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ABSTRACT

In this paper, we present an in-depth investigation of the convolutional autoen-
coder (CAE) bottleneck. Autoencoders (AE), and especially their convolutional
variants, play a vital role in the current deep learning toolbox. Researchers and
practitioners employ CAEs for a variety of tasks, ranging from outlier detection
and compression to transfer and representation learning. Despite their widespread
adoption, we have limited insight into how the bottleneck shape impacts the emer-
gent properties of the CAE. We demonstrate that increased height and width of the
bottleneck drastically improves generalization, which in turn leads to better per-
formance of the latent codes in downstream transfer learning tasks. The number
of channels in the bottleneck, on the other hand, is secondary in importance. Fur-
thermore, we show empirically, that, contrary to popular belief, CAEs do not learn
to copy their input, even when the bottleneck has the same number of neurons as
there are pixels in the input. Copying does not occur, despite training the CAE for
1,000 epochs on a tiny (≈ 600 images) dataset. We believe that the findings in this
paper are directly applicable and will lead to improvements in models that rely on
CAEs.

1 INTRODUCTION

Autoencoders (AE) are an integral part of the neural network toolkit. They are a class of neural net-
works that consist of an encoder and decoder part and are trained by reconstructing datapoints after
encoding them. Due to their conceptual simplicity, autoencoders often appear in teaching materi-
als as introductory models to the field of deep unsupervised learning. Nevertheless, autoencoders
have enabled major contributions in the application and research of the field. The main areas of
application include outlier detection (Xia et al., 2015; Chen et al., 2017; Zhou & Paffenroth, 2017;
Baur et al., 2019), data compression (Yildirim et al., 2018; Cheng et al., 2018; Dumas et al., 2018),
and image enhancement (Mao et al., 2016; Lore et al., 2017). In the early days of deep learning,
autoencoders were a crucial tool for the training of deep models. Training large (by the standards
of the time) models was challenging, due to the lack of big datasets and computational resources.
One way around this problem was to pre-train some or all layers of the network greedily by treating
them as autoencoders with one hidden layer (Bengio et al., 2007). Subsequently, Erhan et al. (2009)
demonstrated that autoencoder pre-training also benefits generalization. Currently, researchers in the
field of representation learning frequently rely on autoencoders for learning nuanced and high-level
representations of data (Kingma & Welling, 2013; Tretschk et al., 2019; Shu et al., 2018; Makhzani
et al., 2015; Berthelot et al., 2018).

However, despite its widespread use, we propose that the (deep) autoencoder model is not well
understood. Many papers have aimed to deepen our understanding of the autoencoder through theo-
retical analysis (Nguyen et al., 2018; Arora et al., 2013; Baldi, 2012; Alain & Bengio, 2012). While
such analyses provide valuable theoretical insight, there is a significant discrepancy between the the-
oretical frameworks and actual behavior of autoencoders in practice, mainly due to the assumptions
made (e.g., weight tying, infinite depth) or the simplicity of the models under study. Others have
approached this issue from a more experimental angle (Arpit et al., 2015; Bengio et al., 2013; Le,
2013; Vincent et al., 2008; Berthelot et al., 2019). Such investigations are part of an ongoing effort
to understand the behavior of autoencoders in a variety of settings.
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The focus of most such investigations so far has been the traditional autoencoder setting with fully
connected layers. When working with image data, however, the default choice is to use convolutions,
as they provide a prior that is well suited to this type of data (Ulyanov et al., 2018). For this reason,
Masci et al. (2011) introduced the convolutional autoencoder (CAE) by replacing the fully connected
layers in the classical AE with convolutions. In an autoencoder, the layer with the least amount of
neurons is referred to as a bottleneck. In the regular AE, this bottleneck is simply a vector ( rank-1
tensor). In CAEs, however, the bottleneck assumes the shape of a multichannel image (rank-3 tensor,
height × width × channels) instead of a vector. This bottleneck shape prompts the question: What
is the relative importance of the number of channels versus the height and width (hereafter referred
to as size) in determining the tightness of the CAE bottleneck? Intuitively, we might expect that
only the total number of neurons should matter since convolutions with one-hot filters can distribute
values across channels. Generally, the study of CAE properties appears to be underrepresented in
literature, despite their widespread adoption.

In this paper, we share new insights into the properties of convolutional autoencoders, which we
gained through extensive experimentation. We address the following questions:

• How does the number of channels and the feature map size in the bottleneck layer impact
– reconstruction quality?
– generalization ability?
– the structure of the latent code?
– knowledge transfer to downstream tasks?

• How and when do CAEs overfit?
• How does the complexity of the data distribution affect all of the above?
• Are CAEs capable of learning a “copy function” if the CAE is complete (i. e., when the

number of pixels in input equals the number of neurons in bottleneck)? This “copying
CAE” hypothesis is a commonly held belief that was carried over from regular AEs (see
Sections 4 and 5 in Masci et al. (2011).

We begin the following section by formally introducing convolutional autoencoders and explain-
ing the convolutional autoencoder model we used in our experiments. Additionally, we intro-
duce our three datasets and the motivation for choosing them. In Section 3, we outline the ex-
periments and their respective aims. Afterward, we present and discuss our findings in Sec-
tion 4. All of our code, as well as the trained models and datasets, will be published at
https://github.com/YmouslyAnon/WalkingTheTightrope. This repository will also include an in-
teractive Jupyter Notebook for investigating the trained models. We invite interested readers to take
a look and experiment with our models.

2 MATERIALS AND METHODS

2.1 AUTOENCODERS AND CONVOLUTIONAL AUTOENCODERS

The regular autoencoder, as introduced by Rumelhart et al. (1985), is a neural network that learns a
mapping from data points in the input space x ∈ Rd to a code vector in latent space h ∈ Rm and
back. Typically, unless we introduce some other constraint, m is set to be smaller than d to force the
autoencoder to learn higher-level abstractions by having to compress the data. In this context, the
encoder is the mapping f(x) : Rd → Rm and the decoder is the mapping g(h) : Rm → Rd. The
layers in both the encoder and decoder are fully connected:

li+1 = σ(W ili + bi). (1)

Here, li is the activation vector in the i-th layer, W i and bi are the trainable weights and σ is a
element-wise non-linear activation function. If necessary, we can tie weights in the encoder to the
ones in the decoder such that W i = (W n−i)T , where n is the total number of layers. Literature
refers to autoencoders with this type of encoder-decoder relation as weight-tied.

The convolutional autoencoder keeps the overall structure of the traditional autoencoder but replaces
the fully connected layers with convolutions:

Li+1 = σ(Wi ∗ Li + bi), (2)
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where ∗ denotes the convolution operation and the bias bi is broadcast to match the shape of Li such
that the j-th entry in bi is added to the j-th channel in Li. Whereas before the hidden code was an
m-dimensional vector, it is now a tensor with a rank equal to the rank of the input tensor. In the case
of images, that rank is three (height, width, and the number of channels). CAEs generally include
pooling layers or convolutions with strides > 1 or dilation > 1 in the encoder to reduce the size of
the input. In the decoder, unpooling or transposed convolution layers (Dumoulin & Visin, 2016)
inflate the latent code to the size of the input.

2.2 OUR MODEL

Our model consists of five strided convolution layer in the encoder and five up-sampling convolution
layers (bilinear up-sampling followed by padded convolution) (Odena et al., 2016) in the decoder.
We chose to use five layers so that the size of the latent code, after the strided convolutions, would
be 4x4 or 3x3 depending on the dataset. To increase the level of abstraction in the latent code,
we increased the depth of the network by placing two residual blocks (He et al., 2016) with two
convolutions each after each every strided / up-sampling convolution layer. We applied instance
normalization (Ulyanov et al., 2016) and ReLU activation (Nair & Hinton, 2010) following every
convolution in the architecture.

One of our goals was to understand the effect latent code shape has on different aspects of the
network. Therefore, we wanted to be able to change the shape of the bottleneck from one experiment
to another, while keeping the rest of the network constant. To this end, we quadrupled the number of
channels with every strided convolution si and reduced it by a factor of four with every up-sampling
convolution ui. In effect, this means that the volume (i. e., height×width× channels) of the feature
maps is identical to the input in all layers up to the bottleneck:

si(Li) ∈ R
hi
/2×wi

/2×4ci , for Li ∈ Rhi×wi×ci (3)

ui(Li) ∈ R2hi×2wi×ci/4 , for Li ∈ Rhi×wi×ci (4)

In this regard, our model, differs from CAEs commonly found in literature, where it is customary
to double/halve the number of channels with every down-/up-sampling layer. However, our scheme
allows us to test architectures with different bottleneck shapes while ensuring that the volume of the
feature maps stays the same as the input until the bottleneck. In this sense, the bottleneck is the only
moving part in our experiments.

2.3 DATASETS

To increase the robustness of our study, we conducted experiments on three different datasets. Ad-
ditionally, the three datasets allowed us to address the question, how the difficulty of the dataset
(i. e., the complexity of the data distribution) affects learning in the CAE. To study this effect, we
decided to run our experiments on three datasets of varying difficulty. We determined the difficulty
of each dataset based on intuitive heuristics. In the following, we present the datasets in the order of
increasing difficulty and our reasoning for the difficulty grading.

2.3.1 POKEMON

The first dataset is a blend of the images from “Pokemon Images Dataset”1 and the type information
from “The Complete Pokemon Dataset”2, both of which are available on Kaggle. Our combined
dataset consists of 793 .png images of Pokemon and their primary and secondary types as labels.
To keep the training time within acceptable bounds, we resized all images to be 128 × 128 pixels.
We chose this dataset primarily for its clear structure and simplicity. The images depict only the
Pokemon without background, and each image centers on the Pokemon it is showing. Additionally,
the variation in poses and color palettes is limited in the images, and each image contains large
regions of uniform color. Due to the above reasons and its small size, we deemed this dataset to
be the “easy” dataset in our experiments. We trained our models on the first 80% of images and
reserved the rest for testing.

1https://www.kaggle.com/kvpratama/pokemon-images-dataset
2https://www.kaggle.com/rounakbanik/pokemon
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2.3.2 CELEBA

A step up from the Pokemon dataset in terms of difficulty is the CelebA faces dataset (Liu et al.,
2015). This dataset is a collection of celebrity faces, each with a 40-dimensional attribute vector
(attributes such as smiling/not smiling, male/female) and five landmarks (left and right eye, nose
and left and right corner of the mouth). In our experiments, we used the first 10,000 images in the
dataset for training and the last 2,000 images for testing. Since the images also contain backgrounds
of varying complexity, we argue that this leads to more complex data distribution. Furthermore, the
lighting conditions, quality, and facial orientation can vary significantly in the images. However,
some clear structure is still present in this dataset, as the most substantial portion of each image
shows a human face. For those reasons, we defined this dataset to have “medium” difficulty. For our
purposes, we resized the images to be 96 × 96 pixels.

2.3.3 STL-10

For our last dataset, we picked STL-10 (Coates et al., 2011). This dataset consists of 96 × 96 pixel
natural images and is divided into three splits: 5,000 training images (10 classes), 8,000 test images
(10 classes), 100,000 unlabeled images. The unlabeled images also include objects that are not
covered by the ten classes in the training and test splits. Analogously to CelebA, we used the first
10,000 images from the unlabeled split for training and the last 2,000 for testing of the CAE. In the
experiments regarding knowledge transfer (see Section 3.2), we used all 8,000 labeled images from
the test split of the dataset. As the images in this dataset show many different scenes, from varying
viewpoints and under a multitude of lighting conditions, we find this dataset to be the most complex
and, therefore, the most difficult of the three.

3 EXPERIMENTS

3.1 AUTOENCODER TRAINING

The first experiment we conducted, and which forms the basis for all subsequent experiments, con-
sists of training of autoencoders with varying bottleneck sizes and observing the dynamics of their
training and test losses. This experiment probes the relative importance of latent code size versus its
number of channels. Additionally, it was meant to provide insight into how and when our models
overfit and if the data complexity (see Section 2.3) plays a discernible a role in this. We also tested
the widespread hypothesis, that autoencoders learn to “copy” the input if there is no bottleneck. For
each dataset (as introduced in Section 2.3), we selected three latent code sizes (=height=width) si,
i ∈ {1, 2, 3} as

si =
sinput
2nl−i+1

with i ∈ {1, 2, 3}, nl = 5 (5)

In this equation, nl = 5 is the number of strided convolutions in the network, and sinput is the height
(= width) of the images in the dataset. Throughout the rest of the paper, we mean width and height
when we refer to the size of the bottleneck. To obtain latent codes with size s2 (s3), we changed the
strides in the last (two) strided convolution layer(s) from two to one. For each size we then fixed
four levels of compression cj ∈ {1/64, 1/16, 1/4, 1} and calculated the necessary number of channels
ncj according to

ncj =
cjs

2
inputncinput

s2i
with i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4} (6)

Here, ncinput
is the number of channels in the input image. This way, the autoencoders had the same

number of parameters in all layers except the ones directly preceding and following the bottleneck.
We used mean squared error (MSE) between reconstruction and input as our loss function. After
initializing all models with the same seed, we trained each for 1,000 epochs and computed the test
error after every epoch.

3.2 KNOWLEDGE TRANSFER

Another goal of our investigation was to estimate the effect of the latent code shape on transferabil-
ity. Here, our idea was to train a logistic regression on latent codes to predict the corresponding
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labels for each dataset. Since logistic regression can only learn linear decision boundaries, this ap-
proach allows us to catch a glimpse of the sort of knowledge present in the latent code and its linear
separability. Furthermore, this serves as another test for the “copying” hypothesis. If the encoder has
indeed learned to copy the input, the results of the logistic regression will be the same for the latent
codes and the input images. In the first step, we exported all latent codes for the training and testing
data from the Pokemon and CelebA datasets. For STL-10 we extracted the latent codes for the test
split since we trained on the unlabeled split, where no labels are available. In the case of CelebA, we
additionally trained linear regression models to predict the facial landmarks provided in the dataset.
For every autoencoder setting, we used fivefold cross-validation to strengthen the reliability of the
results. We trained the linear models for 200 epochs (50 epoch in the case of CelebA landmarks)
with a weight decay of 0.01 and a learning rate of cj/64 (referring to Section 2.2). Besides, we also
trained models directly on the image data for every dataset to serve as a baseline for comparison.

3.3 PAIR-WISE REPRESENTATION SIMILARITY

In our final experiment, we used the recently published singular vector canonical correlation analy-
sis (SVCCA) (Raghu et al., 2017) technique to gauge the pair-wise similarity of the learned latent
codes. SVCCA takes two sets of neuron activations of the shape number of neurons × data points
and estimates aligned directions in both spaces that have maximum correlation. First, SVCCA cal-
culates the top singular vectors that explain 99% of the variance using singular value decomposition
(SVD). Subsequently, SVCCA finds affine transformations for each set of singular vectors that max-
imize their alignment in the form of correlation. Lastly, it averages the correlation for each direction
in the discovered subspace to produce a scalar similarity score. In convolutional neural networks,
this computation can become prohibitively expensive, due to the large size of the feature maps.
For such cases, the Raghu et al. (2017) recommend transforming the feature maps using discrete
Fourier transformation (DFT). In the publication, the authors show that DFT leaves SVCCA invari-
ant (if the dataset is translation invariant) but results in a block diagonal matrix, which enables exact
SVCCA computation by computing SVCCA for each neuron at a time. Additionally, they recom-
mend down-sampling bigger feature maps in Fourier space when comparing them to smaller ones.
In this experiment, we investigated the effect of latent code shape on its structure and content.

4 RESULTS AND DISCUSSION
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Figure 1: Loss plots for the three datasets. Each columns corresponds to a dataset. From left to
right: a) Pokemon, b) CelebA, c) STL-10. The top polot shows the training error, while the bottom
one depicts test error. Every bottleneck configuration is shown as a distinct line. Configurations
that have a common feature map size share the same color. Color intensity represents the amount of
channels in the bottleneck (darker = more channels)

Looking at the error curves for the CAEs (Fig. 1), we make several unexpected observations:

1. The total amount of neurons in the bottleneck does not affect training as much as expected.
All CAEs converge to a similar training error. We find this unexpected, as the smallest
bottlenecks have only 1.56% of total neurons compared to the largest ones. Although the
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(a) Pokemon training sample (b) Pokemon test sample

(c) CelebA training sample (d) CelebA test sample

(e) STL-10 training sample (f) STL-10 test sample

Figure 2: Reconstructions of randomly picked samples. The left column contains samples from the
training data, while on the right, we show samples from the test data. In each subfigure, the rows
correspond to CAEs with the same bottleneck size (height, width), increasing from top to bottom.
The columns group CAEs by the number of channels in the bottleneck, expressed as percentage
relative to input given bottleneck size. The image to the left of each grid is the input image.

final differences in training error are small, we discover that the size of the bottleneck fea-
ture maps has a more substantial effect on training error than the number of channels. The
larger the bottleneck width and height, the lower the training error. An interesting outlier
presents itself in the plots for the Pokemon dataset. Here, we see that late in the training
of the CAE with the 8x8x48 bottleneck training error suddenly spikes. At the same time,
the test error drops significantly. We verified that this was not due to an unintended inter-
ruption in training, by retraining the model with the same seed and obtained an identical
result. This outlier suggests, that the loss landscape might not always be as smooth towards
the end of training, as some publications (Goodfellow et al., 2014) claim and that ‘cliffs”
(i. e., sudden changes in loss) can occur even late in training.

2. We observe that bottleneck shape critically affects generalization. Increasing the number
of channels in the bottleneck layer seems to improve test error only slightly. However,
this trend does not hold in all cases. The relationship between bottleneck size and test
error, on the other hand, is clear cut. Larger bottleneck size correlates with a significant
decrease in test error. This finding is surprising, given the hypothesis that only the total
amount of neurons matters. The CAE reconstructions further confirm this hypothesis. We
visually inspected the reconstructions of our models (samples are shown in Fig. 2 and in
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Figure 3: Results from training linear models on latent codes to predict the labels associated with
each dataset. For Pokemon, CelebA attributes and STL-10 (macro) f1-score is shown. The plots
for CelebA regression show MSE. The top row corresponds to models trained on latent codes from
the CAE training data, while the bottom row is from CAE test data. Color is based on difference to
baseline. Red means better than baseline.

the Appendix) and found that reconstruction quality improves drastically with the size of
the bottleneck, yet no so much with the number of channels. As expected from the loss
plots, the effect is more pronounced for samples from the test data.

3. Bottleneck shape also affects overfitting dynamics. We would expect the test score to in-
crease after reaching a minimum, as the CAE overfits the data. Indeed, we observe this
behavior in some cases, especially in CAEs with smaller bottleneck sizes or the minimum
amount of channels. In other cases, predominantly in CAEs with a larger bottleneck size,
the test error appears to plateau instead. In the plot for the CelebA dataset, the curves for
12x12x48 and 12x12x192 even appear to decrease slightly over the full training duration.
This overfitting behavior implies that CAEs with a larger bottleneck size can be trained
longer before overfitting occurs.

4. CAEs, where the total number of neurons in the bottleneck is the same as the number of
pixels in the input, do not show signs of simply copying images. If the CAEs would in-
deed just copy images, the test error would go to zero, yet we do not observe this case in
any of the datasets. What is more, these complete CAEs follow the same pattern as the
under-complete ones and often converge to similar values. We believe this finding to have
far-reaching consequences as it directly contradicts the popular hypothesis about copy-
ing CAEs. In essence, this means that even complete CAEs learn abstractions from data,
which in turn implies that recently developed techniques like progressive growth (Karras
et al., 2017; Beers et al., 2018) may be applied to CAEs. The trends we derive from our
results suggest that this finding likely extends to over-complete CAEs as well. However,
experiments with over-complete CAEs are required to test this intuition.

Furthermore, the loss curves and reconstruction samples do not appear to reflect the notion of dataset
difficulty we defined in Section 2.3. The only thing that stands out is the large generalization gap
on the Pokemon dataset, which is most likely owned to the comparatively tiny dataset size of ≈
600 training images. This lack of correspondence implies that the intuitive and neural network
definitions of difficulty do not align. Nevertheless, a more detailed study is required to answer this
question definitively as curriculum learning research that suggests the opposite (Bengio et al., 2009)
also exists.

If we look at the results of our knowledge transfer experiments (Fig. 3), we find further evidence
that contradicts the copying autoencoder hypothesis. Although the loss curves and reconstructions
already indicate that the CAE does not copy its input, the possibility remains that the encoder dis-
tributes the input pixels along the channels but the decoder is unable to reassemble the image. Here,
we see that the results from the linear model trained on latent codes perform drastically better, than
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Figure 4: Results of pair-wise SVCCA. Labels on the x and y axis correspond to (height=width)-
(number of channels) in the bottleneck.

the ones trained on the inputs (marked “baseline” in the figure). The only deviation from this pattern
seems to be the prediction of attributes on the CelebA dataset, where the performance is more or
less the same for all settings. However, the prediction of landmarks on the same dataset strongly
favors latent codes over raw data. As such, it seems implausible to assume that the encoder copied
the input to the bottleneck. Overall, we find that knowledge transfer also seems to work better on
latent codes with greater size, although the effect is not as distinct as in the loss curves.

Another point of interest to us is the discrepancy between models trained on the CAE training and
test data from the Pokemon dataset. Oddly, the linear models perform better on the test data, despite
the evident overfitting of the CAEs as seen in the reconstructions and loss curves. This discrepancy
raises the question if overfitting happens mostly in the decoder, while the encoder retains most of
its generality. We believe that this question warrants further investigation, especially in light of the
recent growth in the popularity of transfer learning methods.

We notice that the latent codes from bottlenecks with the same size have higher SVCCA similarity
values as can be seen in Fig. 4 in the blocks on the diagonal. This observation further supports our
hypothesis, that latent code size, and not the number of channels, dictates the tightness of the CAE
bottleneck. Finally, we wish to point out some observations in the SVCCA similarities as a possible
inspiration for future research:

• Overall, similarity appears to be higher in latent codes from test data than in codes from
training data

• Latent codes from complete CAEs show high similarity to all latent codes from all other
CAEs

• SVCCA similarity with the raw inputs tends to increase with the number of channels

5 CONCLUSION

In this paper, we presented the findings of our in-depth investigation of the CAE bottleneck. The
intuitive assumption, that its total amount of neurons characterizes the CAE bottleneck, does not
hold. We demonstrate that the height and width of the feature maps in the bottleneck are what
defines its tightness, while the number of channels plays a secondary role. Larger bottleneck size (i.
e., height and width) is also critical in achieving better generalization as well as a lower training error.
Furthermore, we could not confirm the commonly held belief, that complete CAE (i. e., CAEs with
the same number of neurons in the bottleneck as pixels in the input) will learn to copy its input. On
the contrary, even complete CAEs appear to follow the same dynamics of bottleneck size, as stated
above. In knowledge transfer experiments we have also shown that CAEs that overfit retain good
predictive power in the latent codes, even on unseen samples. These insights are directly applicable
in practice and open up new possibilities such as progressive growth for training for autoencoders.

Our investigation yielded additional results that spark new research questions. Dataset complexity,
estimated by human intuition, did not lead to significant differences in the training dynamics of
our models, which points at a discrepancy between difficulty as perceived by humans and neural
networks. On the flipside, curriculum learning, which rests on a similar notion of difficulty, has
been shown to lead to improvements in training. The link between those two empirical results is still
unclear. Another interesting question that arose from our experiments is how overfitting manifests
itself in CAEs. Does it occurs mainly in the encoder or decoder or equally in both?
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A APPENDIX

Figure A.1: Reconstructions of randomly picked samples from the Pokemon dataset. The left col-
umn contains samples from the training data, while on the right, we show samples from the test data.
In each subfigure, the rows correspond to CAEs with the same bottleneck size (height, width), in-
creasing from top to bottom. The columns group CAEs by the number of channels in the bottleneck,
expressed as percentage relative to input given bottleneck size. The image to the left of each grid is
the input image.
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Figure A.2: Reconstructions of randomly picked samples from the CelebA dataset. The left column
contains samples from the training data, while on the right, we show samples from the test data. In
each subfigure, the rows correspond to CAEs with the same bottleneck size (height, width), increas-
ing from top to bottom. The columns group CAEs by the number of channels in the bottleneck,
expressed as percentage relative to input given bottleneck size. The image to the left of each grid is
the input image.
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Figure A.3: Reconstructions of randomly picked samples from the STL-10 dataset. The left column
contains samples from the training data, while on the right, we show samples from the test data. In
each subfigure, the rows correspond to CAEs with the same bottleneck size (height, width), increas-
ing from top to bottom. The columns group CAEs by the number of channels in the bottleneck,
expressed as percentage relative to input given bottleneck size. The image to the left of each grid is
the input image.
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