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ABSTRACT

Earlier methods for Neural Architecture Search were computationally expensive.
Recently proposed Differentiable Neural Architecture Search algorithms such as
DARTS can effectively speed up the computation. However, the current formu-
lation relies on a relaxation of the original problem that leads to unstable and
suboptimal solutions. We argue that these problems are caused by three funda-
mental reasons: (1) The difficulty of bi-level optimization; (2) Multicollinearity
of correlated operations such as max pooling and average pooling; (3) The dis-
crepancy between the optimization complexity of the search stage and the final
training. In this paper, we propose a grouped variable pruning algorithm based on
one-level optimization, which leads to a more stable and consistent optimization
solution for differentiable NAS. Extensive experiments verify the superiority of
the proposed method regarding both accuracy and stability. Our new approach
obtains state-of-the-art accuracy on CIFAR-10, CIFAR-100 and ImageNet.

1 INTRODUCTION

Using 3150 GPU days, Google researchers showed in (Real et al. (2018)) that it is possible to
automatically find neural network architectures that are superior to the ones designed by human
experts. However, this method needs to fully train each candidate architecture until convergence.
Two factors are known to contribute to the difficulty of the NAS problem. First, the search space
is huge: the most popular NASNet search space (Zoph et al. (2018)) contains approximately 1015

models. Second, the basic method to evaluate the performance of a given architecture is to fully
train it from scratch, and this is very time-consuming. To improve the efficiency of NAS, Pham et al.
(2018) proposed ENAS where all child models are forced to share weights to avoid training each
model separately from scratch. DARTS (Liu et al. (2018)) relaxes the discrete search space to be
continuous so that one can use stochastic gradient descent to simultaneously learn the architectures
and model parameters on a given dataset. Unlike randomized, evolutionary, and reinforcement
learning based discrete architecture search, DARTS can score every architecture in the search space
by training a single architecture model, and the total computational cost is roughly the same as the
training time of using the final architecture. To reduce the search complexity, DARTS employs the
idea of computation cell as the building block of the final architecture, and this is the same as Zoph
et al. (2018); Real et al. (2018). The learned cell is then stacked together to form a wider and deeper
convolutional neural network, which becomes the final architecture.

However, the current differentiable approach relies on a relaxation of the original problem that leads
to unstable and suboptimal solutions. In our extensive experiments with DARTS, we found that
DARTS suffers from the following problems. First, the performance variation of the architectures
found by DARTS with different random initial seeds is very large. In some cases, DARTS may
find architectures with worst performance than the average of randomly picked architectures in the
search space. This is also the reason why DARTS needs to use 4 GPU days to perform the search
four times and then use another 1 GPU day to pick the best architecture. Second, although DARTS
works fine on CIFAR-10, it performs poorly on many other datasets. For example, on CIFAR-100,
when we run DARTS until convergence, it ends up with architectures with many skip connections
and poor performance. Third, our experiments indicate that the correlation between the accuracy of
the fully trained stand-alone model vs the score obtained from DARTS during the search phase is
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only 0.2. This means that DARTS relaxation is not a good approximation in terms of predicting the
performance of the stand-alone final architecture.

The above mentioned problems are caused by approximation errors between discrete architectures
and their continuous relaxations. In addition, we found that the performance of DARTS is nega-
tively affected by the following three factors, which we will remedy in this work: (1) The difficulty
of bi-level optimization: the optimization algorithm relies on a 2nd order approximation, which is
slow and may not find the optimal solution. (2) Multicollinearity of correlated operations such as
max pooling and average pooling. When there are two operations corresponding to feature maps
that are highly correlated, the weights assigned to their architectures may no longer represent their
true importance. Appropriate operations could be pruned as a result. This is similar to the problem
caused by multicollinearity in regression. (3) The discrepancy between the optimization complex-
ity of the search stage architecture and the final architecture. As well studied (He et al. (2016);
Sankararaman et al. (2019)), including skip connections would make the gradient flows easier and
optimization of deep neural network more stable. In our experiment with multiple datasets, when
the parent architecture in the proxy search space is too shallow, the algorithms would tend to select
fewer skip connections and when the parent architecture is too deep, the algorithm would select
more than the optimal number of skip connections. Therefore matching the search stage and final
stage optimization complexity is needed to allow the system to select the proper amount of skip
connections. However, since DARTS can only handle relatively shallow models under the same
computational resource constraints, this leads to suboptimality.

To address these problems, we propose grouped backward pruning solution for NAS called StacNAS
(STAble and Consistant differentiable Neural Architecture Search) based on one-level optimization,
which allows the matching of the optimization complexity for search and final training. These
improvements allow StacNAS to achieve the state-of-the-art performance using the NASNet search
space (Zoph et al. (2018)).

In our experiments in Section (3), we show that StacNAS is able to find a convolutional cell that
achieves a test error of 2.33 (with same training code as DARTS for fair comparison with DARTS)
and 1.85 with additional training tricks used in other works (this is for fair comparison with perfor-
mance reported in some recent papers employing such tricks) on CIFAR-10 for image classification
using around 3.6M parameters. This is the current state-of-the-art result among all NAS methods.
Since we employ the simple one-level optimization, we are also able to directly search over IM-
AGENET (mobile setting), and achieve a top-1 error of 24.3 (with DARTS code) and 23.48 (with
additional training tricks). This result beats the current state-of-the-art EfficientNetB0 (Tan &
Le (2019)) at the same model complexity.

Our contributions can be summarized as follows:

1. We introduce the idea of grouping similar operations to compensate for the effect of multi-
collinearity. This allows our method to select good operators more accurately.

2. We use a progressive backward variable pruning approach to solve the discrepancy between
the optimization complexity of the search stage proxy architecture and training architec-
ture. We invite the unit gradient confusion (Sankararaman et al. (2019)) to measure the
optimization complexity of the search and training architectures.

3. We show that coupled with the grouped backward variable pruning solution, the simpler
one-level joint optimization of both architecture and model parameters is sufficient for
NAS with differentiable relaxation. Because it is easier to ensure convergence in one-level
optimization, our method converges significantly faster, and it can scale up to complex
models and large data sets, enabling direct search on ImageNet.

2 METHODOLOGY

In this section, we present our joint optimization approach with grouped variable pruning as an im-
proved solution to the difficulties observed in differentiable relaxation of NAS. Section 2.1 describes
the search space used in this work. Section 2.2 summarizes the differentiable relaxation of NAS pro-
posed in Liu et al. (2018), which is the basic model we try to improve. Section 2.3 introduces our
approach of joint optimization with grouped variable pruning.
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Figure 1: An overview of StacNAS: (a) A cell is a DAG with nodes connected by unknown opera-
tions. (b) Improved continuous relaxation by placing a by-group mixture of candidate operations on
each edge. (c) When a certain type of operation is activated, include all candidate operations in this
type to form a new mixture operation. (d) Deriving the final architecture.

2.1 SEARCH SPACE

We first use similar search space as that of DARTS, where a convolutional neural network is formed
by stacking a series of building blocks called cells (Zoph et al. (2018); Real et al. (2018); Liu et al.
(2018)), and only two types of cells are learned: the normal cell and the reduction cell. The only
difference between them is that every reduction cell reduces the image size by a factor of 2 through
the use of stride 2. Then we enlarge the search space to allow all cells in the final architecture to be
different.

A cell can be seen as a directed acyclic graph (DAG) as shown in Figure 1, where an ordered
sequence of N nodes {x1, · · · , xN} are connected by directed edges (i, j). Each node xi is a latent
representation (i.e. a feature map) and each directed edge (i, j) represents some operation o(·) ∈ O
that transforms xi. Within a cell, each internal node is computed as the sum of all its predecessors:

xj =
∑
i<j

o(i,j)(xi). (1)

As in Liu et al. (2018), we include the following 7 candidate operations: identity; 3 × 3 average
pooling; 3 × 3 max pooling; 3 × 3 separable convolutions; 5 × 5 separable convolutions; 3 × 3
dilated separable convolutions; 5×5 dilated separable convolutions. A special zero operation is also
included to serve as a scaling factor for each edge (i, j) . According to Liu et al. (2018), for a cell
with N = 4 nodes, this corresponds to 1018 possible choices of architectures.

In this framework, the task of designing the cell structure is to determine the most important two
preceding edges for all internal nodes and the best choice of operations for these selected edges.

2.2 DIFFERENTIABLE RELAXATION OF NAS

DARTS (Liu et al. (2018)) proposed a continuous relaxation of the categorical choice of operations
and edges so that the relative importance of them can be learned through stochastic gradient descent
(SGD). Specifically, to make the search space continuous, DARTS replaces the discrete choice of
operation o(·) ∈ O with a weighted sum over all candidate operations (Figure 1):

ō(i,j)(x) =
∑
o∈O

α(i,j)
o o(i,j)(xi) where α(i,j)

o =
exp(β

(i,j)
o )∑

o′∈O exp(β
(i,j)
o′ )

(2)

which is called the architecture parameters.

Intuitively, a well learned α = {α(i,j)
o } could represent the relative importance/contribution of the

operation o(i,j) for transforming the feature map xi.

After the relaxation, the task of architecture search reduces to learning a set of continuous architec-
ture parameters α = {α(i,j)}. Specifically, one first trains a parent/proxy network that contains all
candidate operations and connections/edges through Equation 1 and Equation 2. During training,
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one would be able to learn which operations and which edges are redundant. After the training
algorithm converges, a compact architecture is obtained by pruning the unimportant operations and
edges.

In DARTS, the authors formulated the optimization of the architecture parameters α and the weights
w associated with the architecture as a bi-level optimization problem (Anandalingam & Friesz
(1992)), where α is treated as the upper-level variable and w as the lower-level variable:

min
α

Lval(w
∗(α), α) (3)

s.t. w∗(α) = argminw Ltrain(w,α) (4)
where Ltrain and Lval represent for the training and validation loss respectively.

Evaluating Equations 4 can be prohibitive due to the expensive inner optimization. Therefore,
DARTS proposed to approximate w∗(α) by adapting w using only a single gradient update step,
and update w and α alternatively using the training and validation set respectively.

After obtaining the continuous architecture parameters α, the redundant operations and edges are
pruned to obtain a compact architecture by:

1. Retaining k = 2 strongest predecessors for each internal node, where the importance of an
edge is defined as maxo∈O,o6=zeroα

(i,j)
o ;

2. Replacing every mixed operation with the most important operation: ō(i,j) =

argmaxo∈Oα
(i,j)
o .

2.3 A STABLE AND CONSISTANT OPTIMIZATION ALGORITHM

2.3.1 ONE-LEVEL OPTIMIZATION

Although DARTS employed a bi-level optimization approach to avoid overfitting, it suffers from the
following problems:

• Bi-level optimization is very difficult, leading to unstable convergence and poor results.
In fact, if we run the original DARTS algorithm for a long time on CIFAR-10, then we
obtain a solution with αzero to be almost 1. Moreover, a direct application of DARTS on
CIFAR-100 fails to find a meaningful architecture.
• The memory cost of the second-order approximation of bi-level optimization is more than

twice of that of the one-level optimization 1, and hence the search stage has to use a
much smaller proxy parent model for searching cell structures. The searched cells are
then stacked into a much deeper network. This would cause the optimization discrepancy
mentioned before, which we will describe in more details in Section 2.3.3.
• The original training data has to be split into training data and validation data. With the

current 1:1 split ratio, only half of the data could be used to learn w. The learning of model
parameter w can be negatively affected due to the lack of data. For example, on CIFAR-
100, which contains more classes with fewer images in each class than CIFAR-10, the
original DARTS algorithm selects cells dominated with identity and a large scaling αzero.

To solve these difficulties, we employ one-level optimization, where we jointly optimize both the
architecture parameter α and the model parameter w. In our experiment, we use all of the original
training data to update α and w together by descending on w and α using

wt = wt−1 − ηt∂wLtrain(wt−1, αt−1) (5)
αt = αt−1 − δt∂αLtrain(wt−1, αt−1) (6)

simultaneously, where ηt and δt are learning rates.

Therefore, in this work, we advocate that the architecture parameter α and architecture weights
w should be optimized simultaneously using one-level optimization. Coupled with the solutions
proposed in Section 2.3.2 and Section 2.3.3, we show that the proposed integrated method based on
one-level optimization can achieve the state-of-the-art performance.

1For two-level optimization, the gradients of w on both training and validation mini-batches have to be
loaded in the memory to calculate the gradient of α
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2.3.2 GROUPED VARIABLE PRUNING

In classical statistical literature, there is a phenomenon called multicollinearity, in which one predic-
tor variable in a multiple regression model can be linearly predicted by other variables with a high
degree of accuracy. In this situation, the coefficient estimates may change erratically with respect to
small changes in the model or the training data. Therefore, for variable selection in a multivariate
regression model with collinear predictors, the values of coefficients may no longer give valid results
about which predictors are redundant.

The construction of the continuous search space as described in Section 2.1 is very similar to a mul-
tiple regression model: feature maps transformed by all candidate operations are summed together
and weighted by coefficients α. The relative importance of operation o is learned through the value
of αo. When there are operations producing highly correlated feature maps (such as max pooling
and average pooling ), their weights α may no longer be representative of their real importance. To
measure the operation correlation, we adopt the same procedure as Gastaldi (2017): we calculated
the correlation between the flattened feature map of two operations for the first edge of the last cell.
And the result suggests that max pooling and average pooling are in one group (their correlation is
0.52), 3 × 3 and 5 × 5 separable convolutions are in the same group (correlation 0.38), 3 × 3 and
5 × 5 dilated separable convolutions are in the same group (correlation 0.27). The details of the
correlation calculation procedure and the full correlation matrix are provided in the Appendix B.

To verify the conjectures about multicollinearity would cause the system to prune important opera-
tions, we conducted an experiment with CIFAR-10, including an unbalanced number of operations
from different groups in the search space, such as max pooling, 3× 3 separable convolutions, 5× 5
separable convolutions and zero. This ends up with a normal cell dominated with max pooling, al-
though the architecture would have higher validation accuracy if separable convolutions are selected.
The cause of this problem is due to the multicollinearity of the two separable convolutions so that
they produce feature maps linearly correlated, which splits the contribution in the mixed operation.
In the extreme condition, suppose they produce exactly the same feature maps, there is only one
degree of freedom for them as long as αsep3×3 + αsep5×5 = αsep.

To remedy this problem, we propose a two-stage grouped backward variable pruning strategy for
selecting the best operations based on one-level optimization as shown in Figure 1 and Algorithm 1.
For the 7 candidate operations mentioned in Section 2.1, they are divided into 4 groups according
to their linear correlation estimation. The correlation measures are obtained automatically from a
training data (in our case, CIFAR-10) as detailed in the Appendix B. The grouping can also be done
automatically based on the data.

• Group 1: identity (skip connect);

• Group 2: 3× 3 max pooling; 3× 3 average pooling;

• Group 3: 3× 3 separable convolutions; 5× 5 separable convolutions;

• Group 4: 3× 3 dilated separable convolutions; 5× 5 dilated separable convolutions.

At stage 1, we only include one operation from each group to prevent the multicollinearity phe-
nomenon. For example, we let the following four operations compete first to decide which types of
operation to use at edge (i, j): identity; 3 × 3 max pooling; 3 × 3 separable convolutions; 3 × 3
dilated separable convolutions.

At stage 2, suppose that the operator 3× 3 separable convolutions is selected at edge (i, j), we then
replace the mixed operation ô(i,j) with a weighted sum of all operations in the same group (Group
3). Again, at every stage, a special zero operation is also included to serve as a scaling factor for
each edge (i, j).

2.3.3 OPTIMIZATION COMPLEXITY MATCHING

In our experiment with multiple datasets, when the search stage architecture is too shallow, the
algorithms would tend to select fewer skip connections and when the search stage architecture is too
deep, the algorithm would select more than the optimal number of skip connections. Both these two
scenarios lead to poor performance of the final architecture.
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Algorithm 1 StacNAS- Stable and Consistent differerentiable NAS

1: procedure STAGE 1 (Group search)
2: Create a by-group operation õ(i,j)(x) parametrized by α̃(i,j)

o for each edge (i, j)
3: if t < T then
4: 1. Update weights wt by descending ∂wLtrain(wt−1, α̃t−1)
5: 2. Update architecture parameter α̃t by descending ∂α̃Ltrain(wt−1, α̃t−1)

6: Set optimal α̃∗ = αT

7: Activate the optimal operation group based on α̃∗

8: procedure STAGE 2 (Backward)
9: Use all the group member of o∗(i,j) to create mixed operation ô(i,j)(x) parametrized by
α̂
(i,j)
o

10: if t < T then
11: 1. Update weights wt by descending ∂wLtrain(wt−1, α̂t−1)
12: 2. Update architecture parameter αt by descending ∂α̂Ltrain(wt−1, α̂t−1)

13: Set optimal α̂∗ = αT
14: Select the best operation o∗(i,j) ← argmaxo∈Oα̂

(i,j)

15: Prune the redundant operations and edges.
16: procedure STAGE 3 (Deformable Architecture Training)
17: Create ô(i,j)(x) parametrized by α̂(i,j)

o for each edge (i, j) by sum of o∗(i,j) and o(i,j)zero.
18: if t < T then
19: 1. Update weights wt by descending ∂wLtrain(wt−1, αt−1)
20: 2. Update architecture parameter αt by descending ∂αLtrain(wt−1, αt−1)

In DARTS, a stack of 8 cells are used to serve as the proxy parent network during the search stage
(due to the high memory cost of bi-level optimization), and then a stack of 20 cells are used to build
the final architecture. This introduces a significant gap between the optimization complexity of the
proxy search architecture and the final architecture.

As well studied (He et al. (2016); Sankararaman et al. (2019)), including skip connections would
make the gradient flows easier and optimization of the deep neural network more stable. Therefore,
whether a NAS algorithm can select the proper amount of skip connections and their location would
significantly affect the performance of the designed architecture. Hence, properly matching the
search stage and final stage optimization complexity is vital towards a consistent optimization of the
system.

To quantify the optimization difficulty more concretely, we use a measurement called gradient con-
fusion, introduced in (Sankararaman et al. (2019)). The authors empirically show that when gradient
confusion is high, stochastic gradients produced by different mini-batches may be negatively corre-
lated, slowing down convergence. But when gradient confusion is low, SGD has better convergence
properties. Deeper networks usually correspond to higher gradient confusion, and skip connection
can significantly reduce gradient confusion.

Formally, gradient confusion is defined to be an upper bound of the negative inner product between
gradients evaluated at all mini-batches. Formally, let {Li}mi=1 be losses for mini-batches, and let W
be trainable parameters. Then a gradient confusion ζ ≥ 0 at W could be estimated by the following
formula

ζ = max{0, max
i,j=1,...,m

{− < ∇Li(W ),∇Lj(W ) >}} (7)

By calculating the gradient confusion (details are provided in the Appendix D), we can determine
the desired depth (number of cells stacked) for the two search stages, to make their optimization
complexity compatible with that of the final architecture. This allows the proposed algorithm to be
able to optimize the search architecture with the same level of difficulty with the final architecture.
We find that by matching the optimization complexity, the system would automatically select the
optimal number of skip connections.
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2.4 RELATIONSHIP TO PRIOR WORK

The authors of ProxylessNAS (Cai et al. (2018)) argued that the original DARTS algorithm cannot
search architectures directly on ImageNet due to its large memory footprint, and proposed to solve
the memory explosion problem by sampling only one path/operation at each edge to be activated at
training time of the search stage. This solution reduces the memory requirement to the same level of
training the final model, and thus it is possible to directly search on large datasets such as ImageNet
without using a proxy dataset. In this work, we make it possible to directly search over large dataset
by the combination of one-level optimization and the design of a hierarchical (two-stage) search
space, as both schemes reduce the memory requirement of our algorithm compared to the original
DARTS.

Similar to ProxylessNAS, SNAS (Xie et al. (2018)) also samples only one operation at each edge
for each training step, where their purpose is to solve the inconsistency problem between the per-
formance of derived child networks and converged parent networks instead of memory concerns.
The authors proposed to use Gumbel random variable Maddison et al. (2016) to assign the architec-
ture parameter credit through gradient-based methods. Our work tackles the inconsistency problem
from a different perspective through the grouped backward procedure and the matching of the op-
timization complexity. Empirical results (see Table 1 and 3) suggest that the proposed methods are
superior to the strategy proposed in SNAS.

3 EXPERIMENTS

3.1 NAS BENCHMARKS

In this section, we validate the effectiveness of our proposed method for the image classification
task.

We conduct our first set of experiments on CIFAR-10 and CIFAR-100 (Krizhevsky et al. (2009)),
each containing 50,000 training RGB images and 10,000 test images.

In the first stage of the search algorithm, we include the following operations in O: identity; 3 × 3
max pooling; 3× 3 separable convolutions; 3× 3 dilated separable convolutions and zero.

By calculating the gradient confusion for the two search stages and the final architecture, we em-
pirically found that using 14 cells for the first stage and 20 cells for the second stage matches the
optimization complexity of the final architecture. This probably because for the first stage, all the
mixed operations contain non-identity operation, which can be seen as architecture with no pure skip
connection. This results in higher gradient confusion, and shallower structure has to compensate it
by using less stacking cells of 14. For the second stage, proper amount of skip connection has been
activated, so using 20 cells would match the final architecture.

Then this proxy parent network by stacking 14 cells is trained using one-level optimization for 100
epochs. After convergence, the optimal operation group is activated based on the learned α.

In the second stage, we replace the mixed operation ô(i,j) with a weighted sum of all operations in
the activated group from stage 1. Then a proxy parent network by stacking 20 cells is trained using
one-level optimization for 100 epochs.

To investigate the transferability of the cell 1 searched on CIFAR-10 and CIFAR-100, we further
evaluate it on ImageNet (Russakovsky et al. (2015)) (mobile setting) (Figure 3).

Besides those declared2, all other parameters and settings are identical to the ones used in Liu et al.
(2018).

1This cell is provided in the supplementary material.
2All of our experiments for CIFAR10 and CIFAR100 were performed using NVIDIA Tesla V100 GPUs,

and NVIDIA Tesla 8*V100 GPUs for IMAGENET.
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Table 1: CIFAR-10 Benchmark. *We emphasis that to obtain an unbiased result, we reported
the mean and standard deviation over 8 single runs (i.e. search once and evaluate once, repeats
the procedure 8 times with different seeds). For many other NAS methods like DARTS, 4
searchs are conducted to pick the best one. base represents for that the final architecture training
procedure is exactly the same with DARTS for a fair comparison; fancy represents for that the final
training adopts training tricks for comparison with other NAS methods. Training details of base and
fancy are provided in the Appendix C

.

Test Error (%) Params Search Search
Architecture Source Best Average (M) Cost Method

AmoebaNet-B Real et al. (2018) 2.55 N/A 2.8 3150 evolution
ENAS Pham et al. (2018) 2.89 N/A 4.6 0.5 RL

DARTS (2nd order) Liu et al. (2018) N/A 2.76±0.09 3.3 4+1∗ SGD
ProxylessNAS Cai et al. (2018) 2.08 N/A 5.7 4 SGD

SNAS Xie et al. (2018) N/A 2.85 ±0.02 2.9 1.5 SGD
PDARTS Chen et al. (2019) 2.5 N/A 3.4 0.3 SGD

Base StacNAS(ours) 2.33 2.48±0.08 3.9 0.8 SGD
Fancy StacNAS(ours) 1.85 2.02 ±0.06 3.9 0.8 SGD

Table 2: CIFAR-100 Benchmark

Test Error (%) Params Search Search
Architecture Source Best Average (M) Cost Method

DARTS (2nd order) Liu et al. (2018) N/A 17.54 ± 0.27 3.8 4+1 SGD
PDARTS Chen et al. (2019) 15.92 N/A 3.6 0.3 SGD

Base StacNAS (ours) 15.90 16.11±0.2 4.3 0.8 SGD
Fancy ours 12.9 14.3± 0.18 4 0.8 SGD

Table 3: ImageNet Benchmark (mobile setting)

Test Error (%) Params Search Search
Architecture Source top-1 top-5 (M) Cost Method

AmoebaNet-A Real et al. (2018) 25.5 8 5.1 3150 evoluation
AmoebaNet-B Real et al. (2018) 26 8.5 5.3 3150 evoluation
AmoebaNet-C Real et al. (2018) 24.3 7.6 6.4 3150 evoluation

DARTS Liu et al. (2018) 26.7 8.7 4.7 4 SGD
ProxylessNAS Cai et al. (2018) 24.9 N/A N/A 8.3 SGD

SNAS Xie et al. (2018) 27.3 9.2 4.3 1.5 SGD
PDARTS Chen et al. (2019) 24.4 7.4 4.9 0.3 SGD

EfficientNet-B0 Tan & Le (2019) 23.7 6.8 5.3 N/A RL
C10 (base) StacNAS (ours) 24.4 7.3 5.3 1 SGD
C10 (fancy) StacNAS(ours) 23.48 6.4 5.3 1 SGD
C100 (base) StacNAS (ours) 24.34 7.1 4.9 1 SGD

IMAGENET(base) StacNAS (ours) 24.31 6.4 5.7 20 SGD

3.2 PREDICTED PERFORMANCE CORRELATION (CIFAR-10)

In differentiable NAS, the learned architecture parameter α is supposed to represent the relative
importance of one candidate operation verse the others. To check the correlation between the accu-
racy of a stand-alone architecture with different candidate operations and the corresponding α, we
replace the selected operation in the first edge of the first cell for the final architecture with all the
other candidate operations in the first stage of StacNAS, and fully train them until converge. The
obtained stand-alone accuracy is compared with the corresponding α learned for each candidate
operation. Their correlation is plotted in Figure 2.
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Figure 2: Correlation between standa-lone model and learned α: (a) Correlation coefficient of Stac-
NAS: 0.91; (b) Correlation coefficient of DARTS: 0.2.

3.3 ABLATION EXPERIMENTS

Overall algorithm In Table 4 we reported the ablation studies. Results show that bi-level op-
timization with operation grouping and complexity matching can improve the original darts, but
underperforms the proposed StacNAS.

Table 4: Ablation Experiments

CIFAR10 CIFAR100
two-level one-level two-level one-level

baseline 2.97±0.32 2.74±0.12 19.8 ± 1.33 16.93±0.89
grouped backward (GB) 2.82±0.26 2.68±0.10 18.25±1.19 16.68±0.65
GB+complexity match 2.73±0.23 2.48±0.08 18.13±0.61 16.11±0.2

Stacking layers The validation error on CIFAR10 of 8 repeated experiments for 8cells+8cells is
2.74 ± 0.12, for 14cells+17cells is 2.58 ± 0.07, for 17cells+20cells is 2.53 ± 0.05, which are all
inferior to the result of 14cells+20cells.

Selection of representative operations We also experiment on CIFAR10 with randomly selected
operations from each group for stage 1. The results for CIFAR10 are 2.53± 0.08, which means the
selection of the operations for the first stage is not sensitive.

4 CONCLUSION

This paper introduced a stable and consistent optimization solution to differentiable NAS, which
we call StacNAS. Our method addresses some difficulties encountered in the original DARTS algo-
rithm such as bi-level optimization, multicollinearity of correlated operations, and the fundamental
challenges of matching neural network optimization complexity in NAS and in the final training.
It was shown that our method leads to the state-of-the-art image classification results on multiple
benchmark datasets.
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avg 3x3 max 3x3 sep 3x3 sep 5x5 dil 3x3 dil 5x5
avg pool 3x3 1.00 0.52 -0.03 -0.03 0.00 -0.04
max pool 3x3 0.52 1.00 0.00 0.02 -0.13 -0.08
sep conv 3x3 -0.03 0.00 1.00 0.38 0.15 0.08
sep conv 5x5 -0.03 0.02 0.38 1.00 0.11 0.06
dil conv 3x3 0.00 -0.13 0.15 0.11 1.00 0.27
dil conv 5x5 -0.04 -0.08 0.08 0.06 0.27 1.00

Table 5: Operator Correlation Matrix

A APPENDIX

B OPERATOR CORRELATION ESTIMATION

We Compute the correlations among different operators using CIFAR-10. This is for the purpose of
grouping similar operators in our procedure. The correlation measures are obtained as follows.

1. A network of 14 cells is trained 100 epochs using parameters in the original DARTS, where
the cell DAG consists 4 intermediate nodes and 14 learnable edges, and each edge is a
weighted summation of all the 8 operators in the space.

2. With the trained model, for a given training image, we may pass it through the network,
and store the output of the six operators (exclude ”none” and ”skip connect”) on all edges.
On each edge, flatten the six output tensors into six vectors. Repeat until more than 10000
images in the training set have been processed.

3. Use the resulting data to calculate the correlations among the operators.

The resulting correlation matrix for the operators are presented in Table 5. The table clearly shows
three distinct pairs of highly correlated operators, which form the three groups (plus a separate group
for the skip connect operator) in our method.

C TRAIN DETAILS

CIFAR-10 and CIFAR-100 The final architecture is a stack of 20 cells: 18 normal cells and 2
reduction cells, posioned at the 1/3 and 2/3 of the network respectively. For the base training, we
trained the network exactly the same with DARTS. For the fancy training, we add AutoAugment
(CIFAR10) (Cubuk et al. (2018)) policy and trained the network for 1200 epochs, other than these,
all the other settings are same as DARTS.

ImageNet The final architecture is a stack of 14 cells: 12 normal cells and 2 reduction cells, posioned
at the 1/3 and 2/3 of the network respectively. For the base training, we trained the network exactly
the same with DARTS. For the fancy training, we add AutoAugment (IMAGENET) (Cubuk et al.
(2018)) policy and trained the network for 600 epochs, other than these, all the other settings are
same as DARTS.

D ESIMATION OF GRADIENT CONFUSION

We compared gradient confusion for several different settings, including different numbers of cells,
different stages, with/without an auxiliary head. The result are provided in the following table.

For each setting, we first train the architecture for 100 epochs and then ran 10 more iterations with
randomly selected mini-batch using the trained parameters and compute the gradient confusion using
formula (7) and obtain ζi for each iteration i. Then, we compute the mean of the 10 ζi we got and
divided them by the corresponding model parameter size M . Formally,

ζ̄ =

10∑
i=11

ζi/M (8)

We treat it as the measurement of the optimization complexity for the corresponding setting.
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mean param(M) confusion
augment100 2.15 3.8 0.56
stage220cell 1.2 2.1 0.57
stage1 14cell 0.83 1.4 0.59
stage1 17cell 1.56 1.7 0.91
stage1 20cell 2.06 2.14 0.96

Table 6: Gradient Confusion Estimation

Figure 3: Normal cell learned on CIFAR-10

E CELLS OF BENCHMARK DATASET

Figure 4: Reduction cell learned on CIFAR-10
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Figure 5: Normal cell learned on CIFAR-100

Figure 6: Reduction cell learned on CIFAR-100

Figure 7: Normal cell learned on IMAGENET(mobile setting)

Figure 8: Reduction cell learned on IMAGENET(mobile setting)
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