 6µK ´ 4 }ζ}
4
4 ` K

¯

ď ´4 }ζ}
4
4 }ζ}

2
8 ,

whenever

K ď 3
´

1 ` 6µ ` 6ξ3{5µ2{5
¯´1

.

Thus, we obtain the desired result.

C OPTIMIZATION LANDSCAPE IN FINITE SAMPLE

In this section, we will show that the finite sample objective functions in the overcomplete dictio-
nary learning and convolutional dictionary learning have similar geometric properties as φTpqq “

´ 1
4

›

›AJq
›

›

4

4
analyzed in Appendix B. Specifically, we will analyze the geometric properties of ob-

jective function φpqq (which could be φDLpqq and φCDLpqq) whose gradient and Hessian are close
to φTpqq. We denote by

δgpqq :“ gradφpqq ´ gradφTpqq,

∆Hpqq :“Hessφpqq ´ HessφTpqq,
(C.1)

both of which will be proved to be small for overcomplete dictionary learning and convolutional
dictionary learning in Appendix F.

C.1 GEOMETRIC ANALYSIS OF CRITICAL POINTS IN RC

Proposition C.1 Assume

}δgpqq} ď µM }ζ}
3
3 and }∆Hpqq} ă

1

20
}ζ}

4
4 .

Also suppose we have

KM ă 8´1 ¨ ξ3{2, M3 ă 2η ¨ ξ3{2, µ ă
1

20
(C.2)
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for some constant η ă 2´6. Then any critical point q P RC, with gradφpqq “ 0, either is a
ridable (strict) saddle point, or it satisfies second-order optimality condition and is near one of the
components e.g., a1 in the sense that

B

a1

}a1}
, q

F

ě 1 ´ 5ξ´3{2M3 ě 1 ´ 5η. (C.3)

Proof [Proof of Proposition C.1] With the same argument in Lemma B.2, we have that any critical
point q P Sn´1 satisfies

fpζiq “ ζ3i ´ αiζi ` β1
i “ 0,

for all i P rms with ζ “ AJq, where

αi “
}ζ}

4
4

}ai}
2 , β1

i “
xδgpqq,aiy `

ř

j‰i xai,ajy ζ3j

}ai}
2 “ βi `

xδgpqq,aiy

}ai}
2 , (C.4)

with βi “

ř

j‰ixai,ajyζ3
j

}ai}2
which is defined in equation B.7.

Recall that a widely used upper bound for βi in Appendix B.1 is:

|βi| “

ˇ

ˇ

ˇ

ř

j‰i xai,ajy ζ3j

ˇ

ˇ

ˇ

}ai}
2 ď

µM }ζ}
3
3

}ai}
,

which together with }δgpqq} ď µM }ζ}
3
3 gives

β1 “ βi `
xδgpqq,aiy

}ai}
2 ď 2

µM }ζ}
3
3

}ai}
. (C.5)

To easily utilize the proofs in Appendix B.1, we define ξ1 “ 2´2{3ξ such that ξ1´3{2 “ 2ξ´3{2.
Plugging the assumption M3ξ1´3{2 ď 1

4 into equation C.5, we have

|β1
i|

α
3{2
i

ď 2
µM }ζ}

3
3 }ai}

2

}ζ}
6
4

ď 2
µM3 }ζ}

3
3

}ζ}
6
4

ď 2M3ξ´3{2 ď 2M3ξ1´3{2 ď
1

4
.

This implies that the condition in equation B.9 holds, so that we can apply Lemma B.3 based on
which we classify critical points q P RC into three categories

1. All |ζi| (1 ď i ď m) are smaller than
2|β1

i|
αi

;

2. Only |ζ1| is larger than
2|β1

1|
α1

;

3. At least |ζ1| and |ζ2| are larger than
2|β1

1|
α1

and
2|β1

2|
α2

, respectively.

For Case 1, using the same argument as in Lemma B.4 we can easily show that this type of critical
point does not exist. For Case 2, with the same argument as in Lemma B.5, we obtain that such a
critical point is near one of the target solution with

B

a1

}a1}
, q

F

ě 1 ´ 5ξ1´3{2M3 ě 1 ´ 5η,

and satisfies the second-order optimality condition, i.e., for any v P Sn´1 with v K q, we have

vJ Hessφpqqv ě vJ HessφTpqqv ´ }∆Hpqq} ě
1

20
}ζ}

4
4 ´ }∆Hpqq} .

Finally, for Case 3, with the same v constructed in Lemma B.6 and using the assumption
}∆Hpqq} ă 1

20 }ζ}
4
4, we have

vJ Hessφpqqv ď vJ HessφTpqqv ` }∆Hpqq} ď ´ }ζ}
4
4 ` }∆Hpqq} ă 0,

indicating that this type of critical points q P RC is ridable saddle, for which the Riemannian
Hessian exhibits negative eigenvalue. Therefore, the critical points in RC are either ridable saddle
or near target solutions, so that there is no spurious local minimizer in RC.
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C.2 NEGATIVE CURVATURE IN RN

By directly using Lemma B.8, we obtain the negative curvature of φpqq in RN.

Lemma C.2 Assume
}∆Hpqq} ă }ζ}

4
4 }ζ}

2
8 .

Also suppose each column of A is ℓ2 normalized and

K ď 3
´

1 ` 6µ ` 6ξ3{5µ2{5
¯´1

.

For any point q P RN, there exists some direction d P Sn´1, such that

dJ Hessφpqqd ă ´3 }ζ}
4
4 }ζ}

2
8 .

Proof First, it follows Lemma B.8 that for any point q P RN, there exists some direction d P Sn´1,
such that

dJ HessφTpqqd ă ´4 }ζ}
4
4 }ζ}

2
8 ,

which together with the assumption }∆Hpqq} ă }ζ}
4
4 }ζ}

2
8 and the fact dJ Hessφpqqd “

dJ HessφTpqqd ` dJ∆Hpqqd ď dJ HessφTpqqd ` }∆Hpqq} completes the proof.

D OVERCOMPLETE DICTIONARY LEARNING

In this section, we consider the nonconvex problem of

min
q

φDLpqq “ ´
1

12θp1 ´ θqp

›

›qJY
›

›

4

4
“ ´

1

12θp1 ´ θqp

›

›qJAX
›

›

4

4
, s.t. }q} “ 1.

We characterize its expectation and optimization landscape as follows.

D.1 EXPECTATION CASE: OVERCOMPLETE TENSOR DECOMPOSITION

First, we show that φDLpqq reduces to φTpqq in expectation w.r.t. X .

Lemma D.1 When X is i.i.d. drawn from Bernoulli Gaussian distribution as in Assumption 2.2,
then we have

EX rφDLpqqs “ φTpqq ´
θ

2p1 ´ θq

´m

n

¯2

.

Proof Let ζ “ AJq P Rm with }ζ}
2

“ m
n . By using the fact that

X “ rx1 x2 ¨ ¨ ¨ xps , xk “ bk d gk, bk „ Berpθq, gk „ N p0, Iq,

we observe

EX rφDLpqqs “ ´
1

12p1 ´ θqθp
EX

”

›

›ζJX
›

›

4

4

ı

“ ´
1

12p1 ´ θqθp

p
ÿ

k“1

Exk

”

`

ζJxk

˘4
ı

“ ´
1

12p1 ´ θqθ
Eb,g

”

xζ d b, gy
4
ı

“ ´
1

4p1 ´ θqθ
Eb

”

}ζ d b}
4
ı

.

Write }z d b}
2

“
řm

k“1 pzkbkq
2, we obtain

EX rφDLpqqs “ ´
1

4p1 ´ θqθ
Eb

»

–

˜

m
ÿ

k“1

pzkbkq
2

¸2
fi

fl “ ´
1

4p1 ´ θq

m
ÿ

k“1

z4k ´
θ

2p1 ´ θq

ÿ

i ­“j

ζ2i z
2
j

“ ´
1

4
}z}

4
4 ´

θ

2p1 ´ θq
}z}

4

“ φTpqq ´
θ

2p1 ´ θq

´m

n

¯2

,
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as desired.

D.2 MAIN GEOMETRIC RESULT

Combining Proposition C.1 and Lemma C.2 together with the concentration results of the gradient
and Hessian in Proposition F.3 and Proposition F.6, we obtain the following geometry results of
overcomplete dictionary learning.

Theorem D.2 Suppose A satisfies Equation (2.2) and X P Rmˆp follows BGpθq with θ P
`

1
m , 1

2

˘

.
Also suppose we have

K ă max

"

8´1 ¨ ξ3{2, 3
´

1 ` 6µ ` 6ξ3{5µ2{5
¯´1

*

, 1 ă 2η ¨ ξ3{2, µ ă
1

20

for some constant η ă 2´6.

• If p ě CθK3n3 max
!

logpθn7{2{µq

µ2 ,Kn2 logpθn2q

)

, then with probability at least 1 ´ cp´2, any

critical point q P RC of φDLpqq either is a ridable (strict) saddle point, or it satisfies second-
order optimality condition and is near one of the components e.g., a1 in the sense that

B

a1

}a1}
, q

F

ě 1 ´ 5ξ´3{2M3 ě 1 ´ 5η.

• If p ě CθK4n6 logpθn5q, then with probability at least 1 ´ cp´2, any critical point q P RN of
φDLpqq is a ridable (strict) saddle point.

Here, c, C ą 0 are some numerical constants.

Proof First note that for overcomplete dictionary A in Equation (2.2), it satisfies Equation (F.9)
with M “ 1. Now it follows from Proposition F.3 and Proposition F.6 that when

p ě CθK5n2 max

#

logpθKn{µ }ζ}
3
3q

µ2 }ζ}
6
3

,
Kn logpθKn{ }ζ}

4
4q

}ζ}
8
4

+

, (D.1)

then with probability at least 1 ´ cp´2,

sup
qPSn´1

}gradφDLpqq ´ gradφTpqq} ď µM }ζ}
3
3 ,

sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ă
1

20
}ζ}

4
4 ,

which together with Proposition C.1 implies that any critical point q P RC of φDLpqq either is a
ridable (strict) saddle point, or it satisfies second-order optimality condition and is near one of the
components e.g., a1 in the sense that

B

a1

}a1}
, q

F

ě 1 ´ 5η.

We complete the proof for q P RC by plugging inequalities }ζ}3 ě m´1{6 }ζ}2 “ K1{3n´1{6 and
}ζ}4 ě m´1{4 }ζ}2 “ K1{4n´1{4 into Equation (D.1).

Similarly, by Proposition F.6, when

p ě CθK6n3 logpθKn{ }ζ}
4
4 }ζ}

2
8q

}ζ}
8
4 }ζ}

4
8

, (D.2)

then with probability at least 1 ´ cp´2,

sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ă max }ζ}
2
8 }ζ}

4
4 ,

which together with Lemma C.2 implies that any critical point q P RN of φDLpqq either is a ridable
(strict) saddle point. The proof is completed by plugging }ζ}8 ě n´1{2into Equation (D.2).
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E CONVOLUTIONAL DICTIONARY LEARNING

In this part of appendix, we provide the detailed analysis for CDL. Recall from Section 3, we denote
Y “

“

Cy1
Cy2

¨ ¨ ¨ Cyp

‰

P Rnˆp, A0 “ rCa1 Ca2 ¨ ¨ ¨ CaK s P Rnˆm,

xi “

»

—

—

–

xi1

xi2

...
xiK

fi

ffi

ffi

fl

P Rm, Xi “

»

—

—

–

Cxi1

Cxi2

...
CxiK

fi

ffi

ffi

fl

P Rmˆn, X “ rX1 X2 ¨ ¨ ¨ Xps P Rnˆnp,

For simplicity we let

A “
`

K´1A0A
J
0

˘´1{2
A0, m “ nK.

Recall from Section 3, for CDL we make the following assumptions on A0, A and X .

Assumption E.1 (Properties of A0 and A) We assume the matrix A0 has full row rank with

minimum singular value: σminpA0q ą 0, condition number: κpA0q :“
σmaxpA0q

σminpA0q
.

In addition, we assume the columns of A are mutually incoherent in the sense that

max
i­“j

ˇ

ˇ

ˇ

ˇ

B

ai

}ai}
,

aj

}aj}

Fˇ

ˇ

ˇ

ˇ

ď µ.

Assumption E.2 (Bernoulli-Gaussian xik) We assume entries of xik „i.i.d. BGpθq that
xik “ bik d gik, bik „i.i.d. Berpθq, gik „i.i.d. N p0, Iq, 1 ď i ď p, 1 ď k ď K.

In comparison with Assumption 2.1, it should be noted that the preconditioning does not necessarily
result in ℓ2-normalized columns of A. But their norms are still bounded in the sense that

}ak}
2

ď
›

›AJak

›

› ď
?
K }ak} ùñ }ak} ď

?
K, 1 ď k ď nK. (E.1)

Because of the unbalanced columns of A, unlike the ODL problem, the CDL problem

min
qPSn´1

φCDLpqq “ ´
1

12θp1 ´ θqnp

›

›qJPY
›

›

4

4
“ ´

1

12θp1 ´ θqp

›

›qJPA0X
›

›

4

4

does not have global geometric structures in the worst case. But still we can show that the problem
is benign in local regions in the following. Moreover, we also show that we can cook up data driven
initialization which falls into the local region.

E.1 MAIN RESULT OF OPTIMIZATION LANDSCAPE

In this part, we show our main result for optimization landscape for CDL. Namely, consider the
region introduced in Equation (3.3) as

RCDL :“
!

q P Sn´1
ˇ

ˇ φTpqq ď ´ξCDL κ4{3µ2{3 }ζpqq}
2
3

)

,

where ξCDL ą 0 is a fixed numerical constant. We show the following result.

Theorem E.3 (Local geometry of nonconvex landscape for CDL) Let C0 ą 5 be some constant
and η ă 2´6. Suppose we have

θ P

ˆ

1

nK
,
1

3

˙

, ξCDL “ C0 ¨ η´2{3K, µ ă
1

40
, K ă C0,

and we assume Assumption E.1 and Assumption E.2 hold. There exists some constant C ą 0, with
probability at least 1 ´ c1pnKq´c2 over the randomness of xiks, whenever

p ě CθK2µ´2n4 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

log6pm{µq,

every critical point qc of φCDLpqq in RCDL is either a strict saddle point that exhibits negative
curvature for descent, or it is near one of the target solutions (e.g. a1) such that

B

a1

}a1}
, qc

F

ě 1 ´ 5κ´2η.
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Proof Noting Equation (E.1), we set M “
?
K in Proposition C.1. It follows from Proposition

E.11 that when

p ě CθK4n2 log5pmKqmax

"

K6κ6pA0q

σ2
minpA0q

, n

*

¨ max

#

logpθKn{µK1{2 }ζ}
3
3q

µ2K }ζ}
6
3

,
logpθKn{ }ζ}

4
4q

}ζ}
8
4

+

,

(E.2)

then with probability at least 1 ´ c1pnKq´c2 ,

sup
qPSn´1

}gradφCDLpqq ´ gradφTpqq} ď µ
?
K }ζ}

3
3 ,

sup
qPSn´1

}HessφCDLpqq ´ HessφTpqq} ă
1

20
}ζ}

4
4 .

Thus, by using Proposition C.1, we have that any critical point qc P RCDL of φCDLpqq either is a
ridable (strict) saddle point, or it satisfies second-order optimality condition and is near one of the
components, e.g., a1 in the sense that

B

a1

}a1}
, qc

F

ě 1 ´ 5ξ
´3{2
CDLK

3{2κ´2 ě 1 ´ 5ηκ´2,

where we have plugged M “
?
K and ξ “ ξCDLκ

4{3 in Equation (C.3). Finally, we complete
the proof by using inequalities }ζ}3 ě m´1{6 }ζ}2 “ K1{3n´1{6 and }ζ}4 ě m´1{4 }ζ}2 “

K1{4n´1{4 in Equation (E.2).

E.2 PROOF OF OPTIMIZATION

In the following, we show that with high probability Algorithm 1 with initialization returns an ap-
proximate solution of one of the kernels up to a shift.

Proposition E.4 (Global convergence of Algorithm 1) With m “ nK, suppose

c1
logm

m
ď θ ď c2

µ´2{3

κ4{3m logm
¨ min

"

κ4{3

µ4{3
,

Kµ´4

m2 logm

*

. (E.3)

Whenever

p ě CθK2µ´2 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

n4 log6 pm{µq ,

our initialization in Algorithm 1 satisfies

qinit P RCDL :“
!

q P Sn´1 | φTpqq ď ´ξCDL µ2{3κ4{3K
)

Ă RCDL, (E.4)

such that all future iterates of Algorithm 1 stays within RCDL and converge to an approximate
solution (e.g., a circulant shift sℓ ra01s of a01) in the sense that

›

›PSn´1

`

P´1q‹

˘

´ sℓ ra01s
›

› ď ϵ,

where ϵ is a small numerical constant.

Proof Note that RCDL Ď RCDL is due to the fact that
›

›AJq
›

›

2

3
ď

›

›AJq
›

›

2
“ K.

We show that the iterates of Algorithm 1 converge to one of the target solutions by the following.

Initialization falls into RCDL. From Proposition E.5, taking ξ “ ξCDLκ
4{3, with θ satisfies Equa-

tion (E.3), whenever

p ě C1
K2

µ4{3θ

κ10{3pA0q

σ2
minpA0q

logpmq,

w.h.p. our initialization qinit satisfies φTpqinitq ď ´2ξCDL µ2{3κ4{3K.
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Iterate stays within the region. Let tqpkqu be the sequence generated by Algorithm 1 with qp0q “

qinit. From Proposition E.12, we know that whenever

p ě C2
θK2

µ4{3κ8{3
max

"

K6κ6pA0q

σ2
minpA0q

, n

*

n2 log
´

θnµ´2{3κ´4{3
¯

log5pmKq,

we have

sup
qPSn´1

ˇ

ˇ

ˇ

ˇ

φCDLpqq ´

ˆ

φTpqq ´
θ

2p1 ´ θq
K2

˙ˇ

ˇ

ˇ

ˇ

ď
1

2
ξCDL µ2{3κ4{3K,

which together with the fact that the sequence tqpkqu satisfies φCDLpqpkqq ď φCDLpqp0qq implies

φTpqpkqq ď φCDLpqpkqq `
θ

2p1 ´ θq
K2 `

1

2
ξCDL µ2{3κ4{3K

ď φCDLpqp0qq `
θ

2p1 ´ θq
K2 `

1

2
ξCDL µ2{3κ4{3K

ď φTpqp0qq ` ξCDL µ2{3κ4{3K ď ´ξCDL µ2{3κ4{3K.

Closeness to the target solution. From Theorem E.3, we know that whenever

p ě CθK2µ´2n4 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

log6pm{µq,

the function φCDLpqq has benign optimization landscape, that whenever our method can efficient
escape strict saddle points, Algorithm 1 produces a solution q‹ that is close to one of the target
solutions (e.g. a1, the first column of A) in the sense that

B

a1

}a1}
, q‹

F

ě 1 ´ ε,

with ε “ κ´2η. In the following, we show that our final output a‹ “ PSn´1

`

P´1q‹

˘

should be
correspondingly close to a circulant shift of one of the kernels ta0ku

K
k“1. Without loss of generality,

suppose q‹ “ a1, then the corresponding solution should be a01 with zero shift (or in other words,
the first column a01 of A0). In the following, we make this rigorous. Notice that
›

›PSn´1

`

P´1q‹

˘

´ a01

›

› “

›

›

›

›

PSn´1

`

P´1q‹

˘

´ PSn´1

ˆ

a01

}a1}

˙›

›

›

›

ď 2 }a1}

›

›

›

›

P´1q‹ ´
a01

}a1}

›

›

›

›

,

where for the last inequality we used Lemma A.12. Next, by triangle inequality, we have
›

›PSn´1

`

P´1q‹

˘

´ a01

›

›

ď 2 }a1}

›

›

›

›

P´1 a1

}a1}
´

a01

}a1}

›

›

›

›

` 2 }a1}

›

›

›

›

P´1

ˆ

a1

}a1}
´ q‹

˙›

›

›

›

“ 2
›

›

›

´

P´1
`

K´1A0A
J
0

˘´1{2
´ I

¯

a01

›

›

›
` 2 }a1}

›

›

›

›

P´1

ˆ

a1

}a1}
´ q‹

˙›

›

›

›

ď 2

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙1{2
`

A0A
J
0

˘´1{2
´ I

›

›

›

›

›

` 2
?
2 }a1}

›

›P´1
›

›

d

1 ´

B

a1

}a1}
, q‹

F

.

Let δ P p0, 1q be a small constant. From Lemma E.18 and Corollary E.19, we know that whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

δ´2 logpmq,

we have
›

›

›

›

›

ˆ

1

θmp
Y Y J

˙1{2
`

A0A
J
0

˘´1{2
´ I

›

›

›

›

›

ď δ,
›

›P´1
›

› ď 2K´1{2 }A0} .

Therefore, we obtain
›

›PSn´1

`

P´1q‹

˘

´ a01

›

› ď 2δ ` 4
?
2 }A0}

?
ε

ď 2δ ` 4
?
2
?
ησmaxpA0qκ´1 ď 2δ ` 4

?
2
?
η ď ϵ

when η is sufficiently small. Here, ϵ is a small numerical constant.
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E.3 PROOF OF INITIALIZATION

In this subsection, we show that we can cook up a good data-driven initialization. We initialize the
problem by using a random sample (1 ď ℓ ď p)

qinit “ PSn´1 pPyℓq , 1 ď ℓ ď p,

which roughly equals to

qinit « PSn´1 pAxℓq , AJqinit «
?
KPSm´1

`

AJAxℓ

˘

.

For generic kernels, AJA is a close to a diagonal matrix, as the magnitudes of off-diagonal entries
are bounded by column mutual incoherence. Hence, the sparse property of xℓ should be approxi-
mately preserved, so that AJqinit is spiky with large

›

›AJqinit
›

›

4

4
. We define

ζinit “ AJqinit, pζinit “
?
KPSm´1

`

AJAxℓ

˘

.

By leveraging the sparsity level θ, one can make sure that such an initialization qinit suffices.

Proposition E.5 Let m “ nK. Suppose the sparsity level θ satisfies

c1
logm

m
ď θ ď c2

Kµ´2{3

ξm logm
¨ min

"

ξ

Kµ4{3
,

µ´4

m2 logm

*

.

Whenever

p ě C
K2

µ4{3ξ2θ

κ6pA0q

σ2
minpA0q

logpmq,

for some ξ ą 0 we have

}ζinit}
4
4 ě ξKµ2{3

holds with probability at least 1´ cm´c1
. Here, c1, c2, c, c1, C ą 0 are some numerical constants.

Proof By using the convexity of ℓ4-loss, we can show that the values of }ζinit}
4
4 and

›

›

›

pζinit

›

›

›

4

4
are

close,

}ζinit}
4
4 ě

›

›

›

pζinit

›

›

›

4

4
` 4

A

pζd3
init, ζinit ´ pζinit

E

ě

›

›

›

pζinit

›

›

›

4

4
´ 4

›

›

›

pζd3
init

›

›

›

›

›

›
ζinit ´ pζinit

›

›

›

ě

›

›

›

pζinit

›

›

›

4

4
´ 4K3{2

›

›

›
ζinit ´ pζinit

›

›

›

loooooomoooooon

small

. (E.5)

Thus, it is enough to lower bound
›

›

›

pζinit

›

›

›

4

4
. Let I “ supppxℓq, and let PI : Rm ÞÑ Rm that maps

all off support entries to zero and all on support entries to themselves. Thus, we have
›

›

›

pζinit

›

›

›

4

4
“ K2

›

›AJAxℓ

›

›

´4 ›
›AJAxℓ

›

›

4

4

ě K2
´

›

›PI
`

AJAxℓ

˘›

›

2
`
›

›PIc

`

AJAxℓ

˘›

›

2
¯´2

›

›PI
`

AJAxℓ

˘›

›

4

4

“
K2

p1 ` ρq
2

›

›PSn´1

`

PI
`

AJAxℓ

˘˘›

›

4

4
,

with ρ :“

ˆ

}PIcpAJAxℓq}
}PIpAJAxℓq}

˙2

. By Lemma E.7 and Lemma E.9, whenever

c1
logm

m
ď θ ď c2

µ´2

m logm
,
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we have
›

›PIc

`

AJAxℓ

˘›

› ď C1Kµm
a

θ logm,
›

›PI
`

AJAxℓ

˘›

› ě
1

?
2
K

?
θm

holding with probability at least 1 ´ c3m
´c4 , so that

ρ “

˜

›

›PIc

`

AJAxℓ

˘›

›

}PI pAJAxℓq}

¸2

ď C2µ
2m logm.

Thus, we have
›

›

›

pζinit

›

›

›

4

4
ě K2p1 ` ρq´2

›

›PSm´1

`

PIA
JAxℓ

˘›

›

4

4
ě

C3K
2

µ4m2 log2 m

›

›PSm´1

`

PIA
JAxℓ

˘›

›

4

4
.

By Lemma E.10, we have

›

›PSm´1

`

PIA
JAxℓ

˘›

›

4

4
ě

1

2θm

with probability at least 1 ´ c5m
´c6 . Thus, with high probability, we have

›

›

›

pζinit

›

›

›

4

4
ě

C3K
2

µ4m2 log2 m
¨

1

2θm
ě 2ξKµ2{3, (E.6)

whenever

θ ď C4
Kµ´2{3

ξm
¨

1

µ4m2 log2 m
.

Finally, Lemma E.6 implies that for any δ P p0, 1q, whenever

p ě C5θ
´1K3 κ6pA0q

σ2
minpA0q

δ´2 logpmq,

it holds that
›

›

›
ζinit ´ pζinit

›

›

›
ď δ,

with probability at least 1 ´ c7pmq´c8 . Choose δ such that

4K3{2
›

›

›
ζinit ´ pζinit

›

›

›
ď 4K3{2δ ď ξKµ2{3 ùñ δ ď C6ξK

´1{2µ2{3, (E.7)

then by Equations (E.5) to (E.7) we have

}ζinit}
4
4 ě

›

›

›

pζinit

›

›

›

4

4
´ 4K3{2

›

›

›
ζinit ´ pζinit

›

›

›
ě ξKµ2{3.

Summarizing all the result above, we obtain the desired result.

Lemma E.6 Let δ P p0, 1q. Whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

δ´2 logpmq,

we have
›

›

›
ζinit ´ pζinit

›

›

›
ď δ

with probability at least 1 ´ c1pKnq´c2 . Here, c1, c2, C ą 0 are some numerical constants.
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Proof By definition, we observe
›

›

›
ζinit ´ pζinit

›

›

›
“

›

›

›
AJPSn´1 pPyℓq ´

?
KPSn´1

`

AJAxℓ

˘

›

›

›

“

›

›

›

›

›

AJPSn´1

˜

ˆ

1

θKmp
Y Y J

˙´1{2

A0xℓ

¸

´
?
KPSn´1

`

AJAxℓ

˘

›

›

›

›

›

“

›

›

›

›

›

›

›

›

AJ
´

1
θmpY Y J

¯´1{2

A0xℓ
›

›

›

›

´

1
θmpY Y J

¯´1{2

A0xℓ

›

›

›

›

´
AJAxℓ

}Axℓ}

›

›

›

›

›

›

›

›

ď
2 }A}

}Axℓ}

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

A0xℓ ´
`

A0A
J
0

˘´1{2
A0xℓ

›

›

›

›

›

ď 2
?
K

}xℓ}

}Axℓ}
}A0}

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

´
`

A0A
J
0

˘´1{2

›

›

›

›

›

“ 2
?
K }A0}

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

´
`

A0A
J
0

˘´1{2

›

›

›

›

›

,

where for the first inequality we invoked Lemma A.12, and the last equality follows the fact that
minimum singular value of A is unity. Next, by Lemma E.18, for some ϵ P p0, 1q, whenever

p ě Cθ´1K2 κ4pA0q

σ4
minpA0q

ϵ´2 logpmq,

we have
›

›

›
ζinit ´ pζinit

›

›

›
ď 8

?
K }A0} ϵ

holding with probability at least 1´ c1pmq´c2 . Here, c1, , c2, C ą 0 are some numerical constants.
Replace δ “ 8

?
K }A0} ϵ, we obtain the desired result.

Lemma E.7 Suppose the columns of A are µ-incoherent and satisfies Assumption 3.1, and suppose
xℓ satisfies Assumption E.2. Let I “ supp pxℓq. For any t ě 0, we have

›

›PIc

`

AJAxℓ

˘›

› ď
›

›offdiag
`

AJA
˘

xℓ

›

› ď t

holds with probability at least 1 ´ 4m exp
´

´min
!

t2

4K2µ2θm2 ,
t

4Kµm
?
m

)¯

.

Proof Since we have
›

›PIc

`

AJAxℓ

˘›

› ď
›

›offdiag
`

AJA
˘

xℓ

›

› , (E.8)

we could bound
›

›PIcAJAxℓ

›

› via controlling
›

›offdiag
`

AJA
˘

xℓ

›

›. Let

M “ offdiag
`

AJA
˘

“ rm1 ¨ ¨ ¨ mms P Rmˆm, and s “ Mxℓ “

m
ÿ

k“1

mkxℓk
loomoon

sk

.

Thus, we can apply vector version Bernstein inequality. By Lemma A.3 and the fact that }mk} ď

Kµ
?
m,

E rsks “ 0, E r}sk}
p
s “ θ }mk}

p Eg„N p0,1q r|g|
p
s ď

m!

2
θ
`

Kµ
?
m
˘p

.

Therefore, by applying Lemma A.6, we obtain

P
`›

›offdiag
`

AJA
˘

xℓ

›

› ě t
˘

“ P

˜›

›

›

›

›

m
ÿ

k“1

sk ´ E rss

›

›

›

›

›

ě t

¸

ď 2pm ` 1q exp

ˆ

´
t2

2µ2K2θm2 ` 2Kµm
?
mt

˙

.

Finally, Equation (E.8) gives the desired result.
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Lemma E.8 We have
›

›diag
`

AJA
˘

xℓ

›

›

2
ď K2θm ` t (E.9)

with probability at least 1 ´ exp
´

´ 1
8 min

!

t2

K4θm , t
K2m

)¯

.

Proof First, let

d “ diag
`

AJA
˘

, s “
›

›diag
`

AJA
˘

xℓ

›

›

2
“

m
ÿ

k“1

d2kx
2
ℓk

loomoon

sk

,

where by Lemma A.4, we have

E r|sk|
p
s ď θK2p p!2

p

2
, E rss “ θ

›

›diag
`

AJA
˘›

›

2

F
ă K2θm.

Thus, by Bernstein inequality in Lemma A.5, we obtain

P
´

›

›diag
`

AJA
˘

xℓ

›

›

2
´ K2θm ě t

¯

ď exp

ˆ

´
t2

4K4θm ` 4K2mt

˙

,

as desired.

Lemma E.9 Suppose xℓ satisfies Assumption E.2. Suppose xℓ satisfies Assumption E.2. Let I “

supp pxℓq. Whenever θ satisfies

c1
logm

m
ď θ ď c2

µ´2

m logm
, (E.10)

we have
›

›PI
`

AJAxℓ

˘›

›

2
ě

1

2
K2θm (E.11)

with probability at least 1 ´ m´c. Here, c, c1, c2 ą 0 are some numerical constants.

Proof Notice that
›

›PI
`

AJAxℓ

˘›

›

2

“
›

›diag
`

AJA
˘

xℓ ` PI
`

offdiag
`

AJA
˘

xℓ

˘›

›

2

“
›

›diag
`

AJA
˘

xℓ

›

›

2
`
›

›PI
`

offdiag
`

AJA
˘

xℓ

˘›

›

2
` 2

@

diag
`

AJA
˘

xℓ,PI
`

offdiag
`

AJA
˘

xℓ

˘D

ě
›

›diag
`

AJA
˘

xℓ

›

›

2
´ 2

›

›diag
`

AJA
˘

xℓ

›

›

›

›PI
`

offdiag
`

AJA
˘

xℓ

˘›

› .

By Lemma A.9, Lemma E.7, and Lemma E.8, we have
›

›diag
`

AJA
˘

xℓ

›

›

2
ď K2θm ` C1K

2
a

θm logm
›

›PI
`

offdiag
`

AJA
˘

xℓ

˘›

› ď C2θKµm
a

logm

holds with probability at least 1 ´ m´c0 . Thus, we obtain

›

›PI
`

AJAxℓ

˘›

›

2
ě K2θm

˜

1 ´ C1

c

logm

θm
´ C3µ

a

θm logm

¸

.

Finally, by using Equation (E.10), we have

›

›PI
`

AJAxℓ

˘›

›

2
ě

1

2
K2θm

as desired.
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Lemma E.10 Suppose xℓ satisfies Assumption E.2. Let I “ supp pxℓq. Whenever θ P

´

logm
m , 1

2

¯

,
then we have

›

›PSm´1

`

PI
`

AJAxℓ

˘˘›

›

4

4
ě

1

2θm

with probability at least 1 ´ m´c.

Proof By Lemma A.1, we know that for any z,

}z}
4
4 ě }z}

´1
0 }z}

4
,

and the fact that
›

›PSm´1

`

PI
`

AJAxℓ

˘˘›

›

0
“ }xℓ}0, we have

›

›PSm´1

`

PI
`

AJAxℓ

˘˘›

›

4

4
ě }xℓ}

´1
0 .

By Lemma A.9, we have

}xℓ}0 ď 2θm ùñ
›

›PSm´1

`

PI
`

AJAxℓ

˘˘›

›

4

4
ě

1

2θm

holds with probability at least 1 ´ m´c.

E.4 CONCENTRATION AND PERTURBATION

We prove the following concentration results for Riemannian gradient and Hessian, and its function
value.

Proposition E.11 For some small δ P p0, 1q, whenever the sample complexity satisfies

p ě Cδ´2θK4 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

n2 log

ˆ

θKn

δ

˙

log5pmKq,

we have

sup
qPSn´1

}gradφCDLpqq ´ gradφTpqq} ď δ

sup
qPSn´1

}HessφCDLpqq ´ HessφTpqq} ď δ

hold with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.

Proof Let pφCDLpqq be introduced as Equation (E.12)

pφCDLpqq “ ´
1

12θp1 ´ θqnp

›

›qJAX
›

›

4

4
,

so that we bound the Riemannian gradient and Hessian separately using triangle inequalities via
pφCDLpqq.

Riemannian gradient. Notice that

sup
qPSn´1

}gradφCDLpqq ´ gradφTpqq}

ď sup
qPSn´1

}gradφCDLpqq ´ grad pφCDLpqq} ` sup
qPSn´1

}grad pφCDLpqq ´ gradφTpqq} .

From Proposition E.13, we know that whenever

p ě C1θK
10 κ6pA0q

σ2
minpA0q

δ´2n2 log5pmKq,

we have

sup
qPSn´1

}gradφCDLpqq ´ grad pφCDLpqq} ď
δ

2
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with probability at least 1 ´ c1pmKq´c2 . On the other hand, Corollary F.9 implies that whenever

p ě C2δ
´2θK5n2 log

ˆ

θKn

δ

˙

,

we have

sup
qPSn´1

}grad pφCDLpqq ´ gradφTpqq} ď
δ

2

holds with probability at least 1 ´ c3np
´2. Combining the bounds above gives the desired result on

the gradient.

Riemannian Hessian. Similarly, we have
sup

qPSn´1

}HessφCDLpqq ´ HessφTpqq}

ď sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq} ` sup
qPSn´1

}Hess pφCDLpqq ´ HessφTpqq} .

From Proposition E.15, we know that whenever

p ě C3θK
10 κ6pA0q

σ2
minpA0q

δ´2n2 log5pmKq,

we have

sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq} ď
δ

2

with probability at least 1 ´ c4pmKq´c5 . On the other hand, Corollary F.10 implies that whenever

p ě C4θK
6δ´2n3 log pθKn{δq ,

we have

sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ă
δ

2

holds with probability at least 1 ´ c4np
´2. Combining the bounds above gives the desired result on

the Hessian.

Similar to Lemma D.1, for convolutional dictionary learning, asymptotically we have

EX rφCDLpqqs « EX rpφCDLpqqs “ φTpqq ´
θ

2p1 ´ θq
K2, φTpqq “ ´

1

4

›

›qJA
›

›

4

4
.

Next, we turn this asymptotical results into finite sample for the function value via concentration
and preconditioning.

Proposition E.12 For some small δ P p0, 1q, whenever the sample complexity satisfies

p ě Cδ´2θK4 max

"

K6κ6pA0q

σ2
minpA0q

, n

*

n2 log

ˆ

θKn

δ

˙

log5pmKq,

we have

sup
qPSn´1

›

›

›

›

φCDLpqq ´

ˆ

φTpqq ´
θ

2p1 ´ θq
K2

˙›

›

›

›

ď δ

hold with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.

Proof By triangle inequality, we have

sup
qPSn´1

ˇ

ˇ

ˇ

ˇ

φCDLpqq ´

ˆ

φTpqq ´
θ

2p1 ´ θq
K2

˙ˇ

ˇ

ˇ

ˇ

ď sup
qPSn´1

|φCDLpqq ´ pφCDLpqq|

loooooooooooooooooomoooooooooooooooooon

T1

` sup
qPSn´1

|pφCDLpqq ´ EX rpφCDLpqqs|

looooooooooooooooooooomooooooooooooooooooooon

T2

.

Thus, by using Corollary E.14 we can control T1. For T2, we can control in a similar way as
Corollary F.9 or Corollary F.10. For simplicity, we omitted here.
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E.5 PRECONDITIONING

In this part of appendix, let us introduce

φCDLpqq “ ´
1

12θp1 ´ θqnp

›

›qJpPA0qX
›

› , pφCDLpqq :“ ´
1

12θp1 ´ θqnp

›

›qJAX
›

› .

(E.12)

In the following, we show that the differences of function value, Riemannian gradient, and Hessian
of those two functions are small by preconditioning analysis. For simplicity, let us also introduce

v0pqq “ XJpPA0qJq, vpqq “ XJAJq. (E.13)

E.5.1 CONCENTRATION AND PRECONDITIONING FOR RIEMANNIAN GRADIENT AND
FUNCTION VALUE

First, the gradients of φCDLpqq and pφCDLpqq and their Riemannian variants can be written as

∇φCDLpqq “ ´
1

3θp1 ´ θqnp
PA0Xvd3

0 , ∇pφCDLpqq “ ´
1

3θp1 ´ θqnp
AXvd3,

gradφCDLpqq “ PqK∇φCDLpqq, grad pφCDLpqq “ PqK∇pφCDLpqq,

where recall from Section 3 that we introduced the following preconditioning matrix

P “

ˆ

1

θKmp
Y Y J

˙´1{2

“

«

A0

˜

1

θKmp

p
ÿ

i“1

XiX
J
i

¸

AJ
0

ff´1{2

.

In the following, we show that the difference between gradφCDLpqq and grad pφCDLpqq is small.

Proposition E.13 Suppose θ P
`

1
m , 1

2

˘

. For any δ P p0, 1q, whenever

p ě CθK10 κ6pA0q

σ2
minpA0q

δ´2n2 log5pmKq,

we have

sup
qPSn´1

}gradφCDLpqq ´ grad pφCDLpqq} ď δ

sup
qPSn´1

}∇φCDLpqq ´ ∇pφCDLpqq} ď δ

with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.

Proof Notice that we have

sup
qPSn´1

}gradφCDLpqq ´ grad pφCDLpqq}

ď sup
qPSn´1

}∇φCDLpqq ´ ∇pφCDLpqq}

ď
1

3θp1 ´ θqnp
sup

qPSn´1

›

›PA0Xvd3
0 ´ AXvd3

›

›

ď
1

3θp1 ´ θqnp

ˆ

sup
qPSn´1

›

›PA0X
“

vd3
0 ´ vd3

‰›

›

loooooooooooooooooomoooooooooooooooooon

T1

` sup
qPSn´1

›

›pPA0 ´ AqXvd3
›

›

loooooooooooooooomoooooooooooooooon

T2

˙

.

Controlling T1. For the first term, we observe

T1 ď
1

3θp1 ´ θqnp
}PA0} }X} sup

qPSn´1

›

›vd3
0 ´ vd3

›

› ,
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where for all q P Sn´1 we have
›

›vd3
0 ´ vd3

›

› ď
›

›vd2 ´ vd2
0

›

›

8
}v} ` }v ´ v0} }v0}

2
8

ď
?
K

´?
K ` }PA0}

¯

}PA0 ´ A}

ˆ

max
1ďkďnp

}Xek}

˙2

}X}

` }PA0 ´ A} }X} }PA0}
2

ˆ

max
1ďkďnp

}Xek}

˙2

ď

´?
K ` }PA0}

¯2

}X}

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A}

where for the last two inequalities we used Lemma E.16. Thus, we have

T1 ď

´?
K ` }PA0}

¯2

}PA0} }X}
2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

Controlling T2. For the second term, by Lemma E.16, we have

T2 ď }PA0 ´ A} }X} }v}
3
6 ď K3{2 }X}

2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

Summary. Putting all the bounds together, we have
sup

qPSn´1

}gradφCDLpqq ´ grad pφCDLpqq}

ď
1

3θp1 ´ θqnp

„

´?
K ` }PA0}

¯2

}PA0} ` K3{2

ȷ

}X}
2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

By Lemma E.17 and Lemma E.20, we have

}X} ď 2
a

θmp, max
1ďkďnp

}Xek} ď 4
?
θm logpKpq

with probably at least 1 ´ 2p´2. On the other hand, by Lemma E.19, there exists some constant
C ą 0, for any ϵ P p0, 1q whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

ϵ´2 logpmKq,

we have
}PA0 ´ A} ď ϵ, }PA0} ď 2

?
K

hold with probability at least 1 ´ c1pmKq´c2 for some numerical constants c1, c2 ą 0. These
together give

T1 ď CK5{2θm log2pKmqϵ.

Replacing δ “ CK5{2θm log2 pKmq ϵ gives the desired result.

Here, the perturbation analysis for gradient also leads to the following result

Corollary E.14 For some small δ P p0, 1q, under the same setting of Proposition E.13, we have
sup

qPSn´1

|φCDLpqq ´ pφCDLpqq| ď δ

hold with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2 ą 0 are some numerical constants.

Proof Under the same setting of Proposition E.13, we have

sup
qPSn´1

|φCDLpqq ´ pφCDLpqq| “ sup
qPSn´1

1

4

ˇ

ˇ

ˇ

ˇ

1

3θp1 ´ θqnp
}v0}

4
4 ´

1

3θp1 ´ θqnp
}v}

4
4

ˇ

ˇ

ˇ

ˇ

“ sup
qPSn´1

1

4

ˇ

ˇ

ˇ

ˇ

1

3θp1 ´ θqnp

@

q,PA0Xvd3
0 ´ AXvd3

D

ˇ

ˇ

ˇ

ˇ

ď
1

4
sup

qPSn´1

}∇φCDLpqq ´ pφCDLpqq} ď
δ

4
,

as desired.

36



Under review as a conference paper at ICLR 2020

E.5.2 CONCENTRATION AND PRECONDITIONING FOR RIEMANNIAN HESSIAN

For simplicity, let v0 and v be as introduced in Equation (E.13). Similarly, the Riemannian Hessian
of φCDLpqq and pφCDLpqq can be written as

HessφCDLpqq “ ´
1

3θp1 ´ θqnp
PqK

”

3 pPA0qX diag
`

vd2
0

˘

XJ pPA0q
J

´ }v0}
4
4 I

ı

PqK ,

Hess pφCDLpqq “ ´
1

3θp1 ´ θqnp
PqK

”

3AX diag
`

vd2
˘

XJAJ ´ }v}
4
4 I

ı

PqK ,

respectively. In the following, we show that the difference between gradφCDLpqq and
grad pφCDLpqq is small.

Proposition E.15 Suppose θ P
`

1
m , 1

2

˘

. For any δ P p0, 1q, whenever

p ě CθK10 κ6pA0q

σ2
minpA0q

δ´2n2 log5pmKq,

we have

sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq} ď δ

with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.

Proof Notice that

sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq}

ď
1

θp1 ´ θqnp
sup

qPSn´1

›

›

›
pPA0 ´ AqX diag

`

vd2
0

˘

XJ pPA0q
J
›

›

›

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

T1

`
1

θp1 ´ θqnp
sup

qPSn´1

›

›

›
AX diag

`

vd2
˘

X pPA0 ´ Aq
J
›

›

›

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

T2

`
1

θp1 ´ θqnp
sup

qPSn´1

›

›

›
AX diag

`

vd2
0 ´ vd2

˘

XJ pPA0q
J
›

›

›

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

T3

`
1

3θp1 ´ θqnp
sup

qPSn´1

ˇ

ˇ

ˇ
}v}

4
4 ´ }v0}

4
4

ˇ

ˇ

ˇ

looooooomooooooon

T4

.

By using Lemma E.16, we have

T1 ď }PA0} }X}
2

}PA0 ´ A} sup
qPSn´1

}v0}
2
8 ď }PA0}

3
}X}

2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} ,

T2 ď }A} }X}
2

sup
qPSn´1

}v}
2
8 ď K3{2 }X}

2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

Similarly, Lemma E.16 implies that

T3 ď }PA0} }A} }X}
2

sup
qPSn´1

›

›vd2
0 ´ vd2

›

›

8

ď
?
K

´?
K ` }PA0}

¯

}PA0} }X}
2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} ,

37



Under review as a conference paper at ICLR 2020

and

T4 ď sup
qPSn´1

ˇ

ˇ

ˇ
}v}

4
4 ´ }v0}

4
4

ˇ

ˇ

ˇ
ď 2 sup

qPSn´1

ˇ

ˇ

@

v ´ v0, 4v
d3

Dˇ

ˇ

ď 8 sup
qPSn´1

}v ´ v0} }v}
3
6

ď 8K3{2 }X}
2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

Thus, combining all the results above, we obtain

sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq}

ď
1

θp1 ´ θqnp

”´?
K ` }PA0}

¯

}PA0}
2

` K }PA0} ` 4K3{2
ı

}X}
2

ˆ

max
1ďkďnp

}Xek}

˙2

}PA0 ´ A} .

By Lemma E.17 and Lemma E.20, we have

}X} ď 2
a

θmp, max
1ďkďnp

}Xek} ď 4
?
θm logpKpq

with probably at least 1 ´ 2p´2. On the other hand, by Lemma E.19, there exists some constant
C ą 0, for any ϵ P p0, 1q whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

ϵ´2 logpmKq,

we have

}PA0 ´ A} ď ϵ, }PA0} ď 2
?
K

hold with probability at least 1 ´ c1pmKq´c2 for some numerical constants c1, c2 ą 0. These
together gives

sup
qPSn´1

}HessφCDLpqq ´ Hess pφCDLpqq} ď C 1K5{2θm log2 pKpq ϵ.

Replacing δ “ C 1K5{2θm log2 pKpq ϵ gives the desired result.

E.5.3 AUXILIARY RESULTS

Lemma E.16 Let v0 and v be defined as in Equation (E.13), with

v0pqq “ XJ pPA0q
J
q, vpqq “ XJAJq,

For all q P Sn´1, we have

}v}8 ď
?
K max

1ďkďnp
}Xek} , }v0}8 ď }PA0} max

1ďkďnp
}Xek} ,

}v} ď
?
K }X} , }v}

6
6 ď K3 }X}

2

ˆ

max
1ďkďnp

}Xek}

˙4

,

›

›vd2 ´ vd2
0

›

›

8
ď

´?
K ` }PA0}

¯

}PA0 ´ A}

ˆ

max
1ďkďnp

}Xek}

˙2

,

}v ´ v0} ď }PA0 ´ A} }X} .

Proof In the following, we bound each term, respectively.
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Bounding norms of v and v0. For the ℓ2-norm, notice that

}v} ď }X} }A} ď
?
K }X}

On the other hand, for the ℓ8-norm, we have

}v}8 “ max
1ďkďnp

›

›eJ
kX

JAJq
›

› ď
?
K max

1ďkďnp
}Xek}

}v0}8 “ max
1ďkďnp

›

›

›
eJ
kX

J pPA0q
J
q
›

›

›
ď }PA0} max

1ďkďnp
}Xek} .

Thus, the results above give

}v}
6
6 ď }v}

4
8 }v}

2
ď K3 }X}

2

ˆ

max
1ďkďnp

}Xek}

˙4

.

Bounding the difference between v and v0. First, we bound the difference in ℓ2-norm,

}v ´ v0} “

›

›

›
XJ pPA0 ´ Aq

J
q
›

›

›
ď }PA0 ´ A} }X} .

On the other hand, we have
›

›vd2 ´ vd2
0

›

›

8
ď }v ´ v0}8 }v ` v0}8 ď p}v}8 ` }v0}8q }v ´ v0}8 ,

where

}v ´ v0}8 “ max
1ďkďnp

›

›

›
eJ
kX

J pPA0 ´ Aq
J
q
›

›

›
ď }PA0 ´ A} max

1ďkďnp
}Xek} ,

Thus, we obtain

›

›vd2 ´ vd2
0

›

›

8
ď

´?
K ` }PA0}

¯

}PA0 ´ A}

ˆ

max
1ďkďnp

}Xek}

˙2

as desired.

Lemma E.17 Suppose X satisfies Assumption E.2, we have

max
1ďkďnp

}Xek} ď 4
?
θm logpKpq

with probability at least 1 ´ p´2θm.

Proof Let us write

Xi “ rrxi1 rxi2 ¨ ¨ ¨ rxins , with rxij “

»

—

–

sj´1 rxi1s
...

sj´1 rxiKs

fi

ffi

fl

1 ď i ď p, 1 ď j ď n,

where sℓ r¨s denotes circulant shift of length ℓ. Given X “ rX1 ¨ ¨ ¨ Xps, we have

max
1ďkďnp

}Xek} “ max
1ďiďp,1ďjďn

}rxij} “ max
1ďiďp,1ďjďn

g

f

f

e

K
ÿ

ℓ“1

}sj´1 rxiℓs}
2

ď
?
K max

1ďiďp,1ďℓďK
}xiℓ} .

Next, we bound max1ďiďp,1ďℓďK }xiℓ}. By using Bernstein inequality in Lemma A.5, we obtain

P
´ˇ

ˇ

ˇ
}xiℓ}

2
´ nθ

ˇ

ˇ

ˇ
ě t

¯

ď 2 exp

ˆ

´
t2

4nθ ` 4t

˙

Thus, by using a union bound, we obtain

max
1ďiďp,1ďℓďK

}xiℓ} ď 4
?
θn logpKpq,

with probability at least 1 ´ p´2θm. Summarizing the bounds above, we obtain the desired result.
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E.6 INTERMEDIATE RESULTS FOR PRECONDITIONING

Lemma E.18 Suppose X satisfies Assumption E.2. For any δ P p0, 1q, whenever

p ě Cθ´1K2 κ4pA0q

σ4
minpA0q

δ´2 logpmq,

we have
›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

´
`

A0A
J
0

˘´1{2

›

›

›

›

›

ď δ,

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙1{2
`

A0A
J
0

˘´1{2
´ I

›

›

›

›

›

ď σminpA0q ¨ δ,

hold with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.

Proof Notice that
1

θmp
Y Y J “

1

θmp
A0XXJAJ

0 “ A0A
J
0

loomoon

B

`A0

ˆ

1

θmp
XXJ ´ I

˙

AJ
0

loooooooooooooooomoooooooooooooooon

∆

.

By Lemma E.20, for any ϵ P p0, 1{Kq, whenever

p ě Cθ´1K2ϵ´2 logpmKq,

we have
›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď ϵ,

with probability at least 1 ´ c1pmKq´c2 . Thus, by the first inequality in Lemma A.10 we observe
›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

´ pA0A0q
´1{2

›

›

›

›

›

“

›

›

›
pB ` ∆q

´1{2
´ B´1{2

›

›

›

ď 4σ´2
min pBq }∆}

ď
4κ2pA0q

σ2
minpA0q

›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď
4κ2pA0q

σ2
minpA0q

¨ ϵ.

On the other hand, by using the second inequality in Lemma A.10, we have
›

›

›

›

›

ˆ

1

θmp
Y Y J

˙1{2
`

A0A
J
0

˘´1{2
´ I

›

›

›

›

›

“

›

›

›
pB ` ∆q

1{2
B´1{2 ´ I

›

›

›

ď 4σ
´3{2
min pBq }∆}

ď
4κ2pA0q

σminpA0q

›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď
4κ2pA0q

σminpA0q
¨ ϵ.

Choose ϵ “

´

4κ2pA0q

σ2
minpA0q

¯´1

δ, we obtain the desired results.

Given the definition of preconditioning matrix P , the result above leads to the following corollary.

Corollary E.19 Under the same settings of Lemma E.18, for any δ P p0, 1q, whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

δ´2 logpmKq,

we have

}PA0 ´ A} ď δ,
›

›P´1
›

› ď 2K´1{2 }A0} ,

}PA0} ď }A} ` δ ď
?
K ` δ

hold with probability at least 1 ´ c1pmKq´c2 . Here, c1, c2, C ą 0 are some numerical constants.
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Proof For the first inequality, we have

}PA0 ´ A} ď
?
K

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙´1{2

´
`

A0A
J
0

˘´1{2

›

›

›

›

›

}A0} .

Thus, for any δ P p0, 1q, Lemma E.18 implies that whenever

p ě Cθ´1K3 κ6pA0q

σ2
minpA0q

δ´2 logpmKq,

we have

}PA0 ´ A} ď δ, }PA0} ď }A} ` }PA0 ´ A} ď
?
K ` δ

with probability at least 1 ´ c1pmKq´c2 . On the other hand, by Lemma E.18 we have
›

›P´1
›

› ď

›

›

›
P´1 ´

`

K´1A0A0

˘1{2
›

›

›
`

›

›

›

`

K´1A0A0

˘1{2
›

›

›

ď

›

›

›

`

K´1A0A0

˘1{2
›

›

›

´

1 `

›

›

›
P´1

`

K´1A0A0

˘´1{2
´ I

›

›

›

¯

ď K´1{2 }A0}

˜

1 `

›

›

›

›

›

ˆ

1

θmp
Y Y J

˙1{2
`

A0A
J
0

˘´1{2
´ I

›

›

›

›

›

¸

ď 2K´1{2 }A0} ,

as desired.

Lemma E.20 Suppose X satisfies Assumption E.2. For any δ P p0, 1q, we have
›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď δ, }X} ď
a

θmp p1 ` δq

with probability at least 1 ´ c1mK exp
´

´c2θpmin
!

`

δ
K

˘2
, δ
K

)¯

. Here, c1, c2 ą 0 are some
numerical constants.

Proof By using the fact that X “ rX1 X2 ¨ ¨ ¨ Xps, we observe

XXJ “

p
ÿ

k“1

XkX
J
k , Xk “

»

—

–

Cxk1

...
CxkK

fi

ffi

fl

For any z P Sn´1, write z “

»

—

–

z1
...

zK

fi

ffi

fl

. We have

›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

“ sup
zPSn´1

ˇ

ˇ

ˇ

ˇ

zJ

ˆ

1

θmp
XXJ ´ I

˙

z

ˇ

ˇ

ˇ

ˇ

“ sup
zPSn´1

ˇ

ˇ

ˇ

ˇ

ˇ

1

θmp
zJ

˜

p
ÿ

i“1

XiX
J
i

¸

z ´ }z}
2

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
zPSn´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

θmp

p
ÿ

i“1

˜

K
ÿ

k“1

Cxik
zk

¸J ˜

K
ÿ

i“1

Cxik
zk

¸

´ }z}
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
zPSn´1

ˇ

ˇ

ˇ

ˇ

ˇ

1

θmp

p
ÿ

i“1

˜

K
ÿ

k“1

zJ
k C

J
xik

Cxik
zk ` 2

ÿ

k ­“ℓ

zJ
k C

J
xik

Cxiℓ
zℓ

¸

´ }z}
2

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
zPSn´1

K
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

zJ
k

˜

1

θmp

p
ÿ

i“1

CJ
xik

Cxik
´ I

¸

zk

ˇ

ˇ

ˇ

ˇ

ˇ

` 2
ÿ

k ­“ℓ

ˇ

ˇ

ˇ

ˇ

ˇ

zJ
k

˜

1

θmp

p
ÿ

i“1

CJ
xik

Cxiℓ

¸

zℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ď K´1
K
ÿ

k“1

›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xik

Cxik
´ I

›

›

›

›

›

` 2K´1
ÿ

k ­“ℓ

›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xik

Cxiℓ

›

›

›

›

›

.
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By Lemma E.21, we obtain
›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď t1 ` 2Kt2 ď δ

with probability at least

1 ´ 2m exp
`

´c1θpmin
␣

δ2, δ
(˘

´ 2mK exp
´

´c2θpmin
!

`

K´1δ
˘2

,K´1δ
)¯

.

Finally, the second inequality directly follows from the fact that
›

›

›

›

1

θmp
XXJ ´ I

›

›

›

›

ď δ ùñ }X}
2

ď pθmpq p1 ` δq ,

as desired.

Lemma E.21 Suppose xij satisfies Assumption E.2. For any j P rKs, we have
›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xij

Cxij
´ I

›

›

›

›

›

ď t1

holding with probability at least 1 ´ 2m exp
´

´
θp
8 min

!

t21
2 , t1

)¯

. Moreover, for any k, ℓ P rKs

with k ­“ ℓ, we have
›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xik

Cxiℓ

›

›

›

›

›

ď t2

holding with probability at least 1 ´ 2m2

n exp
´

´
θp
2 min

␣

t22, t2
(

¯

.

Proof Notice that

CJ
xij

Cxij “ F ˚ diag
´

|Fxij |
d2

¯

F , CJ
xik

Cxiℓ
“ F ˚ diag

`

Fxik d Fxiℓ

˘

F . (E.14)

Bounding
›

›

›

1
θnp

řp
i“1 C

J
xij

Cxij
´ I

›

›

›
. From Equation (E.14), we have

›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xij

Cxij ´ I

›

›

›

›

›

“

›

›

›

›

›

F ˚ diag

˜

1

θnp

p
ÿ

i“1

|Fxij |
d2

´ 1

¸

F

›

›

›

›

›

ď

›

›

›

›

›

1

θnp

p
ÿ

i“1

|Fxij |
d2

´ 1

›

›

›

›

›

8

.

Let f˚
k be a row of F , by Lemma A.3 we have for any ℓ ě 1,

E
”

|f˚
k xij |

2ℓ
ı

ď
2ℓℓ!

2
Ebk„Berpθq

”

}bk d fk}
2ℓ
ı

ď
ℓ!

2
θp2nqℓ.

Thus, by Bernstein inequality in Lemma A.5, we have

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

θnp

p
ÿ

i“1

|f˚
k xij |

d2
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ě t1

¸

ď 2 exp

ˆ

´
pθt21

8 ` 4t1

˙

.

Thus, by using union bounds, we obtain
›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xij

Cxij ´ I

›

›

›

›

›

ď

›

›

›

›

›

1

θnp

p
ÿ

i“1

|Fxij |
d2

´ 1

›

›

›

›

›

8

ď t1

for all 1 ď j ď K with probability at least 1 ´ 2nK exp
´

´
θp
8 min

!

t21
2 , t1

)¯

.
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Bounding
›

›

›

1
θnp

řp
i“1 C

J
xik

Cxiℓ

›

›

›
. On the other hand, by Equation (E.14), we know that

›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xik

Cxiℓ

›

›

›

›

›

ď

›

›

›

›

›

1

θnp

p
ÿ

i“1

Fxik d Fxiℓ

›

›

›

›

›

8

.

Let zkℓid “ f˚
d xikf

˚
d xiℓ “ xJ

ikfdf
˚
d xiℓ (1 ď d ď n), we have its moments for s ě 1

E
”

ˇ

ˇzkℓid
ˇ

ˇ

s
ı

ď E
”

ˇ

ˇxJ
ikfd

ˇ

ˇ

s
ı

E
“

|f˚
d xiℓ|

s‰
ď

s!

2
Ebd„Berpθq

”

}bd d fd}
2s
ı

ď
s!

2
θns.

Thus, by Bernstein inequality in Lemma A.5, we obtain

P

˜

1

θnp

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÿ

i“1

zkℓid

ˇ

ˇ

ˇ

ˇ

ˇ

ě t2

¸

ď 2 exp

ˆ

´
θpt22

2 ` 2t2

˙

.

Thus, by applying union bounds, we have
›

›

›

›

›

1

θnp

p
ÿ

i“1

CJ
xik

Cxiℓ

›

›

›

›

›

ď t2

for all 1 ď k, ℓ ď K and k ­“ ℓ with probability at least 1 ´ 2mK exp
´

´
θp
2 min

␣

t22, t2
(

¯

.

F MEASURE CONCENTRATION

In this part of the appendix, we show measure concentration of Riemannian gradient and Hessian
for both φDLpqq and φCDLpqq over the sphere. Before that, we first show the following preliminary
results that are key for our proof. For simplicity, we also use K “ m{n throughout the section.

F.1 PRELIMINARY RESULTS

Here, as the gradient and Hessian of ℓ4-loss is heavy-tailed, traditional concentration tools do not
directly apply to our cases. Therefore, we first develop some general tools for concentrations of
superema of heavy-tailed empirical process over the sphere. In later part of this appendix, we will
apply these results for concentration of Riemannian gradient and Hessian for both overcomplete
dictionary learning and convolutional dictionary learning.

Theorem F.1 (Concentration of heavy-tailed random matrices over the sphere) Let
Z1,Z2, ¨ ¨ ¨ ,Zp P Rn1ˆn2 be i.i.d. centered subgaussian random matrices, with
Zi ”d Z p1 ď i ď pq and

E rZijs “ 0, P p|Zij | ą tq ď 2 exp

ˆ

´
t2

2σ2

˙

.

For a fixed q P Sn´1, let us define a function fqp¨q : Rn1ˆn2 ÞÑ Rd1ˆd2 , such that

1. fqpZq is a heavy tailed process of Z, in the sense of P
`

}fqpZq} ě t
˘

ď 2 exp
`

´C
?
t
˘

.

2. The expectation E rfqpZqs is bounded and Lf -Lipschitz, i.e.,

}E rfqpZqs} ď Bf , and }E rfq1
pZqs ´ E rfq2

pZqs} ď Lf }q1 ´ q2} , @ q1, q2 P Sn´1.
(F.1)

3. Let Z be a truncated random matrix of Z, such that

Z “ Z ` pZ, Zij “

"

Zij if |Zij | ă B,

0 otherwise.
(F.2)

with B “ 2σ
a

log pn1n2pq. For the truncated matrix Z, we further assume that
›

›fqpZq
›

› ď R1pσq, max
␣›

›E
“

fqpZqJfqpZq
‰›

› ,
›

›fqpZqfqpZqJ
›

›

(

ď R2pσq, (F.3)
›

›fq1pZq ´ fq2pZq
›

› ď Lf pσq }q1 ´ q2} , @ q1, q2 P Sn´1. (F.4)
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Then for any δ P

´

0, 6R2

R1

¯

, whenever

p ě Cmax

#

min td1, d2uBf

n1n2δ
, δ´2R2

«

n log

˜

6
`

Lf ` Lf

˘

δ

¸

` logpd1 ` d2q

ff+

we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ď δ,

holding with probability at least 1 ´ pn1n2pq
´2

´ n´c logppLf `Lf q{δq for some constant c, C ą 0.

Proof As aforementioned, traditional concentration tools does not directly apply due to the heavy-
tailed behavior of fqpZq. To circumvent the difficulties, we first truncate Z and introduce bounded
random variable Z as in Equation (F.2), with truncation level B “ 2σ

a

log pn1n2pq. Thus, we have

P

˜

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

ď P

˜

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

P1ptq

` P
ˆ

max
1ďiďp

}Zi}8 ě B

˙

loooooooooooooomoooooooooooooon

P2

.

As fqpZq is also bounded, then we can apply classical concentration tools to P1ptq, and bound
P2 by using subgaussian tails of Z. In the following, we make this argument rigorous with more
technical details.

Tail bound for P2. Since Zi
jk is centered subgaussian, by an union bound, we have

P2 “ P
ˆ

max
1ďiďp

}Zi}8 ě B

˙

ď n1n2pP
`ˇ

ˇZi
jk

ˇ

ˇ ě B
˘

ď exp

ˆ

´
B2

2σ2
` log pn1n2pq

˙

.

Choose B “ 2σ
a

log pn1n2pq, we obtain

P2 “ P
ˆ

max
1ďiďp

}Zi}8 ě B

˙

ď pn1n2pq
´2

.

Tail Bound for
›

›

›

1
p

řp
i“1 fqpZiq ´ E rfqpZqs

›

›

›
with a fixed q P Sn´1. First, we control the quan-

tity for a given q P Sn´1. Later, we will turn the tail bound result to a uniform bound over the sphere
for all q P Sn´1. We first apply triangle inequality, where we have
›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ď

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E
“

fqpZq
‰

›

›

›

›

›

`
›

›E rfqpZqs ´ E
“

fqpZq
‰›

› ,

such that

P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

ď P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E
“

fqpZq
‰

›

›

›

›

›

ě t ´
›

›E rfqpZqs ´ E
“

fqpZq
‰›

›

¸

.

Notice that
›

›E
“

fqpZq
‰

´ E rfqpZqs
›

› ď
›

›E
“

fqpZq d 1Z‰Z

‰›

›

F
ď }E rfqpZqs}F

›

›E
“

1Z‰Z

‰›

›

F

ď min td1, d2uBf

d

ÿ

ij

P
`

Zij ­“ Zij

˘

ď min td1, d2uBf

d

n1n2 exp

ˆ

´
B2

2σ2

˙

,
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where for the second inequality we used Cauchy-Schwarz inequality, the third one follows from

and the last one follows from the fact in Z is subgaussian. With B “ 2σ
a

log pn1n2pq, we obtain
›

›E
“

fqpZq
‰

´ E rfqpZqs
›

› ď
min td1, d2uBf

n1n2p
,

so that

P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

ď P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E
“

fqpZq
‰

›

›

›

›

›

ě t ´
Bf

n1n2p

¸

.

Next, we need to show concentration of
›

›

›

1
p

řp
i“1 fqpZiq ´ E

“

fqpZq
‰

›

›

›
to finish this part of proof.

By our assumption in Equation (F.3), we apply bounded Bernstein’s inequality in Lemma A.7, such
that

P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E
“

fqpZq
‰

›

›

›

›

›

ě t1

¸

ď pd1 ` d2q exp

ˆ

´
pt21

2R2 ` 4R1t2{3

˙

.

Choose p large enough such that

p ě
2min td1, d2uBf

n1n2t
ùñ

min td1, d2uBf

n1n2p
ď

t

2
.

Thus, for a fixed q P Sn´1, we have

P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

ď P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E
“

fqpZq
‰

›

›

›

›

›

ě t{2

¸

ď pd1 ` d2q exp

ˆ

´
pt2

8R2 ` 8R1t{3

˙

.

Bounding P1ptq via covering over the sphere Sn´1. Finally, we finish by . Let N pϵq be an
epsilon net of the sphere, where we know that

@ q P Sn´1, D q1 P N pϵq, s.t.
›

›q ´ q1
›

› ď ϵ, and #N pϵq ď

ˆ

3

ϵ

˙n´1

.

Thus, we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

“ sup
q1PN pϵq,}e}ďϵ

›

›

›

›

›

1

p

p
ÿ

i“1

fq1`epZiq ´ E rfq1`epZqs

›

›

›

›

›

ď sup
q1PN pϵq

›

›

›

›

›

1

p

p
ÿ

i“1

fq1 pZiq ´ E rfq1 pZqs

›

›

›

›

›

` sup
q1PN pϵq,}e}ďϵ

›

›

›

›

›

1

p

p
ÿ

i“1

fq1`epZiq ´
1

p

p
ÿ

i“1

fq1 pZiq

›

›

›

›

›

` sup
q1PN pϵq,}e}ďϵ

}E rfq1`epZqs ´ E rfq1 pZqs} .

By our Lipschitz continuity assumption in Equation (F.1) and Equation (F.4), for any q P Sn´1, we
obtain

}E rfq1`epZqs ´ E rfq1 pZqs} ď Lf }e} ,
›

›

›

›

›

1

p

p
ÿ

i“1

fq1`epZiq ´
1

p

p
ÿ

i“1

fq1 pZiq

›

›

›

›

›

ď
›

›fq1`epZq ´ fq1 pZq
›

› ď Lf }e} ,

which implies that

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ď sup
q1PN pϵq

›

›

›

›

›

1

p

p
ÿ

i“1

fq1 pZiq ´ E rfq1 pZqs

›

›

›

›

›

`
`

Lf ` Lf

˘

ϵ.
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Therefore, for any t ą 0, choose

ϵ ď
t

2pLf ` Lf q
,

so that we obtain

P

˜

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t

¸

ď P

˜

sup
q1PN pϵq

›

›

›

›

›

1

p

p
ÿ

i“1

fq1 pZiq ´ E rfq1 pZqs

›

›

›

›

›

ě t ´
`

Lf ` Lf

˘

ϵ

¸

ď P

˜

sup
q1PN pϵq

›

›

›

›

›

1

p

p
ÿ

i“1

fq1 pZiq ´ E rfq1 pZqs

›

›

›

›

›

ě t{2

¸

ď #N pϵq ¨ P

˜›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ě t{2

¸

ď

ˆ

3

ϵ

˙n´1

pd1 ` d2q exp

ˆ

´
pt2

32R2 ` 16R1t{3

˙

ď exp

˜

´min

"

pt2

64R2
,
3pt

32R1

*

` n log

˜

6
`

Lf ` Lf

˘

t

¸

` logpd1 ` d2q

¸

.

Summary of the results. Therefore, combining all the results above, for any δ P

´

0, 6R2

R1

¯

, when-
ever

p ě Cmax

#

min td1, d2uBf

n1n2δ
, δ´2R2

«

n log

˜

6
`

Lf ` Lf

˘

δ

¸

` logpd1 ` d2q

ff+

,

we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpZiq ´ E rfqpZqs

›

›

›

›

›

ď δ,

holding with probability at least 1´ pn1n2pq
´2

´n´c logppLf `Lf q{δq for some constant c, C ą 0.

Corollary F.2 (Concentration of heavy-tailed random vectors over the sphere) Let
z1, z2, ¨ ¨ ¨ , zp P Rn1 be i.i.d. centered subgaussian random matrices, with zi ”d z p1 ď i ď pq

and

E rzis “ 0, P p|zi| ą tq ď 2 exp

ˆ

´
t2

2σ2

˙

.

For a fixed q P Sn´1, let us define a function fqp¨q : Rn1 ÞÑ Rd1 , such that

1. fqpzq is a heavy tailed process of z, in the sense of P
`

}fqpzq} ě t
˘

ď 2 exp
`

´C
?
t
˘

.

2. The expectation E rfqpzqs is bounded and Lf -Lipschitz, i.e.,

}E rfqpzqs} ď Bf , and }E rfq1pzqs ´ E rfq2pzqs} ď Lf }q1 ´ q2} , @ q1, q2 P Sn´1.
(F.5)

3. Let z be a truncated random matrix of z, such that

z “ z ` pz, zi “

"

zi if |zi| ă B,

0 otherwise.
(F.6)

with B “ 2σ
a

log pn1pq. For the truncated matrix z, we further assume that

}fqpzq} ď R1pσq, E
”

}fqpzq}
2
ı

ď R2pσq, (F.7)

}fq1pzq ´ fq2pzq} ď Lf pσq }q1 ´ q2} , @ q1, q2 P Sn´1. (F.8)
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Then for any δ P

´

0, 6R2

R1

¯

, whenever

p ě Cmax

#

Bf

n1δ
, δ´2R2

«

n log

˜

6
`

Lf ` Lf

˘

δ

¸

` logpd1q

ff+

,

we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpziq ´ E rfqpzqs

›

›

›

›

›

ď δ,

holding with probability at least 1 ´ pn1pq
´2

´ n´c logppLf `Lf q{δq for some constant c, C ą 0.

Proof The proof is analogous to that of Theorem F.1. The slight difference is that we need to apply
vector version Bernstein’s inequality in Lemma A.8 instead of matrix version in Lemma A.7, by
utilizing our assumption in Equation (F.7). We omit the detailed proof here.

F.2 CONCENTRATION FOR OVERCOMPLETE DICTIONARY LEARNING

In this part of appendix, we assume that the dictionary A is tight frame with ℓ2-norm bounded
columns

1

K
AAJ “ I, }ai} ď M p1 ď i ď mq. (F.9)

for some M with 1 ď M ď
?
K.

F.2.1 CONCENTRATION OF gradφDLp¨q

First, we show concentration of gradφDLpqq to its expectation E rgradφDLpqqs “ gradφTpqq,

gradφDLpqq “ ´
1

3θp1 ´ θqp
PqK

p
ÿ

k“1

`

qJAxk

˘3
pAxkq ÝÑ gradφTpqq “ ´PqKA

`

AJq
˘d3

,

where xk follows i.i.d. BGpθq distribution in Assumption 2.2. Concretely, we have the following
result.

Proposition F.3 (Concentration of gradφDLp¨q) Suppose A satisfies Equation (F.9) and X P

Rmˆp follows BGpθq with θ P
`

1
m , 1

2

˘

. For any given δ P
`

0, cK2{pm log2 p log2 npq
˘

, whenever

p ě Cδ´2θK5n2 log

ˆ

θKn

δ

˙

,

we have

sup
qPSn´1

}gradφDLpqq ´ gradφTpqq} ă δ

holds with probability at least 1 ´ c1p´2. Here, c, c1, C ą 0 are some numerical constants.

Proof Since we have

gradφDLpqq “ ´
1

3θp1 ´ θqp
PqK

p
ÿ

k“1

`

qJAxk

˘3
pAxkq ,

we invoke Corollary F.2 to show this result by letting

fqpxq “ ´
1

3θp1 ´ θq

`

qJAx
˘3

PqKAx P Rn, (F.10)

where x „ BGpθq and we need to check the conditions in Equation (F.5), Equation (F.7), and
Equation (F.8).
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Calculating subgaussian parameter σ2 for x and truncation. Since each entry of x follows
xi „i.i.d. BGpθq, its tail behavior is very similar and can be upper bounded by the tail of Gaussian,
i.e.,

P p|xi| ě tq ď exp
`

´t2{2
˘

,

so that we choose the truncation level B “ 2
a

log pnpq.

Calculating R1 and R2 in Equation (F.7). First, for each i p1 ď i ď pq, we have

}fqpxiq} “
1

3θp1 ´ θq

›

›

›

`

qJAxi

˘3
PqKAxi

›

›

›
ď

}Axi}
4

3θp1 ´ θq
ď

}A}
4

}xi}
4

3θp1 ´ θq
ď

K2 }xi}
4

3θp1 ´ θq
.

By Lemma A.9 and a union bound, we know that for any 1 ď i ď p,

}xi}0 ď 4θm log p, }xi}0 ď 4θm log p ùñ }xi}
2

ď B2 }xi}0 “ 4B2θm log p
(F.11)

with probability at least 1 ´ p´2θm. Thus, by our truncation level, we have w.h.p.

}fqpxiq} ď
6θ

p1 ´ θq
K2B4m2 log2 p “ R1.

On the other hand, by Lemma F.5, for the second moment we have

E
”

}fqpxiq}
2
ı

ď E
”

}fqpxiq}
2
ı

ď cθK4m

for some constant c ą 0. Thus, we obtain

R1 “
6θ

p1 ´ θq
K2B4m2 log2 p, R2 “ cθK4m. (F.12)

Calculating Lf in Equation (F.8). Notice that for any q1, q2 P Sn´1, let ζi “ AJqi pi “ 1, 2q,
by Lemma F.4 we have

}fq1
pxq ´ fq2

pxq} “
1

3θp1 ´ θq

›

›

›

`

ζJ
1 x

˘3
PqK

1
Ax ´

`

ζJ
2 x

˘3
PqK

2
Ax

›

›

›

ď
}A} }x}

3θp1 ´ θq

›

›

›

`

ζJ
1 x

˘3
PqK

1
´
`

ζJ
2 x

˘3
PqK

2

›

›

›

ď
}A} }x}

3θp1 ´ θq

”

ˇ

ˇζJ
1 x

ˇ

ˇ

3
›

›

›
PqK

1
´ PqK

2

›

›

›
`

ˇ

ˇ

ˇ

`

ζJ
1 x

˘3
´
`

ζJ
2 x

˘3
ˇ

ˇ

ˇ

ı

ď
}A} }x}

3θp1 ´ θq

”

2 }A}
3

}x}
3

}q1 ´ q2} ` 3 }A}
3

}x}
3

}q1 ´ q2}

ı

ď
2 }A}

4
}x}

4

θp1 ´ θq
}q1 ´ q2} .

where for the last two inequalities we used Lemma A.11 and
ˇ

ˇ

ˇ

`

ζJ
1 x

˘3
´
`

ζJ
2 x

˘3
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pζ1 ´ ζ2q

J
x
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ζJ
1 x

˘2
`
`

ζJ
1 x

˘ `

ζJ
2 x

˘

`
`

ζJ
2 x

˘2
ˇ

ˇ

ˇ

ď }A} }x} }q1 ´ q2}

”

`

ζJ
1 x

˘2
`
`

ζJ
2 x

˘2
`
ˇ

ˇζJ
1 x

ˇ

ˇ

ˇ

ˇζJ
2 x

ˇ

ˇ

ı

ď 3 }A}
3

}x}
3

}q1 ´ q2} .

Furthermore, by Equation (F.11) we obtain

}fq1
pxq ´ fq2

pxq} ď
2 }A}

4
}x}

4

θp1 ´ θq
}q1 ´ q2} ď

32θ

1 ´ θ
K2B4m2 log2 p }q1 ´ q2} .

This gives

Lf “
32θ

1 ´ θ
K2B4m2 log2 p. (F.13)
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Calculating Bf and Lf in Equation (F.5). From Lemma F.4 we know that E rfqpxqs “

PqKAζd3, so that

}E rfqpxqs} “

›

›

›
PqKA

`

AJq
˘d3

›

›

›
ď

›

›PqK
›

› }A}
›

›AJq
›

›

3

6

ď }A}
›

›AJq
›

›

3
ď }A}

4
“ K2 “ Bf , (F.14)

where we used Lemma A.1 for the second inequality. Moreover, we have

}E rfq1pxqs ´ E rfq2pxqs}

ď

›

›

›
PqK

1
Aζd3

1 ´ PqK
1
Aζd3

2

›

›

›
`

›

›

›
PqK

1
Aζd3

2 ´ PqK
2
Aζd3

2

›

›

›

ď }A}
›

›ζd3
1 ´ ζd3

2

›

› `

›

›

›
PqK

1
´ PqK

2

›

›

›
}A}

›

›ζd3
2

›

›

ď }A}
›

›pζ1 ´ ζ2q d
`

ζd2
1 ` ζ1 d ζ2 ` ζd2

1

˘›

› ` 2 }A} }ζ2}
3

}q1 ´ q2}

ď 5 }A}
4

}q1 ´ q2} “ 5K2 }q1 ´ q2} “ Lf }q1 ´ q2} . (F.15)

where for the last inequality, we used the fact that
›

›pζ1 ´ ζ2q d
`

ζd2
1 ` ζ1 d ζ2 ` ζd2

1

˘›

› ď }ζ1 ´ ζ2}4

›

›ζd2
1 ` ζ1 d ζ2 ` ζd2

1

›

›

4

ď
›

›AJ pq1 ´ q2q
›

›

`›

›ζd2
1

›

› ` }ζ1 d ζ2} `
›

›ζd2
1

›

›

˘

ď 3 }A}
3

}q1 ´ q2} .

Thus, from Equation (F.14) and Equation (F.15), we obtain

Bf “ K2, Lf “ 5K2. (F.16)

Final calculation. Finally, we are now ready to put all the estimations in Equations (F.12), (F.13)
and (F.16) together and apply Corollary F.2 to obtain our result. For any δ P

´

0, 6R2

R1

¯

, whenever

p ě Cδ´2θK5n2 log pθKn{δq ,

we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpziq ´ E rfqpzqs

›

›

›

›

›

ď δ,

holding with probability at least 1´pnpq
´2

´n´c1 logpθKn{δq ´p´2θm for some constant c1, C ą 0.

Lemma F.4 (Expectation of gradφDLp¨q) @q P Sn´1, the expectation of gradφDLp¨q satisfies

gradφDLpqq “ gradφTpqq “ ´PqKA
`

AJq
˘d3

Proof Direct calculation.

Lemma F.5 Suppose x „ BGpθq and let fqpxq be defined as Equation (F.10), then we have

E
”

}fqpxq}
2
ı

ď CθK4m pK “ m{nq.

Proof Since x „ BGpθq, we write x “ b d g with „„„ Berpθq and g „ N p0, Iq. Let I be the
nonzero support of x with I “ suppx. And let PIp¨q be an operator that restricts a vector to the
support I, so that we can write x “ PIpgq. Notice that

E }fqpxq}
2

“ E

«

m
ÿ

k“1

“

fd2
q pxq

‰

k

ff

ď m max
kPrms

E
“

fd2
q pxq

‰

k
.
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Let W “ PqKA with wk being the kth row of W . For @k P rns,

“

Efd2
q pxq

‰

k
“

1

9θ2p1 ´ θq2
E

»

–

`

qJAx
˘6

˜

m
ÿ

i“1

wk,ixi

¸2
fi

fl

ď
1

9θ2p1 ´ θq2

´

E
@

AJq,x
D12

¯
1
2
´

E xwk,xy
4
¯

1
2

“
1

9θ2p1 ´ θq2

´

E
@

PI
`

AJq
˘

, g
D12

¯
1
2
´

E xPI pwkq , gy
4
¯

1
2

.

Notice that
@

PI
`

AJq
˘

,v
D

„ N p0,
›

›PI
`

AJq
˘›

›

2
q and xPI pwkq ,vy „ N p0, }PI pwkq}

2
q,

hence
´

E
@

PI
`

AJq
˘

,v
D12

¯
1
2

“
?
11!!

´

EI
›

›PI
`

AJq
˘›

›

12
¯

1
2

.

Let AJq “ ζ, then we have

EI
›

›PI
`

AJq
˘›

›

12
“

ÿ

k1,k2,...,k6

m2
k1
1k1PIζ

2
k2
1k2PIζ

2
k3
1k3PIζ

2
k4
1k4PIζ

2
k5
1k5PIζ

2
k6
1k6PI , (F.17)

for bounding equation F.17, we discuss the following cases:

• When only one index among k1, k2, . . . , k6 is in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ

ÿ

k1

ζ12k1
ď θK6

• When only two indices among k1, k2, . . . , k6 are in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ2

ÿ

k1,k2

`

ζ2k1
ζ10k2

` ζ4k1
ζ8k2

` ζ6k1
ζ6k2

˘

ď 3θ2K6

• When only three indices among k1, k2, . . . , k6 are in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ3

ÿ

k1,k2,k3

`

ζ2k1
ζ2k2

ζ8k3
` ζ2k1

ζ4k2
ζ6k3

` ζ4k1
ζ4k2

ζ4k3

˘

ď 3θ3K6

• When only four indices among k1, k2, . . . , k6 are in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ4

ÿ

k1,k2,k3,k4

`

ζ2k1
ζ2k2

ζ2k3
ζ6k4

` ζ2k1
ζ2k2

ζ4k3
ζ4k4

˘

ď 2θ4K6

• When only five indices among k1, k2, . . . , k6 are in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ5

ÿ

k1,k2,k3,k4,k5

`

ζ2k1
ζ2k2

ζ2k3
ζ2k4

ζ4k5

˘

ď θ5K6

• When all six indices of k1, k2, . . . , k6 are in I:

EI
›

›PI
`

AJq
˘›

›

12
“ θ6

ÿ

k1,k2,k3,k4,k5,k6

`

ζ2k1
ζ2k2

ζ2k3
ζ2k4

ζ2k5
ζ2k6

˘

ď θ6K6.

Hence, we have

EI
›

›PI
`

AJq
˘›

›

12
“ θK6 ` 3θ2K6 ` 3θ3K6 ` 2θ4K6 ` θ5K6 ` θ6K6 ď C1θK

6

for a constant C1 ą 11. Similarly, we have
´

E xPI pwkq ,vy
4
¯

1
2

“
?
3
´

EI }PI pwkq}
4
¯

1
2

,
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and

EI }PI pwkq}
4

“
ÿ

k1,k2

w2
k,k1

1k1PIw
2
k,k2

1k2PI ď C2θ
m2

n2
,

for a constant C2 ą 2. Hence, we have
´

E
@

PI
`

AJq
˘

, g
D12

¯
1
2
´

E xPIwk, gy
4
¯

1
2

ď C3θ
m4

n4
,

for a constant C3 ą 829. Hence, we know that @k P rns,

“

Efd2
q pxq

‰

k
ď

C4

θp1 ´ θq2
m4

n4
“ CθK4,

for a constant C4 ą 93. Therefore

E }fqpxq}
2

ď CθK4m,

for a constant C ą 93
θ2p1´θq2

.

F.2.2 CONCENTRATION OF HessφDLp¨q

Proposition F.6 (Concentration of HessφDLp¨q) Suppose A satisfies Equation (F.9) and X P

Rmˆp follows BGpθq with θ P
`

1
m , 1

2

˘

. For any given δ P
`

0, cK2{plog2 p log2 npq
˘

, whenever

p ě Cδ´2θK6n3 log pθKn{δq ,

we have

sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ă δ

holds with probability at least 1 ´ c1p´2. Here, c, c1, C ą 0 are some numerical constants.

Proof Since we have

HessφDLpqq “ ´
1

3θp1 ´ θqp

p
ÿ

k“1

PqK

”

3
`

qJAxk

˘2
Axk pAxkq

J
´
`

qJAxk

˘4
I
ı

PqK ,

we invoke Theorem F.1 to show our result by letting

fqpxq “ ´
1

3θp1 ´ θq
PqK

”

3
`

qJAx
˘2

Ax pAxq
J

´
`

qJAx
˘4

I
ı

PqK P Rnˆn, (F.18)

where x „ BGpθq and we need to check the conditions in Equation (F.1), Equation (F.3), and
Equation (F.4).

Calculating subgaussian parameter σ2 for x and truncation. Since each entry of x follows
xi „i.i.d. BGpθq, its tail behavior is very similar and can be upper bounded by the tail of Gaussian,
i.e.,

P p|xi| ě tq ď exp
`

´t2{2
˘

,

so that we choose the truncation level B “ 2
a

log pnpq. By Lemma A.9 and a union bound, we
know that for any 1 ď i ď p,

}xi}0 ď 4θm log p, }xi}0 ď 4θm log p ùñ }xi}
2

ď B2 }xi}0 “ 4B2θm log p
(F.19)

with probability at least 1 ´ p´2θm.
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Calculating R1 and R2 in Equation (F.3). For simplicity, let ξ “ Ax. First of all, we have

}fqpxq} “
1

3θp1 ´ θq

›

›

›
PqK

”

3
`

qJξ
˘2

ξξ
J

´
`

qJξ
˘4

I
ı

PqK

›

›

›

ď
1

3θp1 ´ θq

`

qJξ
˘2

›

›

›
3ξξ

J
´
`

qJξ
˘2

I
›

›

›

ď
4

3θp1 ´ θq

›

›ξ
›

›

4
ď

4

3θp1 ´ θq
}A}

4
}x}

4
ď

64B4

3p1 ´ θq
θK2m2 log2 p.

On the other hand, by Lemma F.7, we have
›

›E
“

fqpxqfqpxqJ
‰›

› “
›

›E
“

fqpxqJfqpxq
‰›

› ď
›

›E
“

fqpxqJfqpxq
‰›

› ď c1θK
4m2,

for some numerical constant c1 ą 0. In summary, we obtain

R1 “
64B4

3p1 ´ θq
θK2m2 log2 p, R2 “ c1K

4θm2. (F.20)

Calculating Lf in Equation (F.4). For any q1, q2 P Sn´1, we have

}fq1pxq ´ fq2pxq}

“
1

3θp1 ´ θq

›

›

›
PqK

1

”

3
`

qJ
1 ξ

˘2
ξξ

J
´
`

qJ
1 ξ

˘4
I
ı

PqK
1

´ PqK
2

”

3
`

qJ
2 ξ

˘2
ξξ

J
´
`

qJ
2 ξ

˘4
I
ı

PqK
2

›

›

›

ď
1

θp1 ´ θq

›

›

›
PqK

1

`

qJ
1 ξ

˘2
ξξ

J
PqK

1
´ PqK

2

`

qJ
2 ξ

˘2
ξξ

J
PqK

2

›

›

›

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

T1

`
1

3θp1 ´ θq

›

›

›

`

qJ
1 ξ

˘4
PqK

1
´
`

qJ
2 ξ

˘4
PqK

2

›

›

›

looooooooooooooooomooooooooooooooooon

T2

,

where by Lemma A.11, we have

T1 ď

›

›

›
PqK

1

`

qJ
1 ξ

˘2
ξξ

J
PqK

1
´ PqK

1

`

qJ
1 ξ

˘2
ξξ

J
PqK

2

›

›

›
`

›

›

›
PqK

1

`

qJ
1 ξ

˘2
ξξ

J
PqK

2
´ PqK

2

`

qJ
2 ξ

˘2
ξξ

J
PqK

2

›

›

›

ď
›

›ξ
›

›

4
›

›

›
PqK

1
´ PqK

2

›

›

›
`

›

›

›
PqK

1

`

qJ
1 ξ

˘2
ξξ

J
´ PqK

1

`

qJ
2 ξ

˘2
ξξ

J
›

›

›
`

›

›

›
PqK

1

`

qJ
2 ξ

˘2
ξξ

J
´ PqK

2

`

qJ
2 ξ

˘2
ξξ

J
›

›

›

ď
›

›ξ
›

›

4
›

›

›
PqK

1
´ PqK

2

›

›

›
`

›

›ξ
›

›

2 `
qJ
1 ξ ` qJ

2 ξ
˘ `

qJ
1 ξ ´ qJ

2 ξ
˘

ď 4
›

›ξ
›

›

4
}q1 ´ q2} ď 4 }A}

4
}x}

4
}q1 ´ q2} ď 64K2B4θ2m2 log2 p }q1 ´ q2} ,

and

T2 ď

›

›

›

`

qJ
1 ξ

˘4
PqK

1
´
`

qJ
2 ξ

˘4
PqK

1

›

›

›
`

›

›

›

`

qJ
2 ξ

˘4
PqK

1
´
`

qJ
2 ξ

˘4
PqK

2

›

›

›

ď

´

`

qJ
1 ξ

˘2
`
`

qJ
2 ξ

˘2
¯

pq1 ` q2q
J
ξξ

J
pq1 ´ q2q ` 2

›

›ξ
›

›

4
}q1 ´ q2}

ď 6
›

›ξ
›

›

4
}q1 ´ q2} ď 6 }A}

4
}x}

4
}q1 ´ q2} ď 96K2B4θ2m2 log2 p }q1 ´ q2} ,

where for the last inequality we used Equation (F.19). Therefore, we have

}fq1pxq ´ fq2pxq} ď
96θ

1 ´ θ
K2B4m2 log2 p }q1 ´ q2} ,

so that

Lf “
96θ

1 ´ θ
K2B4m2 log2 p. (F.21)

Calculating Bf and Lf in Equation (F.1). We have

}E rfqpxqs} “

›

›

›
PqK

”

3A diag
`

ζd2
˘

AJ ´ }ζ}
4
4 I

ı

PqK

›

›

›

ď

›

›

›
3Adiag

`

ζd2
˘

AJ ´ }ζ}
4
4 I

›

›

›

ď 3 }A}
2

}A}
2
ℓ1Ñℓ2 ` }A}

4
ď K

`

3M2 ` K
˘

,

52



Under review as a conference paper at ICLR 2020

where }A}ℓ1Ñℓ2 “ max1ďkďm }ak} ď M . On the other hand, for any q1, q2 P Sn´1, we have

}E rfq1pxqs ´ E rfq2pxqs}

“

›

›

›
PqK

1

”

3Adiag
`

ζd2
1

˘

AJ ´ }ζ1}
4
4 I

ı

PqK
1

´ PqK
2

”

3Adiag
`

ζd2
2

˘

AJ ´ }ζ2}
4
4 I

ı

PqK
2

›

›

›

ď 3
›

›

›
PqK

1
Adiag

`

ζd2
1

˘

AJPqK
1

´ PqK
2
Adiag

`

ζd2
2

˘

AJPqK
2

›

›

›

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

L1

`

›

›

›
}ζ1}

4
4 PqK

1
´ }ζ2}

4
4 PqK

2

›

›

›

loooooooooooooomoooooooooooooon

L2

.

By direct calculation, we have

L1 ď

›

›

›
PqK

1
Adiag

`

ζd2
1

˘

AJPqK
1

´ PqK
2
Adiag

`

ζd2
2

˘

AJPqK
2

›

›

›

ď

›

›

›
PqK

1
Adiag

`

ζd2
1

˘

AJ
´

PqK
1

´ PqK
2

¯›

›

›
`

›

›

›

”

PqK
1
Adiag

`

ζd2
1

˘

´ PqK
2
Adiag

`

ζd2
2

˘

ı

AJPqK
2

›

›

›

ď }A}
2

}ζ1}
2
8

›

›

›
PqK

1
´ PqK

2

›

›

›
` }A}

´›

›

›

´

PqK
1

´ PqK
2

¯

A diag
`

ζd2
1

˘

›

›

›
`

›

›

›
PqK

2
A diag

`

ζd2
1 ´ ζd2

2

˘

›

›

›

¯

ď 2 }A}
2

}ζ1}
2
8 }q1 ´ q2} ` 2 }A}

2
}ζ1}

2
8 }q1 ´ q2} ` }A}

2
}ζ1 ` ζ2}8 }ζ1 ´ ζ2}8

ď 6 }A}
2

}A}
2
ℓ1Ñℓ2 }q1 ´ q2} ď 6KM2 }q1 ´ q2} ,

and

L2 ď }ζ1}
4
4

›

›

›
PqK

1
´ PqK

2

›

›

›
`

ˇ

ˇ

ˇ
}ζ1}

4
4 ´ }ζ2}

4
4

ˇ

ˇ

ˇ

›

›

›
PqK

2

›

›

›

ď 2 }A}
4

}q1 ´ q2} ` |}ζ1}4 ´ }ζ2}4| p}ζ1}4 ` }ζ2}4q

´

}ζ1}
2
4 ` }ζ2}

2
4

¯

ď 2 }A}
4

}q1 ´ q2} ` }ζ1 ´ ζ2} p}ζ1} ` }ζ2}q

´

}ζ1}
2

` }ζ2}
2
¯

ď 6 }A}
4

}q1 ´ q2} “ 6K2 }q1 ´ q2} .

These together give us

}E rfq1
pxqs ´ E rfq2

pxqs} ď 6K
`

K ` M2
˘

}q1 ´ q2} .

Summarizing everything together, we have

Bf “ K
`

3M2 ` K
˘

, Lf “ 6K
`

K ` M2
˘

. (F.22)

Final calculation. Finally, we are now ready to put all the estimations in Equations (F.20) to (F.22)
together and apply Theorem F.1 to obtain our result. For any δ P

´

0, 6R2

R1

¯

, whenever

p ě Cδ´2θK6n3 log pθKn{δq ,

we have

sup
qPSn´1

›

›

›

›

›

1

p

p
ÿ

i“1

fqpziq ´ E rfqpzqs

›

›

›

›

›

ď δ,

holding with probability at least 1´pnpq
´2

´n´c1 logpθKn{δq ´p´2θm for some constant c1, C ą 0.

Lemma F.7 Suppose θ P
`

1
m , 1

2

˘

. Let fqpxq be defined as in Equation (F.18). We have
›

›E
“

fqpxqJfqpxq
‰›

› ď CK4θm2

for some numerical constant C ą 0.

Proof Let x “ b d g with b „ Berpθq and g „ N p0, Iq. First, let ξ “ Ax, we have
›

›E
“

fqpxqJfqpxq
‰›

› “

›

›

›
E
”

9
`

qJξ
˘4

PqKξξJPqKξξJPqK ´ 6
`

qJξ
˘6

PqKξξPqK `
`

qJξ
˘8

PqK

ı›

›

›

ď 9
›

›

›
E
”

`

qJξ
˘4

PqKξξJPqKξξJPqK

ı›

›

›

looooooooooooooooooooomooooooooooooooooooooon

T1

`6
›

›

›
PqKE

”

`

qJξ
˘6

ξξJ
ı

PqK

›

›

›

loooooooooooooooomoooooooooooooooon

T2

`E
”

`

qJξ
˘8
ı

looooomooooon

T3

.
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Bound

T1 “

›

›

›
E
”

`

qJξ
˘4

PqKξξJPqKξξJPqK

ı›

›

›
ď

›

›

›
E
”

`

qJξ
˘4

ξξJPqKξξJ
ı›

›

›

“

›

›

›
E
”

`

qJξ
˘4 ›

›PqKξ
›

›

2
ξξJ

ı›

›

›
ď E

”

`

qJξ
˘4

}ξ}
4
ı

ď
␣

EpqJξq8
(1{2

!

E }ξ}
8
)1{2

“

!

E
”

@

PIpAJqq, g
D8
ı)1{2

"

´m

n

¯4

E
“

pxJxq4
‰

*1{2

,

where
!

E
”

@

PIA
Jq, g

D8
ı)

1
2

“
?
7!!

´

EI
›

›PIA
Jq

›

›

8
¯

1
2

ď C1θ
´m

n

¯2

(F.23)

the proof of the last inequality is omitted, more details can be found in Lemma F.5, and

E
”

`

xJx
˘4
ı

“ E
”

xPIx,PIxy
4
ı

“ E
”

@

PIp1mq, gd2
D4
ı

ď c1mθ ` c2m
2θ2 ` c3m

3θ3 ` c4m
4θ4. (F.24)

combine, equation F.23 and equation F.24, yield

T1 ď C1θ
3m2

´m

n

¯4

.

T2 “

›

›

›
PqKE

”

`

qJξ
˘6

ξξJ
ı

PqK

›

›

›
ď

›

›

›
E
”

`

qJξ
˘6

ξξJ
ı›

›

›
“ E

”

`

qJξ
˘6

}ξ}
2
ı

ď
␣

EpqJξq12
(1{2

!

E }ξ}
4
)1{2

ď

!

E
@

AJq,x
D12

)1{2 !

E }Ax}
4
)1{2

“

!

E
@

PIpAJqq, g
D12

)1{2
"

´m

n

¯2

EpxJxq2
*1{2

ď C2EI

”

›

›PIpAJqq
›

›

12
ı1{2

„

´m

n

¯2
`

3mθ ` mpm ´ 1qθ2
˘

ȷ1{2

ď C2θ
2m

´m

n

¯4

.

the proof of the first inequality in the last line is omitted, more details can be found in Lemma F.5.

T3 “ E
”

@

PI
`

AJq
˘

, g
D8
ı

ď C3EI

”

›

›PI
`

AJq
˘›

›

8
ı

ď C3θ }A}
8

ď C3θ
´m

n

¯4

.

Hence, summarizing all the results above, we obtain
›

›E
“

fqpxqJfqpxq
‰›

› ď Cθm2
´m

n

¯4

as desired.

Lemma F.8 (Expectation of HessφDLp¨q) @q P Sn´1, the expectation of HessφDLp¨q satisfies

HessφDLpqq “ HessφTpqq “ ´PqK

”

3Adiag
`

pAqJqd2
˘

AJ ´
›

›qJA
›

›

4

4
I
ı

PqK

Proof Direct calculation.

F.3 CONCENTRATION FOR CONVOLUTIONAL DICTIONARY LEARNING

In this section, we show concentration for the Riemannian gradient and Hessian of the following
objective for convolutional dictionary learning,

pφCDLpqq “ ´
1

12θ p1 ´ θqnp

›

›qJAX
›

›

4

4
“ ´

1

12θ p1 ´ θqnp

p
ÿ

i“1

›

›qJAXi

›

›

4

4

with

X “ rX1 X2 ¨ ¨ ¨ Xps , Xi “

»

—

–

Cxi1

...
CxiK

fi

ffi

fl

, (F.25)
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as we introduced in Section 3, where xij follows i.i.d. BGpθq distribution as in Assumption E.2.
Since Cxij

is a circulant matrix generated from xij , it should be noted that each row and column
of X is not statistically independent, so that our concentration result of dictionary learning in the
previous subsection does not directly apply here. However, from Lemma D.1, asymptotically we
still have

EX rpφCDLpqqs “ φTpqq ´
θ

2p1 ´ θq
K2, φTpqq “ ´

1

4

›

›qJA
›

›

4

4
,

in the following we prove finite sample concentration of pφCDLpqq to its expectation φTpqq by lever-
aging our previous results for overcomplete dictionary learning in Proposition F.3 and Proposition
F.6.

F.3.1 CONCENTRATION FOR grad pφCDLp¨q

Corollary F.9 (Concentration of grad pφCDLp¨q) Suppose A satisfies Equation (F.9) and X P

Rmˆnp is generated as in Equation (F.25) with xij „i.i.d. BGpθq p1 ď i ď p, 1 ď j ď Kq

and θ P
`

1
m , 1

2

˘

. For any given δ P
`

0, cK2{pm log2 p log2 npq
˘

, whenever

p ě Cδ´2θK5n2 log

ˆ

θKn

δ

˙

,

we have

sup
qPSn´1

}grad pφCDLpqq ´ gradφTpqq} ă δ

holds with probability at least 1 ´ c1np´2. Here, c, c1, C ą 0 are some numerical constants.

Remark. Note that our prove have not utilized the convolutional structure of the problem, so that
our sample complexity could be loose of a factor of order n.

Proof Let us write

Xi “ rrxi1 rxi2 ¨ ¨ ¨ rxins , with rxij “

»

—

–

sj´1 rxi1s
...

sj´1 rxiKs

fi

ffi

fl

1 ď i ď p, 1 ď j ď n,

(F.26)

where sℓ r¨s denotes circulant shift of length ℓ. Thus, the Riemannian gradient of pφCDLpqq can be
written as

grad pφCDLpqq “ ´
1

3θp1 ´ θqnp
PqK

p
ÿ

i“1

n
ÿ

j“1

`

qJArxij

˘3
pArxijq

“
1

n

n
ÿ

j“1

„

´
1

3θp1 ´ θqp
PqK

p
ÿ

i“1

`

qJArxij

˘3
pArxijq

looooooooooooooooooooooooomooooooooooooooooooooooooon

gradj pφCDLpqq

ȷ

,

so that for each j with 1 ď j ď n,

gradj pφCDLpqq “ ´
1

3θp1 ´ θqp
PqK

p
ÿ

i“1

`

qJArxij

˘3
pArxijq

is a summation of independent random vectors across p. Hence, we have

sup
qPSn´1

}grad pφCDLpqq ´ gradφTpqq} ă
1

n

n
ÿ

j“1

˜

sup
qPSn´1

›

›gradj pφCDLpqq ´ gradφTpqq
›

›

¸

,

where for each j we can apply concentration results in Proposition F.3 for controlling each individual
quantity

›

›gradj pφCDLpqq ´ gradφTpqq
›

›. Therefore, by using a union bound we can obtain the
desired result.
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Table 1: Gradient for each different loss function

Problem Overcomplete Tensor ODL CDL

Loss φpqq ´ 1
4

›

›AJq
›

›

4

4
´ 1

4p

›

›Y Jq
›

›

4

4
´ 1

4np

řp
i“1

›

›

›

|yp
i f q

›

›

›

4

4

Gradient ∇φpqq ´A
`

AJq
˘d3

´ 1
pY

`

Y Jq
˘d3

´ 1
np

řp
i“1 y

p
i f

´

|yp
i f q

¯d3

F.3.2 CONCENTRATION FOR Hess pφCDLp¨q

Corollary F.10 (Concentration of Hess pφCDLp¨q) Suppose A satisfies Equation (F.9) and X P

Rmˆnp is generated as in Equation (F.25) with xij „i.i.d. BGpθq p1 ď i ď p, 1 ď j ď Kq

and θ P
`

1
m , 1

2

˘

. For any given δ P
`

0, cK2{pm log2 p log2 npq
˘

, whenever

p ě Cδ´2θK6n3 log pθKn{δq ,

we have

sup
qPSn´1

}HessφDLpqq ´ HessφTpqq} ă δ

holds with probability at least 1 ´ c1np´2. Here, c, c1, C ą 0 are some numerical constants.

Proof Similar to the proof of Corollary F.9, the Riemannian Hessian of pφCDLpqq can be written as

Hess pφCDLpqq

“ ´
1

3θp1 ´ θqnp

p
ÿ

i“1

n
ÿ

j“1

PqK

”

3
`

qJArxij

˘2
Axk pArxijq

J
´
`

qJArxij

˘4
I
ı

PqK

“
1

n

n
ÿ

j“1

"

´
1

3θp1 ´ θqp

p
ÿ

i“1

PqK

”

3
`

qJArxij

˘2
Axk pArxijq

J
´
`

qJArxij

˘4
I
ı

PqK

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

Hessj pφCDLpqq

*

,

so that for each j with 1 ď j ď n,

Hessj pφCDLpqq “ ´
1

3θp1 ´ θqp

p
ÿ

i“1

PqK

”

3
`

qJArxij

˘2
Axk pArxijq

J
´
`

qJArxij

˘4
I
ı

PqK

is a summation of independent random vectors across p. Hence, we have

sup
qPSn´1

}Hess pφCDLpqq ´ HessφTpqq} ă
1

n

n
ÿ

j“1

˜

sup
qPSn´1

}Hessj pφCDLpqq ´ HessφTpqq}

¸

,

where for each j we can apply concentration results in Proposition F.6 for controlling each individual
quantity }Hessj pφCDLpqq ´ HessφTpqq}. Therefore, by using a union bound we can obtain the
desired result.

G OPTIMIZATION ALGORITHMS

G.1 OPTIMIZATION

In this part of the appendix, we introduce algorithmic details for optimizing the following problem

min
q

φpqq, q P Sn´1,

where the loss function φpqq and its gradient ∇φpqq for different problems are listed in Table 1.
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Algorithm 2 Projected Riemannian Gradient Descent Algorithm

Input: Data Y P Rnˆp

Output: the vector q‹

1: Initialize the iterate qp0q randomly, and set a stepsize τ p0q.
2: while not converged do
3: Compute Riemannian gradient gradφpqpkqq “ P

pqpkqq
K∇φpqpkqq.

4: Update the iterate by

qpk`1q “ PSn´1

´

qpkq ´ τ pkq gradφpqpkqq

¯

.

5: Choose a new stepsize τ pk`1q, and set k Ð k ` 1.
6: end while

Algorithm 3 Power Method

Input: Data Y P Rnˆp

Output: the vector q‹

1: Randomly initialize the iterate qp0q.
2: while not converged do
3: Compute the gradient ∇φpqpkqq.
4: Update the iterate by

qpk`1q “ PSn´1

´

´∇φpqpkqq

¯

.

5: Set k Ð k ` 1.
6: end while

Riemannian gradient descent. To optimize the problem, the most natural idea is starting from a
random initialization, and taking projected Riemannian gradient descent steps

q Ð PSn´1 pq ´ τ ¨ gradφpqqq , gradφpqq “ PqK∇φpqq, (G.1)

where τ is the stepsize that can be chosen via linesearch or set as a small constant. We summarize
this simple method in Algorithm 2.

Power method. In Algorithm 3 we also introduce a simple power method17 Journée et al. (2010)
by noting that the loss function φpqq is concave so that the problem is equivalent to maximizing a
convex function. For each iteration, we simply update q by

q Ð PSn´1 p´∇φpqqq

which is parameter-free and enjoys much faster convergence speed. We summarized the method in
Algorithm 3. Notice that the power iteration can be interpreted as the Riemannian gradient descent
with varied step sizes in the sense that

PSn´1 pq ´ τ ¨ gradφpqqq “ PSn´1

ˆ

´ τ∇φpqq `
`

1 ´ τ ¨ qJ∇φpqq
˘

loooooooooomoooooooooon

“0

q

˙

“ PSn´1 p´∇φpqqq

by setting τ “ 1
qJ∇φpqq

.

G.2 FAST IMPLEMENTATION OF CDL VIA FFT

Given the problem setup of CDL in Section 3, in the following we describe more efficient implemen-
tation of solving CDL using convolution and FFTs. Namely, we show how to rewrite the gradient
of φCDLpqq in the convolutional form. Notice that the preconditioning matrix can be rewrite as a

17Similar approach also appears in (Zhai et al., 2019).
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circulant matrix by

P “

˜

1

θnp

p
ÿ

i“1

Cyi
CJ

yi

¸´1{2

“ F ˚ diag pppqF “ Cp, p “ F´1

˜

1

θnp

p
ÿ

i“1

|pyi|
d2

¸´1{2

,

where pyi “ Fyi. Thus, we have

PCyi “ CpCyi “ Cpfyi “ Cyp
i
, yp

i “ p f yi,

so that

min
q

φCDLpqq “ ´
1

4np

p
ÿ

i“1

›

›CJ
pfyi

q
›

›

4

4
“ ´

1

4np

p
ÿ

i“1

›

›

›

|yp
i f q

›

›

›

4

4
, s.t. q P Sn´1,

Thus, we have the gradient

∇φCDLpqq “ ´
1

np

p
ÿ

i“1

yp
i f

´

|yp
i f q

¯d3

,

where qv denote a cyclic reversal of any v P Rn, i.e., qv “ rv1, vn, vn´1, ¨ ¨ ¨ , v2s
J.
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