
Under review as a conference paper at ICLR 2020

DIFFERENCE-SEEKING GENERATIVE ADVERSARIAL
NETWORK–UNSEEN SAMPLE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Unseen data, which are not samples from the distribution of training data and
are difficult to collect, have exhibited importance in numerous applications, (e.g.,
novelty detection, semi-supervised learning, and adversarial training). In this paper,
we introduce a general framework called difference-seeking generative adversarial
network (DSGAN), to generate various types of unseen data. Its novelty is the
consideration of the probability density of the unseen data distribution as the
difference between two distributions pd̄ and pd whose samples are relatively easy
to collect. The DSGAN can learn the target distribution, pt, (or the unseen data
distribution) from only the samples from the two distributions, pd and pd̄. In our
scenario, pd is the distribution of the seen data, and pd̄ can be obtained from pd via
simple operations, so that we only need the samples of pd during the training. Two
key applications, semi-supervised learning and novelty detection, are taken as case
studies to illustrate that the DSGAN enables the production of various unseen data.
We also provide theoretical analyses about the convergence of the DSGAN.

1 INTRODUCTION

Unseen data1are not samples from the distribution of the training data and are difficult to collect. It
has been demonstrated that unseen samples can be applied to several applications. Dai et al. (2017)
proposed how to create complement data, and theoretically showed that complement data, considered
as unseen data, could improve semi-supervised learning. In novelty detection, Yu et al. (2017)
proposed a method to generate unseen data and used them to train an anomaly detector. Another
related area is adversarial training Goodfellow et al. (2015), where classifiers are trained to resist
adversarial examples, which are unseen during the training phase. However, the aforementioned
methods only focus on producing specific types of unseen data, instead of enabling the generation of
general types of unseen data.

In this paper, we propose a general framework called difference-seeking generative adversarial
network (DSGAN), to generate a variety of unseen data. The DSGAN is a generative approach.
Traditionally, generative approaches, which are usually conducted in an unsupervised learning manner,
are developed for learning the data distribution from its samples, from which subsequently, they
produce novel and high-dimensional samples, such as the synthesized image Saito et al. (2018). A
state-of-the-art approach is the so-called generative adversarial network (GAN) Goodfellow et al.
(2014). GAN produces sharp images based on a game-theoretic framework, but it can be difficult and
unstable to train owing to multiple interaction losses. Specifically, GAN consists of two functions:
generator and discriminator. Both functions are represented as parameterized neural networks. The
discriminator network is trained to determine whether the inputs belong to the real dataset or fake
dataset created by the generator. The generator learns to map a sample from a latent space to some
distribution to increase the classification errors of the discriminator.

Nevertheless, if a generator can learn to create unseen data, then a traditional GAN requires numerous
training samples of unseen classes for training, leading to a contradiction with the definition of the
unseen data. This fact motivates us to present the DSGAN, which can generate unseen data by
adopting seen data as training samples (see Fig. 9, which illustrates the difference between GAN
and the DSGAN, in Appendix A). The key concept is to consider the distribution of the unseen
data as the difference between two distributions that are relatively easy to obtain. For example, the

1In traditional machine learning scenarios, "unseen" data corresponds to data that is not used or seen during
the training stage but rather the testing stage. The distribution of "unseen" data could be same as or different
from the "seen" data, according to applications. In this paper, we focus on the scenario that the two distributions
are different.

1

Under review as a conference paper at ICLR 2020

out-of-distribution examples in the MNIST dataset, from another perspective, are found to belong to
the differences between the sets of examples in MNIST and the universal set. It should be noted that
in traditional GAN, the target distribution is identical to the training data distribution; however, in the
DSGAN these two distributions, are considered to be different.

This paper makes the following contributions:

(1) We propose the DSGAN to generate any unseen data only if the density of the target (unseen
data) distribution is the difference between those of any two distributions, pd̄ and pd.

(2) We show that the DSGAN possesses the flexibility to learn different target (unseen data)
distributions in two key applications, semi-supervised learning and novelty detection. Specif-
ically, for novelty detection, the DSGAN can produce boundary points around the seen data
because this type of unseen data is easily misclassified. For semi-supervised learning, the
unseen data are linear combinations of any labeled data and unlabeled data, excluding the
labeled and unlabeled data themselves2.

(3) The DSGAN yields results comparable to a semi-supervised learning but with a short
training time and low memory consumption. In novelty detection, combining both the
DSGAN and variational auto-encoder (VAE, Kingma & Welling (2014b)) methods achieve
the state-of-the-art results.

2 PROPOSED METHOD-DSGAN
2.1 FORMULATION

We denote the generator distribution as pg and training data distribution as pd, both in an N -
dimensional space. Let pd̄ be the distribution decided by the user. For example, pd̄ can be the
convolution of pd and normal distribution. Let pt be the target distribution that the user is interested
in, and it can be expressed as

(1− α)pt(x) + αpd(x) = pd̄(x), (1)

where α ∈ [0, 1]. Our method, the DSGAN, aims to learn pg such that pg = pt. Note that if the
support set of pd belongs to that of pd̄, then there exists at least an α such that the equality in (1)
holds. However, even if the equality does not hold, intuitively, the DSGAN attempts to learn pg such

that pg(x) ∼
pd̄(x)− αpd(x)

1− α
with the constraint, pg(x) ≥ 0. Specifically, the generator will output

samples located in the high-density areas of pd̄ − αpd. Furthermore, we show that the DSGAN can
learn pg , whose support set is the difference between those of pd̄ and pd in Theorem 1.

First, we formulate the generator and discriminator in GANs. The inputs, z, of the generator are
drawn from pz (z) in an M -dimensional space. The generator function, G(z; θg) : RM → RN ,
represents a mapping to the data space, where G is a differentiable function with parameter θg . The
discriminator is defined as D (x; θd) : RN → [0, 1], which outputs a single scalar. D (x) can be
considered as the probability that x belongs to a class of the real data.

Similar to traditional GAN, we train D to distinguish the real data from the fake data sampled
from G. Concurrently, G is trained to produce realistic data that can mislead D. However, in the
DSGAN, the definitions of “real data” and “fake data” are different from those in traditional GAN.
The samples from pd̄ are considered as real, but those from the mixture distribution between pd and
pg are considered as fake. The objective function is defined as follows:

V (G,D) := Ex∼pd̄(x) [logD(x)] + (1− α)Ez∼pz(z) [log (1−D (G (z)))] + αEx∼pd(x) [log (1−D(x))] .
(2)

We optimize (2) by a min–max game between G and D, i.e.,

min
G

max
D

V (G,D) .

During the training procedure, an iterative approach, like traditional GAN, is to alternate between
k steps of training D and one step of training G. In practice, minibatch stochastic gradient descent

2The linear combination of any labeled data and unlabeled data probably belongs to the set of seen data
(labeled data and unlabeled data), which contradicts the definition of unseen data. Thus, the samples generated
by the DSGAN should not include the seen data themselves.

2

Under review as a conference paper at ICLR 2020

via backpropagation is used to update θd and θg. Thus, for each pg, pd, and pd̄, m samples are
required for computing the gradients, where m is the number of samples in a minibatch. The training
procedure is illustrated in Algorithm 1 in Appendix A. The DSGAN suffers from the same drawbacks
as traditional GAN, (e.g., mode collapse, overfitting, and strong discriminator) so that the generator
gradient vanishes. There are literature Salimans et al. (2016); Arjovsky & Bottou (2017); Miyato et al.
(2018) focusing on dealing with the above problems, and such concepts can be readily combined
with the DSGAN.

Li et al. (2017) and Reed et al. (2016) proposed an objective function similar to (2). Their goal was
to learn the conditional distribution of training data. However, we aim to learn the target distribution,
pt, in Eq. (1), and not the training data distribution.

2.2 CASE STUDY ON VARIOUS UNSEEN DATA GENERATION

To achieve a more intuitive understanding about the DSGAN, we conduct several case studies on
two-dimensional (2D) synthetic datasets and MNIST. In Eq. (1), α = 0.8 is used.

Figure 1: Complement points (in Green) between
two circles (in Orange).

Figure 2: Boundary points (in Green) between
four circles (in Orange).

Figure 3: Illustration of the generation of the un-
seen data in the boundary around the training data.
First, the convolution of pd and normal distribu-
tion ensure the density on the boundary is no
longer zero. Second, we seek pg such that Eq.
(1) holds, where the support set of pg is approxi-
mated by the difference of those between pd̄ and
pd.

1

7

1

7

Figure 4: Illustration of
the difference-set seek-
ing in MNIST.

Figure 5: DSGAN
learns the difference be-
tween two sets.

Complement samples generation Fig. 1 illustrates that the DSGAN can generate complement
samples between 2 circles. Denoting the density function of the two circles as pd, we assign the
samples drawn from pd̄ as linear combinations of the two circles. Then, by applying the DSGAN,
we achieve our goal of generating complement samples. In fact, this type of unseen data is used in
semi-supervised learning.
Boundary samples generation Fig. 2 illustrates that the DSGAN generates boundary points be-
tween four circles. This type of unseen data is used in novelty detection. In this case, we assign pd
and pd̄ as “the density function of four circles” and “the convolution of pd and normal distribution,”
respectively. The basis of our concept is also illustrated by a one-dimensional (1D) example in Fig. 3.
Difference-set generation We also validate the DSGAN on a high-dimensional dataset such as
MNIST. In this example, we define pd as the distribution of digit “1” and pd̄ as the distribution
containing two digits “1” and “7”. Because the density, pd(x), is high when x is digit “1,” the
generator is prone to output digit “7” with a high probability.

3

Under review as a conference paper at ICLR 2020

From the above results, we can observe two properties of the generator distribution, pg: i) the
higher the density of pd(x), the lower the density of pg(x); ii) pg prefers to output samples from the
high-density areas of pd̄(x)− αpd(x).

2.3 DESIGNING pd̄

Thus far, we have demonstrated how the DSGAN can produce various types of unseen data by
choosing a specific pd̄. In this section, we introduce a standard procedure to design pd̄, and illustrate
each step with pictures.

Step 1. First, the training data, pd, are collected (Fig. 6 (a)).
Step 2. Second, based on the applications, the desired unseen data distribution is defined (e.g.,

complement samples for semi-supervised learning) (Fig. 6 (b)).
Step 3. Third, pd̄ is defined as a mixed distribution of (1− α)pg + (α)pd (Fig. 6 (c)).
Step 4. Finally, a suitable mapping function that can transform pd to pd̄ is designed (e.g, linear

combination of any two samples of pd)

(a) (b) (c)

Figure 6: Illustration for designing pd̄.

In the above procedure, the most important step is to determine which types of unseen data are
suitable for a specific problem (Step 2). In this paper, we show two types of unseen data, which are
useful in semi-supervised learning and novelty detection. However, determining all types of unseen
data for all applications is beyond the scope of this study, and we leave this for future work.

Furthermore, we provide a method (see Appendix B in supplementary materials) by reformulating
the objective function (2), so that it is more stable to train the DSGAN.

3 THEORETICAL RESULTS

In this section, we show that by choosing an appropriate α, the support set of pg belongs to the
difference set between pd̄ and pd, so that the samples from pg are unseen from the pd perspective.

We start our proofs from two assumptions. First, in a non-parametric setting, we assume that both the
generator and discriminator have infinite capacities. Second, pg is defined as the distribution of the
samples drawn from G(z) under z ∼ pz .

In the following, we show that the support set of pg is contained within the differences in the support
sets of pd̄ and pd while achieving the global minimum such that we can generate the desired pg by
designing an appropriate pd̄.
Theorem 1. Suppose αpd(x) ≥ pd̄(x) for all x ∈ Supp(pd) and all density functions pd(x), and
pd̄(x) and pg(x) are continuous. If the global minimum of C(G) is achieved, then

Supp (pg) ⊆ Supp (pd̄)− Supp(pd),

where
C(G) = max

D
V (G,D)

= Ex∼pd̄(x)

[
log

pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
+ Ex∼p∗(x)

[
log

(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
.

Proof. See Appendix C for the details.

4

Under review as a conference paper at ICLR 2020

Summarizing, the generator is prone to output samples that are located in the high-density areas of
pd̄ − αpd.

4 APPLICATIONS

The DSGAN was applied to two problems: semi-supervised learning and novelty detection. In
the semi-supervised learning, the DSGAN acts as a “bad generator,” which creates complement
samples (unseen data) in the feature space of the training data. For the novelty detection, the DSGAN
generates the samples (unseen data) as boundary points around the training data.

4.1 SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) is a type of learning model that uses a few labeled data and numerous
unlabeled data. The existing SSL methods based on a generative model, (e.g., VAE Kingma et al.
(2014) and GAN Salimans et al. (2016)), yield good empirical results. Dai et al. (2017) theoretically
showed that a good semi-supervised learning required a bad GAN with the following objective
function:
max
D

Ex,y∼L logPD (y | x, y ≤ K) + Ex∼pd(x) logPD (y ≤ K | x) + Ex∼pg(x) logPD (K + 1 | x) , (3)

where (x, y) denotes a pair of data, and its corresponding label, {1, 2, . . . ,K} denotes the label space
for the classification, and L = {(x, y)} is the label dataset. Moreover, under the semi-supervised
settings, pd in (3) is the distribution of the unlabeled data. Note that the discriminator, D, in GAN
also plays the role of a classifier. If the generator distribution exactly matches the real data distribution
(i.e., pg = pd), then the classifier trained by the objective function (3) with the unlabeled data cannot
have a better performance than that trained by the supervised learning with the objective function.
Specifically,

max
D

Ex,y∼L logPD (y | x, y ≤ K) . (4)

Contrastingly, the generator is preferred to generate complement samples, which lie on the low-
density area of pd. Under some mild assumptions, these complement samples help D to learn the
correct decision boundaries in the low-density area because the probabilities of the true classes are
forced to be low in the out-of-distribution areas.

The complement samples in Dai et al. (2017) are complex to produce. In Sec. 5.2, we will demonstrate
that with the DSGAN, complement samples can be easily generated.

4.2 NOVELTY DETECTION

Novelty detection determines if a query example belongs to a seen class. If the samples of one seen
class are considered as positive data, then this difficulty is the absence of negative data in the training
phase, so that the supervised learning cannot function.

Recently, novelty detection has made significant progress with the advent of deep leaning. Pidhorskyi
et al. (2018)Sakurada & Yairi (2014) focused on learning a representative latent space for a seen class.
When testing, the query image was projected onto the learned latent space. Then, the difference
between the query image and its inverse image (reconstruction) was measured. Thus, only an
encoder was needed to be trained for the projection and a decoder for the reconstruction. Under the
circumstance, an autoencoder (AE) is generally is adopted to learn both the encoder and decoder
Pidhorskyi et al. (2018)Perera et al. (2019). Let Enc(·) be the encoder and Dec(·) be the decoder.
The loss function of the AE is defined as

min
Enc,Dec

Ex∼ppos(x)

[
‖x−Dec(Enc(x))‖22

]
, (5)

where ppos is the distribution of a seen class. After the training, a query example, xtest, is classified
as the seen class if

‖xtest −Dec(Enc(xtest))‖22 ≤ τ, (6)
where τ ∈ R+ plays the trade-off between the true positive rate and false positive rate. However,
(6) is based on two assumptions: (1) the positive samples from one seen class should have a small
reconstruction error; (2) the AE (or latent space) cannot well describe the negative examples from
the unseen classes, leading to a relatively large reconstruction error. In general, the first assumption
inherently holds when both the testing and training data originate from the same seen class. However,
Pidhorskyi et al. (2018)Perera et al. (2019) observed that assumption (2) does not hold at all times
because the loss function in (5) does not include a loss term to enforce the negative data to have a
large reconstruction error.

5

Under review as a conference paper at ICLR 2020

For assumption (2) to hold, given positive data as the training inputs, we propose using the DSGAN
to generate negative examples in the latent space, as discussed in Sec. 5.3. Then, the loss function of
the AE is modified to enforce the negative data to have a large reconstruction error.

5 EXPERIMENTS

Our experiments are divided into three parts. The first one examines how the hyperparameter, α,
influences the learned generator distribution, pg. In the second and third experiments, we obtain
empirical results about semi-supervised learning and novelty detection, which are presented in Sec.
5.2 and Sec. 5.3, respectively. Note that the training procedure of the DSGAN can be improved by
other extensions of GANs such as WGAN Arjovsky et al. (2017), WGAN-GP Gulrajani et al. (2017),
EBGAN Zhao et al. (2017), and LSGAN Mao et al. (2017). In our method, the WGAN-GP was
adopted for the stability of the DSGAN in training and reduction in the mode collapse.

5.1 DSGAN WITH DIFFERENT α

The impacts of different α values on the DSGAN are illustrated in Fig. 7. In this example, the
support of pd is the area bounded by a red dotted line, and the orange points are the samples from
pd. Concurrently, we shift pd to the right by 1 unit and create the distribution, pd̄, whose support is
bounded by blue dotted lines. The overlapping area between pd̄ and pd is 0.5 unit (assuming the area
of pd is 1 unit). Based on our theoretical results, α = 0.5 is the smallest selected value allowing pg
to be disjoint to pd. Therefore, we can see that some generated samples, as presented in Fig. 7(a),
still belong to the support set of pd. Fig. 7(b) shows that there is a perfect agreement between our
theoretical and experiment results with α = 0.5. When α = 0.8, there is a remarkable gap between
the generated (green) points and yellow points, as shown in Fig. 7(c). In theory, the result obtained at
α = 0.8 should be the same as that obtained at α = 0.5. This is because the discriminator should
assign the entire area, which is the intersection of the complement of support set of pd and support
set of pd̄, to the same score, under the assumption that the discriminator has an infinite capacity.
However, in practice, the capacity of the discriminator is limited. Therefore, the score of the area
near pd is lower than that far from it, when α is large. Therefore, pg tends to repel pd to achieve a
high score (to deceive the discriminator).

(a) α = 0.30 (b) α = 0.50 (c) α = 0.80

Figure 7: Influence of α on the synthetic dataset. We observe that the samples of pg (green points)
move farther away from pd as α increases; however, they are still bounded by the support of pd̄.
When α is 0.5, the support set of pg is disjoint to that of pd, satisying the theoretical results. When α
is 0.8, pg generates the rightmost points of pd̄. The level curves from the discriminator show that
the generator is more prone to producing samples in a region with higher score than in that with a
lower score. Note that the outputs of the discriminator are not restricted in [0, 1], because we use the
formulation of the WGAN in this experiment.

5.2 DSGAN IN SEMI-SUPERVISED LEARNING

We first introduce how the DSGAN generates the complement samples in the feature space. Dai
et al. (2017) proved that if the complement samples generated by G could satisfy the following two
assumptions in (7) and (8), i.e.,

∀x ∼ pg(x), 0 > max
1≤i≤K

wTi f(x) and ∀x ∼ pd(x), 0 < max
1≤i≤K

wTi f(x), (7)

6

Under review as a conference paper at ICLR 2020

where f is the feature extractor and wi is the linear classifier for the ith class, and
∀x1 ∼ L, x2 ∼ pd(x),∃xg ∼ pg(x) s.t.
f(xg) = βf(x1) + (1− β)f(x2) with β ∈ [0, 1],

(8)

then all the unlabeled data would be correctly classified by the objective function (3). Specifically,
(7) ensures that the classifiers can discriminate the generated data from the unlabeled data, and (8)
causes the decision boundary to be located in the low-density areas of pd.

The assumption in (8) implies that the complement samples must be in the space created by the
linear combination of the labeled and unlabeled data. In addition, they cannot fall into the real data
distribution, pd, owing to the assumption (7). To allow the DSGAN to generate such samples, we let

the samples of pd̄ be linear combinations of those from L and pd. Since pg(x) ≈
pd̄(x)− αpd(x)

1− α
,

pg will tend to match pd̄, whereas the term, −αpd, ensures that the samples from pg do not belong to
pd. Thus, pg satisfies the assumption in (8). Moreover, (7) is also satisfied by training the classifier
with (3) based on substituting the generator distribution in (3) into the learned pg .

Following the previous works, we apply the proposed DSGAN to semi-supervised learning on
three benchmark datasets: MNIST LeCun et al. (1998), SVHN Netzer et al. (2011), and CIFAR-10
Krizhevsky (2009). The details of the experiments can be found in Appendix D.

5.2.1 SIMULATION RESULTS

First, the selected hyperparameters are listed in Table 5 in Appendix D.1. Second, the results obtained
from the DSGAN and state-of-the-art methods on the three benchmark datasets are summarized
in Table 1. It can be observed that our method can compete with the state-of-the-art methods on
the three datasets. Note that we report the results of badGAN not only from the original papers in
the literature but also by reproducing them using the released codes of the authors. The reason of
presenting both the results is that we cannot reproduce parts of the results. The experiments in Li et al.
(2019) also showed a similar problem. In comparison with Dai et al. (2017), our methods do not need
to rely on an additional density estimation network, PixelCNN++ Salimans et al. (2017). Although
PixelCNN++ is one of the best density estimation networks, learning such a deep architecture requires
large computation and high memory consumption. In Table 2, we list the training time and memory
consumption for our method and badGAN. Compared to badGAN, our method consumes 15.8% less
training time and saves about 9000 MB during the training.

Table 1: Comparison of the semi-supervised learning in our DSGAN and the state-of-the-art methods.
For a reasonable comparison, we only consider GAN-based methods. ∗ denotes the use of the same
architecture of the classifier. † denotes a larger architecture of the classifier. ‡ denotes the use of data
augmentation (in CIFAR-10). The results for MNIST are recorded as the number of errors, whereas
for the others are as percentage of the error.

Methods MNIST SVHN CIFAR-10
FM∗ Salimans et al. (2016) 93 ± 6.5 8.11 ± 1.3 18.63 ± 1.32
TripleGAN†Li et al. (2017) 91 ± 58 5.77 ± 0.17 16.99 ± 0.36
badGAN∗Dai et al. (2017) 79.5 ± 9.8 4.25 ± 0.03 14.41 ± 0.30
CAGAN∗ Ni et al. (2018) 81.9± 4.5 4.83 ± 0.09 12.61 ± 0.12
CT-GAN‡Wei et al. (2018) 89 ± 13 - 9.98 ± 0.21

badGAN-reproduce∗ 86.2 ± 13.2 4.48 ± 0.16 16.25 ± 0.33

Our method∗ 82.7 ± 4.6 4.38 ± 0.10 14.52 ± 0.14

Table 2: Training times of our method and badGAN. We only report the training time on MNIST, on
which the authors of badGAN applied PixelCNN++. The experiments run on a NVIDIA 1080 Ti.

Methods Training time Memory Consumption
badGAN 38 s / epoch 9763 MB

Our method∗ 32 s / epoch 711 MB

Moreover, it can also be observed from Table 1 that our results are comparable to the best record of
badGAN and CAGAN. are better than those of other approaches on the MNIST and SVHN datasets.

7

Under review as a conference paper at ICLR 2020

On CIFAR-10, our method is only inferior to the CT-GAN. However, this might not be a reasonable
comparison because the CT-GAN uses extra techniques, including temporal ensembling and data
augmentation, which the other methods do not use.

5.3 DSGAN IN NOVELTY DETECTION

In this section, we study how to use the DSGAN for assisting novelty detection. As mentioned in
Sec. 4.2, we need to train the auto-encoder (AE) such that (i) the positive samples from one seen
class have a small reconstruction error; (ii) negative samples from the unseen classes incur relatively
higher reconstruction errors.

The fundamental concept is to use the DSGAN to generate negative samples, which originally do
not exist under the scenario of novelty detection. Next, we add a new loss term to penalize the small
reconstruction errors of the negative samples (see the third stage below). Three stages are required to
train our model (AE):

1. The encoder, Enc(·), and decoder, Dec(·), are trained using the loss function (5).
2. Given x ∼ ppos, Enc(x) are collected as the samples drawn from pd. pd̄ is the convolution

of pd having a normal distribution with a zero mean and variance σ. Then, we train the
DSGAN to generate negative samples, which are drawn from pd̄(x) − pd(x) and are the
boundary points around the positive samples in the latent space. Note that there are some
variations in the DSGAN: the input of the generator, G, is Enc(x), instead of a random
vector z in the latent space. We also add ‖Enc(x)−G(Enc(x))‖22, which will be explained
in the next step, to train the generator.

3. Fixing the encoder, we retrain the decoder by the modified loss function,

min
Dec

Ex∼ppos(x)

[
‖x−Dec(Enc(x))‖22 + w ·max

(
0,m− ‖x−Dec(G(Enc(x)))‖22

])
,

where w is the trade-off between the reconstruction errors of positive samples Enc(x)
and negative samples G(Enc(x)). Note that in the previous step, we add ‖Enc(x) −
G(Enc(x))‖22 to ensure that the outputs of the generator are around the input. Thus, the
second term charges even though the negative samples are close to the corresponding positive
sample, and they still exhibit a high reconstruction error, which is bounded by m (Zhao et al.
(2017)).

The above algorithm, called VAE+DSGAN, can be used to strengthen the existing AE-based methods
by using them in the first stage. In the simulation, we used a variational autoencoder (VAE) Kingma
& Welling (2014a) because it performs better than the AE in the novelty detection.

5.3.1 SIMULATION RESULTS

In this section, following Perera et al. (2019), the performance was evaluated using the area under
the curve (AUC) of the receiver operating characteristics (ROC) curve. Given a dataset, a class
was chosen as the seen class for training, and all the classes were used for testing. There exist
several testing benchmarks for novelty detection, such as MNIST, COIL100 Nene et al. (1996) and
CIFAR-10. The state-of-the-art method Perera et al. (2019) achieves high performance in AUC on
MNIST and COIL100 (AUC is larger than 0.97). However, for CIFAR-10, Perera et al. (2019) only
achieves 0.656. Thus, we chose the challenging dataset, CIFAR-10, as the benchmark to evaluate our
method. The detailed network architecture can be found in Appendix E.

Because VAE+DSGAN can be considered as a fine tuning VAE Kingma & Welling (2014a), we first
illustrate the key difference between the VAE and VAE+DSGAN, as shown in Fig. 8. The seen class,
which is at the bottom of the images, is a car. Other rows are the images from the unseen classes.
One can see that the reconstructed images are reasonably good even for the unseen class in the VAE.
By contrast, our method enforces the reconstructed images of the unseen classes to be blurred while
still preserving the reconstruction quality of the seen class. Thus, our method achieves a relatively
larger gap, in terms of the reconstruction error between the seen data and unseen data, than the VAE.

In Table 3, we compare the proposed method with several methods, including the VAE Kingma &
Welling (2014a), AND Abati et al. (2019), DSVDD Ruff et al. (2018), and OCGAN Perera et al.
(2019), in terms of the AUC value. One can see that in most cases, our method almost outperforms
the VAE. Furthermore, the mean of the AUC values of our method also is larger than those of the
state-of-the-art methods. It is worth mentioning that in addition to the VAE, the DSGAN has potential
of being combined with other AE-based methods.

8

Under review as a conference paper at ICLR 2020

Original images VAE Ours (VAE + DSGAN)

Figure 8: Comparison of the reconstructed results of the VAE and our method. The seen class, which
is at the bottom of the images, is a car. Other rows are images from the unseen classes. Our method
exhibits a relatively larger gap, in terms of the reconstruction error between the seen data and unseen
data, than the VAE.

Table 3: Comparison of our method (VAE+DSGAN) and the state-of-the-art methods: VAE Kingma
& Welling (2014a), AND Abati et al. (2019), DSVDD Ruff et al. (2018), and OCGAN Perera et al.
(2019). The results for CIFAR-10 are recorded in terms of the AUC value. The number in the top row
denotes the seen class, where 0: Plain, 1: Car, 2: Bird, 3: Cat, 4: Deer, 5: Dog, 6: Frog,7: Horse, 8:
Ship, 9: Truck.

0 1 2 3 4 5 6 7 8 9 MEAN

VAE .700 .386 .679 .535 .748 .523 .687 .493 .696 .386 .583
AND .735 .580 .690 .542 .761 .546 .751 .535 .717 .548 .641

DSVDD .617 .659 .508 .591 .609 .657 .677 .673 .759 .731 .648
OCGAN ..757 .531 .640 .620 .723 .620 .723 .575 .820 .554 .657

Our method .737 .614 .676 .644 .759 .562 .660 .646 .769 .633 .670

6 RELATED WORKS ABOUT UNSEEN DATA GENERATION

Yu et al. (2017) proposed a method to generate samples of unseen classes in a unsupervised manner
via an adversarial learning strategy. However, it requires solving an optimization problem for each
sample, which certainly leads to a high computation cost. By contrast, the DSGAN has the capability
to create infinite diverse unseen samples. Hou et al. (2018) presented a new GAN architecture that
could learn two distributions of unseen data from a part of seen data and the unlabeled data. However,
the unlabeled data must be a mixture of seen and unseen samples; the DSGAN does not require any
unseen data. Kliger & Fleishman (2018) also applied GAN in novelty detection. Their objective
was to learn a generator whose distribution is a mixture of novelty data distribution and training
data distribution. To this end, they used feature matching (FM) to train the generator and expected
pg to learn the mixture of distributions. However, the ultimate goal of FM is still to learn pg = pd;
therefore, their method might fail when GAN learns well.

Dai et al. (2017) aimed to generate complementary samples (or out-of-distribution samples), but
assumed that the in-distribution could be estimated by a pre-trained model, such as PixelCNN++,
which might be difficult and expensive to train. Lee et al. (2018) used a simple classifier to replace
the role of PixelCNN++ in Dai et al. (2017) so that the training was comparatively much easier and
more suitable. Nevertheless, their method only focused on generating unseen data surrounding the
low-density area of seen data. In comparison, the DSGAN has more flexibility to generate different
types of unseen data (e.g., a linear combination of seen data, as described in Sec. 5.2). In addition,
their method needs the label information of the data, whereas our method is fully unsupervised.

7 CONCLUSIONS

We propose the DSGAN, which can produce any unseen data based on the assumption that the density
of the unseen data distribution is the difference between the densities of any two distributions. The

9

Under review as a conference paper at ICLR 2020

DSGAN is useful in an environment when the samples from the unseen data distribution are more
difficult to collect than those from the two known distributions. Empirical and theoretical results
are provided to validate the effectiveness of the DSGAN. Finally, because the DSGAN is developed
based on GAN, it is easy to apply any improved versions of GAN to the DSGAN.

REFERENCES

D. Abati, A. Porrello, S. Calderara, and R. Cucchiara. And: Autoregressive novelty detectors. In
IEEE CVPR, 2019.

M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks.
In ICLR. 2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML,
volume 70, pp. 214–223, 2017.

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan R Salakhutdinov. Good semi-
supervised learning that requires a bad gan. In NIPS, pp. 6510–6520. 2017.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In ICLR,
2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680. 2014.

Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville.
Improved training of wasserstein gans. In NIPS, 2017.

M. Hou, B. Chaib-draa, C. Li, and Q. Zhao. Generative adversarial positive-unlabelled learning. In
IJCAI, pp. 2255–2261, 2018.

D. P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR. 2014a.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. ICLR, abs/1312.6114,
2014b.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In NIPS, pp. 3581–3589. 2014.

Mark Kliger and Shachar Fleishman. Novelty detection with gan. ArXiv, abs/1802.10560, 2018.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database of handwritten digits. 1998.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. In ICLR, 2018.

Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In NIPS, 2017.

Wenyuan Li, Zichen Wang, Jiayun Li, Jennifer S Polson, William Speier, and Corey Conkling Arnold.
Semi-supervised learning based on generative adversarial network: a comparison between good
gan and bad gan approach. ArXiv, abs/1905.06484, 2019.

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial
networks. In IEEE ICCV, pp. 2813–2821, 2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR. 2018.

Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia object image library (coil-20).
1996.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop, 2011.

10

Under review as a conference paper at ICLR 2020

Yao Ni, Dandan Song, Xi Zhang, Hank Wu, and Lejian Liao. Cagan: Consistent adversarial training
enhanced gans. In IJCAI, 2018.

Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN: one-class novelty detection using
gans with constrained latent representations. In IEEE CVPR, 2019.

Stanislav Pidhorskyi, Ranya Almohsen, Donald A. Adjeroh, and Gianfranco Doretto. Generative
probabilistic novelty detection with adversarial autoencoders. In NIPS, pp. 6823–6834, 2018.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In NIPS, 2015.

Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In ICML, 2016.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In ICML, pp. 4393–
4402, 2018.

Y. Saito, S. Takamichi, and H. Saruwatari. Statistical parametric speech synthesis incorporating
generative adversarial networks. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 26(1):84–96, 2018.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In MLSDA, pp. 4–11, 2014.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In NIPS, pp. 2234–2242. 2016.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. In ICLR, 2017.

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the improved training of
wasserstein gans: A consistency term and its dual effect. In ICLR, 2018.

Y. Yu, W.-Y. Qu, N. Li, and Z. Guo. Open-category classification by adversarial sample generation.
In IJCAI, pp. 3357–3363, 2017.

J. J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.

11

Under review as a conference paper at ICLR 2020

APPENDIX

A FLOWCHART AND ALGORITHM OF DSGAN

Figure 9: Illustration of the differences between traditional GAN and DSGAN.

Algorithm 1 The training procedure of DSGAN using minibatch stochastic gradient descent. k is the
number of steps applied to discriminator. α is the ratio between pg and pd in the mixture distribution.
We used k = 1 and α = 0.8 in experiments.

01. for number of training iterations do
02. for k steps do
03. Sample minibatch of m noise samples z(1), ..., z(m) from pg(z).
04. Sample minibatch of m samples x(1)

d , ..., x
(m)
d from pd(x).

05. Sample minibatch of m samples x(1)

d̄
, ..., x

(m)

d̄
from pd̄(x).

06. Update the discriminator by ascending its stochastic gradient:

∇θd

[
1

m

m∑
i=1

logD
(
x

(i)
d

)
+ log

(
1−D

(
G
(
z(i)
)))

+ log
(
1−D

(
x

(i)

d̄

))]
07. end for
08. Sample minibatch of m noise samples z(1), ..., z(m) from pg(z).
09. Update the generator by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

[
log
(
1−D

(
G
(
z(i)
)))]

10. end for

12

Under review as a conference paper at ICLR 2020

B TRICKS FOR STABLE TRAINING

We provide a trick to stabilize the training procedure by reformulating the objective function. Specifi-
cally, V (G,D) in (2) is reformulated as:

V (G,D) =

∫
x

pd̄(x) log (D (x))

+ ((1− α)pg(x) + αpd(x)) log (1−D (x)) dx

= Ex∼pd̄(x) [logD(x)]

+ Ex∼(1−α)pg(x)+α∼pd(x) [log (1−D (x))] .

(9)

Instead of sampling a mini-batch of m samples from pz and pd in Algorithm 1, (1− α)m and αm
samples from both distributions are required, respectively. The computation cost in training can be
reduced due to fewer samples. Furthermore, although (9) is equivalent to (2) in theory, we find that
the training using (9) achieves better performance than using (2) via empirical validation in Table 4.
We conjecture that the equivalence between (9) and (2) is based on the linearity of expectation, but
mini-batch stochastic gradient descent in practical training may lead to the different outcomes.

Table 4: Semi-supervised learning results on MNIST with and without the use of sampling tricks.

Methods MNIST (# errors)

Our method w/o tricks 91.0 ± 7.0
Our method w/ tricks 82.7 ± 4.6

C PROOF OF THEOREM 1

In this section, we show Theorem 1.

This proof includes two parts: the first part shows that the objective function is equivalent to
minimizing the Jensen–Shannon divergence in the mixture distribution (pd and pg) and pd̄ if G and
D are assigned sufficient capacity; the second part shows that by choosing an appropriate α, the
support set of pg belongs to the difference set between pd̄ and pd, so that the samples from pg are
unseen from the pd perspective.

For the first part, we show the optimal discriminator givenG, and then show that minimizing V (G,D)
via G, given the optimal discriminator, is equivalent to minimizing the Jensen–Shannon divergence
between (1− α)pg + αpd and pd̄.

Proposition 1. If G is fixed, the optimal discriminator, D, is

D∗G(x) =
pd(x)

pd(x) + (1− α)pg(x) + αpd(x)
.

13

Under review as a conference paper at ICLR 2020

Proof. Given any generator G, the training criterion for the discriminator D is to maximize the
quantity V (G,D):

V (G,D) =

∫
x

pd̄(x) log (D (x)) dx

+ (1− α)
∫
z

pz(z) log (1−D (G (z))) dz

+ α

∫
x

pd(x) log (1−D (x)) dx

=

∫
x

pd̄(x) log (D (x)) dx

+ (1− α)
∫
x

pg(x) log (1−D (x)) dz

+ α

∫
x

pd(x) log (1−D (x)) dx

=

∫
x

pd̄(x) log (D (x))

+ ((1− α)pg(x) + αpd(x)) log (1−D (x)) dx.

For any (a, b) ∈ R2\{0, 0}, the function a log (y) + b log (1− y) achieves its maximum in [0, 1]
at y = a

a+b . The discriminator only needs to be defined within Supp(pd̄)
⋃
Supp(pd)

⋃
Supp(pg).

We complete this proof.

Moreover, D can be considered to discriminate between samples from pd̄ and
((1− α)pg(x) + αpd(x)). By replacing the optimal discriminator in V (G,D), we trivially
obtain

C(G) = max
D

V (G,D)

= Ex∼pd̄(x)

[
log

pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
+ Ex∼p∗(x)

[
log

(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
.

(10)

Actually, the results thus far yield the optimal solution of D given G is fixed in (1). Now, the next
step is to determine the optimal G with D∗G as fixed.

Theorem 2. The global minimum of C(G) is achieved if and only if (1−α)pg(x)+αpd(x) = pd̄(x)

for all x. Then, C(G) achieves the value, − log 4.

Proof. We start from

(1) = − log(4)

+ Ex∼pd̄(x)

[
log

2pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

]
+ Ex∼p∗(x)

[
log

2 ((1− α)pg(x) + αpd(x))

pd̄(x) + (1− α)pg(x) + αpd(x)

]
= − log(4) + KL

(
pd̄

∥∥∥∥ pd̄ + (1− α)pg + αpd
2

)
+KL

(
(1− α)pg(x) + αpd

∥∥∥∥ pd̄ + (1− α)pg + αpd
2

)
= − log(4) + 2 JSD (pd̄ ‖ (1− α)pg + αpd) ,

where p∗(x) = (1 − α)pg(x) + αpd(x), KL is the Kullback-Leibler divergence and JSD is the
Jensen-Shannon divergence. The JSD returns the minimal value, which is 0, iff both distributions
are the same, namely pd̄ = (1− α)pg + αpd. Because pg(x)’s are always non-negative, it should be
noted both distributions are the same only if αpd(x) ≤ pd̄(x) for all x’s. We complete this proof.

14

Under review as a conference paper at ICLR 2020

Note that (1− α)pg(x) + αpd(x) = pd̄(x) may not hold if αpd(x) > pd̄(x). However, the DSGAN
still works based on two facts: i) given D, V (G,D) is a convex function in pg and ii) because∫
x

pg(x)dx = 1, the set collecting all the feasible solutions of pg is convex. Thus, there always exists

a global minimum of V (G,D) given D, but it may not be − log(4).

Now, we go back to prove Theorem 1. We show that the support set of pg is contained within the
differences in the support sets of pd̄ and pd while achieving the global minimum such that we can
generate the desired pg by designing an appropriate pd̄.

Proof. Recall that

C(G) =

∫
x

pd̄(x) log

(
pd̄(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
+ p∗(x) log

(
(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
dx

=

∫
x

S(pg;x)dx

=

∫
x∈Supp(pd̄)−Supp(pd)

S(pg;x)dx

+

∫
x∈Supp(pd)

S(pg;x)dx.

S(pg;x) is used to simplify the notations inside the integral. For any x, S(pg;x) in pg(x) is non-
increasing and S(pg;x) ≤ 0 always holds. Specifically, S(pg;x) is decreasing along the increase of
pg(x) if pd̄(x) > 0; S(pg;x) attains the maximum value, zero, for any pg(x) if pd̄(x) = 0. Since

DSGAN aims to minimize C(G) with the constraint
∫
x

pg(d)dx = 1, the solution attaining the

global minima must satisfy pg(x) = 0 if pd̄(x) = 0; otherwise, there exists another solution with
smaller value of C(G). Thus, Supp (pg) ⊆ Supp (pd̄).

Furthermore, T (pg;x) =
∂S(pg;x)

∂pg(x)
= log

(
(1− α)pg(x) + αpd(x)

pd̄(x) + (1− α)pg(x) + αpd(x)

)
, which is expected

to be as small as possible to minimizeC(G), is increasing on pg(x) and converges to 0. Then, we show
that T (pg;x) for x ∈ Supp(pd̄)

⋂
Supp(pd) is always larger than that for x ∈ Supp(pd̄)−Supp(pd)

for all pg . Specifically,

1. When x ∈ Supp(pd̄)
⋂
Supp(pd), T (pg;x) ≥ log 1

2 always holds due to the assumption of
αpd(x) ≥ pd̄(x).

2. When x ∈ Supp(pd̄) − Supp(pd), T (pg;x) < log 1
2 for all pg(x)’s satisfying (1 −

α)pg(x) ≤ pd̄(x).

Thus, the minimizer prefers pg(x) > 0 for x ∈ Supp(pd̄) − Supp(pd) and (1 − α)pg(x) ≤
pd̄(x). We check whether there exists a solution pg such that (1 − α)pg(x) ≤ pd̄(x) and∫
x∈Supp(pd̄)−Supp(pd)

pg(d)dx = 1, implying pg(x) = 0 for x ∈ Supp(pd̄)
⋂

Supp(pd). Based

15

Under review as a conference paper at ICLR 2020

on the following expression,∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx +

∫
x∈Supp(pd)

pd̄(x)dx = 1

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx

≥ 1−
∫
x∈Supp(pd)

αpd(x)dx

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx ≥ 1− α

⇒
∫
x∈Supp(pd̄)−Supp(pd)

pd̄(x)dx

≥
∫
x∈Supp(pd̄)−Supp(pd)

(1− α)pg(x)dx,

the last inequality implies that there must exist a feasible solution. We complete this proof.

Another concern is the convergence of Algorithm 1.

Proposition 2. The discriminator reaches its optimal value givenG in Algorithm 1, and pg is updated
by minimizing

Ex∼pd̄(x) [logD
∗
G(x)] + Ex∼p∗(x) [log (1−D∗G (x))] .

If G and D have sufficient capacities, then pg converges to argmin
pg

JSD (pd̄ ‖ (1− α)pg + αpd).

Proof. Consider V (G,D) = U(pg, D) as a function of pg. By the proof idea of Theorem 2 in
Goodfellow et al. (2014), if f(x) = supα∈A fα(x) and fα(x) is convex in x for every α, then
∂fβ(x) ∈ ∂f if β = argsupα∈A fα(x). In other words, if supD V (G,D) is convex in pg, the
subderivatives of supD V (G,D) includes the derivative of the function at the point, where the
maximum is attained, implying the convergence with sufficiently small updates of pg . We complete
this proof.

D EXPERIMENTAL DETAILS FOR SEMI-SUPERVISED LEARNING

D.0.1 DATASETS: MNIST, SVHN, AND CIFAR-10

For evaluating the semi-supervised learning task, we used 60000/ 73257/ 50000 samples and 10000/
26032/ 10000 samples from the MNIST/ SVHN/ CIFAR-10 datasets for the training and testing,
respectively. Under the semi-supervised setting, we randomly chose 100/ 1000/ 4000 samples
from the training samples, which are the MNIST/ SVHN/ CIFAR-10 labeled datasets, and the
amounts of the labeled data for all the classes are equal. Furthermore, our criterion to determine
the hyperparameters is introduced in Appendix D.1, and the network architectures are described in
Appendix D.2. We performed testing with 10/ 5/ 5 runs on MNIST/ SVHN/ CIFAR-10 based on the
selected hyperparameters, and randomly selected the labeled dataset. The results were recorded as
the mean and standard deviation of the number of errors from each run.

D.1 HYPERPARAMETERS

The hyperparameters were chosen to make our generated samples consistent with the assumptions in
(7) and (8). However, in practice, if we make all the samples produced by the generator following
the assumption in (8), then the generated distribution is not close to the true distribution, even
a large margin between them exists, which is not what we desire. So, in our experiments, we
make a concession that the percentage of generated samples, which accords with the assumption,
is around 90%. To meet this objective, we tune the hyperparameters. Table 5 shows our setting of
hyperparameters, where β is defined in (8).

16

Under review as a conference paper at ICLR 2020

Table 5: Hyperparameters in semi-supervised learning.

Hyperparameters MNIST SVHN CIFAR-10

α 0.8 0.8 0.5
β 0.3 0.1 0.1

D.2 ARCHITECTURE

In order to fairly compare with other methods, our generators and classifiers for MNIST, SVHN,
and CIFAR-10 are same as in Salimans et al. (2016) and Dai et al. (2017). However, different from
previous works that have only a generator and a discriminator, we design an additional discriminator
in the feature space, and its architecture is similar across all datasets with only the difference in the
input dimensions. Following Dai et al. (2017), we also define the feature space as the input space of
the output layer of discriminators.

Compared to SVHN and CIFAR-10, MNIST is a simple dataset as it is only composed of fully
connected layers. Batch normalization (BN) or weight normalization (WN) is used in every layer to
stable training. Moreover, Gaussian noise is added before each layer in the classifier, as proposed
in Rasmus et al. (2015). We find that the added Gaussian noise exhibits a positive effect for semi-
supervised learning. The architecture is shown in Table 6.

Table 7 and Table 8 are models for SVHN and CIFAR-10, respectively, and these models are almost
the same except for some implicit differences, e.g., the number of convolutional filters and types
of dropout. In these tables, given a dropping rate, “Dropout” denotes a normal dropout in that the
elements of input tensor are randomly set to zero while Dropout2d is a dropout only applied on the
channels to randomly zero all the elements.

Table 6: Network architectures for semi-supervised learning on MNIST. (GN: Gaussian noise)

Generator G Discriminator D Classifier C

Input: z ∈ R100 from unif(0, 1) Input: 250 dimension feature Input: 28× 28 gray image

100× 500 FC layer with BN
Softplus
500× 500 FC layer with BN
Softplus
500× 784 FC layer with WN
Sigmoid

250× 400 FC layer
ReLU
400× 200 FC layer
ReLU
200× 100 FC layer
ReLU
100× 1 FC layer

GN, std = 0.3
784× 1000 FC layer with WN ,ReLU
GN, std = 0.5
1000× 500 FC layer with WN, ReLU
GN, std = 0.5
500× 250 FC layer with WN, ReLU
GN, std = 0.5
250× 250 FC layer with WN, ReLU
GN, std = 0.5
250× 250 FC layer with WN, ReLU

250× 10 FC layer with WN

Furthermore, the training procedure alternates between k steps of optimizing D and one step of
optimizing G. We find that k in Algorithm 1 is a key role in the problem of mode collapse for
different applications. For semi-supervised learning, we set k = 1 for all datasets.

E EXPERIMENTAL DETAILS FOR NOVELTY DETECTION

The architecture of GAN and VAE are depicted in Table 9 and 10, respectively.

In the experiment, we first trained the VAE for 500 epochs and then we trained DSGAN for 500
epochs with m = 1.5 and w = 0.5. Third, we fixed the encoder and tuned the decoder with both
positive and negative samples (generated by DSGAN) for 600 epochs.

17

Under review as a conference paper at ICLR 2020

Table 7: The architectures of generator and discriminator for semi-supervised learning on SVHN and
CIFAR-10. N was set to 128 and 192 for SVHN and CIFAR-10, respectively.

Generator G Discriminator D

Input: z ∈ R100 from unif(0, 1) Input: N dimension feature

100× 8192 FC layer with BN, ReLU
Reshape to 4× 4× 512
5× 5 conv. transpose 256 stride = 2 with BN, ReLU
5× 5 conv. transpose 128 stride = 2 with BN, ReLU
5× 5 conv. transpose 3 stride = 2 with WN, Tanh

N × 400 FC layer, ReLU
400× 200 FC layer, ReLU
200× 100 FC layer, ReLU
100× 1 FC layer

Table 8: The architecture of classifiers for semi-supervised learning on SVHN and CIFAR-10. (GN:
Gaussian noise; lReLU(leak rate): LeakyReLU(leak rate))

Classifier C for SVHN Classifier C for CIFAR-10

Input: 32× 32 RGB image Input: 32× 32 RGB image

GN, std = 0.05
Dropout2d, dropping rate = 0.15
3× 3 conv. 64 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 64 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 64 stride = 2 with WN, lReLU(0.2)
Dropout2d, dropping rate = 0.5
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 128 stride = 2 with WN, lReLU(0.2)
Dropout2d, dropping rate = 0.5
3× 3 conv. 128 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 128 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 128 stride = 1 with WN, lReLU(0.2)
Global average Pooling

128× 10 FC layer with WN

GN, std = 0.05
Dropout2d, dropping rate = 0.2
3× 3 conv. 96 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 96 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 96 stride = 2 with WN, lReLU(0.2)
Dropout, dropping rate = 0.5
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
3× 3 conv. 192 stride = 2 with WN, lReLU(0.2)
Dropout, dropping rate = 0.5
3× 3 conv. 192 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 192 stride = 1 with WN, lReLU(0.2)
1× 1 conv. 192 stride = 1 with WN, lReLU(0.2)
Global average Pooling

192× 10 FC layer with WN

Table 9: The architectures of generator and discriminator in DSGAN for novelty detection.

Generator G Discriminator D

Input: 128 dimension feature Input: 128 dimension feature

128× 1024 FC layer with BN, ReLU
1024× 512 FC layer with BN, ReLU
512× 256 FC layer with BN, ReLU
256× 128 FC layer

128× 400 FC layer, ReLU
400× 200 FC layer, ReLU
200× 100 FC layer, ReLU
100× 1 FC layer

Table 10: The architectures of VAE for novelty detection.

Encoder Decoder

5× 5 conv. 32 stride = 2, with BN, lReLU(0.2)
5× 5 conv. 64 stride = 2, with BN, lReLU(0.2)
5× 5 conv. 128 stride = 2, with BN, lReLU(0.2)
(For mean)
4× 4 conv. 128 stride = 1
(For std)
4× 4 conv. 128 stride = 1

5× 5 conv. transpose 128 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 64 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 32 stride = 2 with BN, lReLU(0.2)
5× 5 conv. transpose 3 stride = 2, Tanh

18

	Introduction
	Proposed Method-DSGAN
	Formulation
	Case Study on Various Unseen Data Generation
	Designing p

	Theoretical Results
	Applications
	Semi-Supervised Learning
	Novelty Detection

	Experiments
	DSGAN with different
	DSGAN in Semi-Supervised Learning
	Simulation Results

	DSGAN in Novelty Detection
	Simulation Results

	Related Works about Unseen Data Generation
	Conclusions
	Flowchart and Algorithm of DSGAN
	Tricks for Stable Training
	Proof of Theorem 1
	Experimental Details for Semi-Supervised Learning
	Datasets: MNIST, SVHN, and CIFAR-10
	Hyperparameters
	Architecture

	Experimental Details for Novelty Detection

