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ABSTRACT

Regularization and normalization have become an indispensable component in
deep learning because it enables faster training and improved generalization per-
formance. We propose the projected error function regularization loss (PER) that
encourages activations to follow the standard normal distribution. PER randomly
projects activations to one dimensional space and computes the regularization in
the projected space. PER acts like the Pseudo-Huber loss in the projected space,
enabling robust regularization for training deep neural networks. In addition, PER
can capture interaction between hidden units by projection vector drawn from unit
sphere. By doing so, PER minimizes the upper bound of the Wasserstein distance
of order one between an empirical distribution of activations and the standard nor-
mal distribution. To the best of the authors’ knowledge, this is the first work to
regularize activations concerning the target distribution in the probability distri-
bution space. We evaluate the proposed method on image classification task and
word-level language modeling task.

1 INTRODUCTION

Training of deep neural networks is very challenging because of vanishing and exploding gradient
problem (Hochreiter, 1998; Glorot & Bengio, 2010), existence of many flat regions and saddle
points (Shalev-Shwartz et al., 2017), and the shattered gradient problem (Balduzzi et al., 2017). To
remedy these issues, various methods for controlling hidden activations have been proposed such as
normalization (Ioffe & Szegedy, 2015; Huang et al., 2018), regularization (Littwin & Wolf, 2018),
initialization (Mishkin & Matas, 2015; Zhang et al., 2019), and architecture design (He et al., 2016).

Among various techniques of controlling activations, one well-known and successful path is con-
trolling their first and second moments. Back in 1990s, it has been known that the neural network
training can be benefited from normalizing input statistics so that samples have zero mean and
identity covariance matrix (LeCun et al., 1998; Schraudolph, 1998). This idea motivated batch nor-
malization (BN) that considers hidden activations as the input to the next layer and normalizes scale
and shift of the activations (Ioffe & Szegedy, 2015).

Recent works show the effectiveness of different sample statistics of activations for normalization
and regularization. Deecke et al. (2018) and Kalayeh & Shah (2019) normalize activations to several
modes with different scales and translations. Variance constancy loss (VCL) implicitly normalizes
the fourth moment by minimizing the variance of sample variances, which enables adaptive mode
separation or collapse based on their prior probabilities (Littwin & Wolf, 2018). In addition, BN is
extended to whiten activations (Huang et al., 2018; 2019), and to normalize general order of central
moment in the sense of Lp norm including L0 and L∞ (Liao et al., 2016; Hoffer et al., 2018).

In this paper, we propose a new regularization method, called projected error function regulariza-
tion (PER), that regularizes activations in probability distribution space with the Wasserstein metric.
Specifically, PER encourages the distribution of activations to be close to the standard normal distri-
bution. PER shares a similar strategy that dictates the desired distribution of activations with previ-
ous normalization/regularization methods such as BN and VCL. However, previous approaches are
capable of concerning single, or few, sample statistics of activations. On the contrary, PER presents
new perspective of concerning the target distribution N (0, I) for controlling the activations. By
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concerning the distribution itself, PER can implicitly consider various statistical characteristics si-
multaneously, e.g. all order of moments and correlation between hidden units. The extensive exper-
iments on multiple challenging tasks show the efficiency of PER.

2 RELATED WORKS

Since BN has been proposed, many normalization methods (Salimans & Kingma, 2016; Lei Ba et al.,
2016; Ulyanov et al., 2016; Wu & He, 2018; Kingma & Dhariwal, 2018) have been suggested by
normalizing activations to have a sample mean β and sample standard deviation γ. Even though its
theoretical aspects on regularization and optimization are still being actively investigated (Santurkar
et al., 2018; Kohler et al., 2018; Bjorck et al., 2018; Yang et al., 2019), many modern deep learning
architectures employ BN as an essential building block for better performance and stable training.

Based on the work of Ioffe & Szegedy (2015), Huang et al. (2018; 2019) proposed normaliza-
tion technique whitening the activation of each layer. These additional constraints on statistical
relationship between activations show an significant improvement in generalization performance
of residual networks. Although correlations, or statistical dependency between activations, are not
explicitly constrained, dropout prevents activations from being activated at the same time, called co-
adaptation, by randomly dropping the activations (Srivastava et al., 2014), the weights (Wan et al.,
2013), and the spatially connected activations (Ghiasi et al., 2018).

Considering the BN as forcing activations to have learned value of norm of each unit in L2 space,
there are extensions that use other norms. Streaming normalization (Liao et al., 2016) explores
the normalization of a different order of central moment with Lp norm for general p. Similarly,
Hoffer et al. (2018) explores L1 and L∞ normalization, which enable low precision computation.
Littwin & Wolf (2018) proposes a regularization loss that reduces the variance of sample variances
of activation which is closely related to the fourth moment.

Initialization schemes such as balancing variances of each layer (Glorot & Bengio, 2010; He et al.,
2015), bounding scale of activation and gradient in residual networks (Mishkin & Matas, 2015; Bal-
duzzi et al., 2017; Gehring et al., 2017; Zhang et al., 2019), and norm preserving (Saxe et al., 2013)
can be thought as stablizing activations at the initial state. Although it cannot be guaranteed that
the desired initial state of activations is maintained during the course of training unlike normaliza-
tion and regularization approaches, experimental evidences show that an initialization scheme can
stabilize the learning process as well.

Recently, the Wasserstein metric have gained much popularity in a wide range of applications in
deep learning with some nice properties such as being a metric in probability distribution space
without requiring common supports of two distributions. For instance, it is successfully applied to
a multi-labeled classification loss function (Frogner et al., 2015), gradient flow of policy update in
reinforcement learning (Zhang et al., 2018), training of generative models (Arjovsky et al., 2017;
Gulrajani et al., 2017; Kolouri et al., 2019), and capturing long term semantic structure in sequence-
to-sequence language model (Chen et al., 2019). However, to the best of the authors’ knowledge,
PER is the first work regularizing activations in the Wasserstein probability distribution space.

3 PROJECTED ERROR FUNCTION REGULARIZATION

We consider a neural network with L layers each of which have dl hidden units in layer l. Let T =
{(xi,yi)}ni=1 be n training samples which are assumed to be i.i.d. samples drawn from a probability
distribution Px,y. In this paper, we consider the optimization by stochastic gradient descent where
we are given mini-batch of b samples randomly drawn from T at each training iteration. For i-th
element in the mini-batch, the neural network recursively computes:

hli = φ
(
W lhl−1

i + bl
)

(1)

where h0
i = xi ∈ Rd0 , hli ∈ Rdl is an i-th element of activation in layer l, φ is an activation

function. In the case of recurrent neural networks (RNNs), the recursive relationship takes the form
of:

hlti = φ
(
W l

rech
l
t−1i

+W l
inh

l−1
ti + bl

)
(2)
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where hlti is an i-th element of activation in layer l at time t and hl0i
is an initial state. Without loss of

generality, we focus on activations in layer l and the mini-batch of samples {(xi,yi)}bi=1. Through-
out this paper, we let f l be a function made by compositions of recurrent relation in equation 2 up
to layer l, i.e., hli = f l(xi), and f lj be a j-th output of a function f l.

We are interested in the problem of controlling a set of hidden activations
{
hli
}b
i=1

observed in
mini-batch. Before introducing our method, we review BN and its variants as controlling activations
by concerning the norm in Lp(Rd0) which is the space of measurable functions whose p-th power
of absolute value is Lebesgue integralable with norm of f ∈ Lp(Rd0) is given by:

‖ f ‖p=
(∫

Rd0

|f(x)|pdPx(x)

)1/p

<∞ (3)

where Px is the unknown probability distribution generating training samples {xi}ni=1. Since we
have no access to Px, it is approximated by the empirical measure of mini-batch samples νx =
1
b

∑b
i=1 δxi

where δx is the Dirac unit mass on x.

BN and its variants normalize Lp norm of centralized activations1, then scale and shift the normal-
ized activations by learnable parameters. That is, the normalization methods ψl at layer l can be
represented by composition of a normalizing function ψlp and a learnable linear function ψls:

ψl(hlij) = ψls(ψ
l
p(h

l
ij)) = γljψ

l
p(h

l
ij) + βlj ψlp(h

l
ij) =

hlij − µ̄j(∑
k

1
b |h

l
kj − µ̄j |p

)1/p
(4)

where hlij is j-th unit of hli, µ̄j = 1
b

∑
k h

l
kj is the sample mean, and βlj and γlj is a learnable shift

and scale parameters. We can see that ψlp gives the constant norm ‖ ψlp ◦ f lj ‖p= 1 for any unit j
and any empirical measure, i.e. samples of mini-batch. Therefore, the Lp norm of the function to
j-th unit is bounded as: ‖ ψl ◦ f lj ‖p≤‖ γljψlp ◦ f lj ‖p + ‖ βlj ‖p= γlj + βlj .

Instead of constraining norm of f lj to have certain value, PER concerns the 1-Wasserstein distance
between empirical distribution of activations and the standard normal distribution in the probability
distribution space P(Rdl). Specifically, PER adopts a soft constraint approach that minimizes the
upper bound of the Wasserstein distnace which will be proved in section 3.1. Let νhl = 1

b

∑
i δhl

i
∈

P(Rdl) be an empirical measure of hidden activations computed for mini-batch at layer l. Then, the
loss and the gradient of PER for νhl are defined as:

Lper(νhl) =
1

b

b∑
i=1

Eθ∼U(Sdl−1)

[
〈θ,hli〉erf

(
〈θ,hli〉√

2

)
+

√
2

π
exp

(
−〈θ,h

l
i〉2

2

)]
(5)

∇hl
i
Lper(νhl) =

1

b
Eθ∼U(Sdl−1)

[
erf
(
〈θ,hli/

√
2〉
)
θ
]

(6)

where Sdl−1 is the unit sphere in Rdl and U(Sdl−1) is the uniform distribution on Sdl−1. In this
paper, expectation over U(Sdl−1) will be approximated by the Monte Carlo method with s number
of samples. Therefore, PER results in simple modification of the backward pass as in Alg. 1. As
shown in the Fig. 1, Lper acts like the Pseudo-Huber loss g(x) =

√
1 + x2 − 1 in the projected

space. The Pseudo-Huber loss is smooth approximation of the Huber loss (Huber, 1964), and it
is widely used in the context of the robust statistics (Barron, 2019). This robustness can prevent
explosion of activation regularization loss due to outliers having large values that are prevalent in
forward pass of deep neural networks without a normalization technique.

In addition, PER captures interaction between hidden units unlike activation norm regularization
loss that is widely used in RNNs (Merity et al., 2017). Consider Lp activation norm as 1

b

∑
i ‖

1In the case of case when apply normalization techniques before non-linear activation function, the result
of presented analysis will be applied to W lf l−1 + b(l). However, in both cases, these techniques normalizes
the target vectors the in the same way. Therefore, we analyze the situation when BN is applied to activations
to directly contrast effects of BN and the proposed method even though applying BN to pre-activation is more
common in literature.
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Algorithm 1 Backward pass under PER
Input The number of Monte Carlo evaluations s, an activation for i-th sample hi, the gradient

of the loss ∇hi
L, a regularization coefficient λ

1: g ← 0
2: for k ← 1 to s do
3: Sample v ∼ N (0, I)
4: θ ← v/ ‖ v ‖2
5: Project h′i ← 〈hi,θ〉
6: gk ← erf

(
h′i/
√

2
)

7: g ← g + gkθ/s
8: end for
9: return ∇hi

L+ λg

Figure 1: Illustration of PER loss and gradient in R. Herein, PER loss is shifted by c so that
Lper(δ0)− c = 0. Huber loss is defined as h(x) = |x|− 0.5 in |x| > 1 and h(x) = x2/2 in |x| ≤ 1.

hli ‖pp= 1
b

∑
i,j |hlij |p = 1

b

∑
i,j |〈hli, ej〉|p where {ej}dlj=1 is the natural basis of Rdl . That is, the

activation norm regularization can be thought as computing the regularization loss of activations by
projecting them using the natural basis. However, PER use more rich classes of projection vectors
θ ∼ U(Sdl−1), encoding interaction between hidden units into the regularization loss.

3.1 DISTRIBUTION MATCHING WITH THE WASSERSTEIN METRIC

To understand the properties of PER, we examine the Wasserstein distance between activations and
N (0, I). The Wasserstein metric of order p between two probability measures µ and ν is defined
by:

Wp(µ, ν) =

(
inf

π∈
∏

(µ,ν)

∫
Ω×Ω

dp(x,y)π(dx, dy)

)1/p

(7)

where
∏

(µ, ν) is the set of all joint probability measures on Ω × Ω having the first and the second
marginals µ and ν, respectively.

Lemma 1. Let µ ∈ P(R) be the Gaussian measure defined as µ(A) = 1√
2π

∫
A exp

(
− 1

2x
2
)
dx and

νh ∈ P(R) be an empirical measure of observations defined as νh = 1
b

∑
i δhi

. Then, Lper(νh) is
an upper bound of W1(µ,νh).

Proof. In P(R), the 1-Wasserstein W1(µ, ν) can be formulated as (Rachev & Rüschendorf, 1998):

W1(µ, νh) =

∫ 1

0

|F−1
µ (z)− F−1

νh
(z)|dz =

∫ ∞
−∞
|Fµ(x)− Fνh(x)|dx (8)

where Fµ and Fνh are cumulative distribution functions (CDFs) of measures µ and νh, respectively.
We have |Fµ − Fνhi

| ∈ L1(R) where νhi = δhi for given hi. Therefore, applying the Minkowski
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Figure 2: Illustration of minimization of the sliced Wasserstein distance between the current distri-
bution and the target distribution. Note that it only concerns a distance in projected dimension.

inequality to equation 8 gives:∫ ∞
−∞
|Fµ(x)− 1

b

b∑
i=1

1hi≤x|dx ≤
1

b

∑
i

∫ ∞
−∞
|Fµ(x)− 1hi≤x|dx

=
1

b

∑
i

(
xierf

(
xi√

2

)
+

√
2

π
exp

(
−x

2
i

2

))
= Lper(νh) (9)

which completes the proof.

To extend the Lemma 1 from P(R) to P(Rdl), we consider the sliced Wasserstein distance (Rabin
et al., 2011) which approximates the Wasserstein distance in a high dimensional distribution space
by projecting the distributions to R (Fig. 2). It is proved by that sliced Wasserstein and Wasserstein
are equivalent metrics (Santambrogio, 2015; Bonnotte, 2013). The sliced Wasserstein of order one
can be formulated as:

SW1(µ, ν) =

∫
Sd−1

W1(µθ, νθ)dλ(θ) (10)

where µθ and νθ represent the measures projected at the angle θ, and λ is an uniform measure on
Sd−1.
Corollary 2. For the Gaussian measure µ ∈ P(Rdl) and the empirical measure of activations
νh = 1

b

∑
i δhi

, Lper(νh) is an upper bound of SW1(µ,νh).

Proof. We have µθ(A) = 1√
2π

∫
A

exp
{
− 1

2x
2
}
dx for any choice of θ. Then, applying Lemma 1

to equation 10 yields the desired result:

SW1(µ, ν) =

∫
Sd−1

∫ ∞
−∞
|Fµθ

(x)− 1

b

∑
i

1〈hl
i,θ〉≤x|dxdλ(θ)

≤ 1

b

∑
i

∫ ∞
−∞

(
〈hli,θ〉erf

(
〈hli,θ〉√

2

)
+

√
2

π
exp

(
−〈h

l
i,θ〉2

2

))
dλ(θ) = Lper(νh) (11)

The use ofN (0, I) as the target can be motivated by the natural gradient (Amari, 1998) that enables
parameter update to steepest descent direction in a Riemannian manifold. In addition to this, Roux
et al. (2008) shows that the natural gradient direction corresponds to maximizing the probability of
non-increasing generalization error. For gradient direction, natural gradient corrects the direction by
multiplying the inverse Fisher information matrix F−1. In Raiko et al. (2012) and Desjardins et al.
(2015), under the independence assumption between forward and backward passes and activations
of different layers, the Fisher information matrix is formulated as a block diagonal matrix each of
which block is defined by:

Fl = E(x,y)∼(x,y)

[
∂L

∂vec(W l)

∂L
∂vec(W l)

T
]

= Ex
[
hl−1hl−1T

]
E(x,y)

[
∂L
∂al

∂L
∂al

T
]

(12)
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Table 1: The top-1 error rates of ResNet on CIFAR-10. Lower is better. All numbers are rounded to
two decimal places. Boldface indicates minimum error.

Model Method Test error (%)

ResNet-56 Vanilla 7.21
BN 6.95
PER 6.72

ResNet-110 Vanilla 6.90
BN 6.62
PER 6.19

where vec(W l) is vectorizedW l, hl−1 = f l−1(x), and al = W lf l−1(x) + bl for x ∼ x.

From the equation 12, it have been empirically shown that faster training and improved general-
ization performance through making 1

b

∑
i h

l
ih
l
i
T ≈ I for making standard gradient to be close to

natural gradient through zero mean and unit variance activations (LeCun et al., 1998; Schraudolph,
1998; Wiesler et al., 2014; Glorot & Bengio, 2010; Raiko et al., 2012) and decorrelated activations
(Huang et al., 2018; Cogswell et al., 2015; Xiong et al., 2016). In this perspective, PER is expected
to enjoy the same advantages by matching νhl to N (0, I), thereby promoting 1

b

∑
i h

l
ih
l
i
T ≈ I .

While the sliced Wasserstein in equation 10 and its gradient can be exactly computed, we work with
its upper bound because it removes the sorting operations for evaluating the inverse CDF of empirical
distribution. Therefore, it requires no computational cost for sorting and enables distributed and
large-batch training by removing dependency of gradient computation on batch dimension.

4 EXPERIMENTS

This section illustrates the effectiveness of PER through experiments on different benchmark tasks
with various datasets and architectures. We compare PER with BN normalizing the first and second
moments and VCL regularizing fourth moments. In addition, we also compare PER with L1 and
L2 activiation norm regularization which share similar behavior on certain areas in the projected
space. Along with the benchmark experiments, we also analyze the impact of PER on the behavior
of networks. Throughout all experiments, we use 256 number of slices for computation of PER and
same regularization coefficient for activations in all layers.

4.1 IMAGE CLASSIFICATION IN CIFAR-10 AND CIFAR-100

We first evaluate PER in image classification task in CIFAR (Krizhevsky et al., 2009). We first
evaluate PER with ResNet (He et al., 2016) in CIFAR-10. In this experiments, PER is compared
with BN and vanilla networks initialized by fixup initialization (Zhang et al., 2019). We match the
experimental details in training under BN with He et al. (2016) and under PER and vanilla with
Zhang et al. (2019). Herein, we search the regularization coefficient over { 3e-4, 1e-4, 3e-5, 1e-5 }.
Table 1 presents the results of CIFAR-10 with ResNet-56 and ResNet-110. PER outperforms BN as
well as vanilla networks in both architectures. Especially, PER improves the test errors by 0.49 %
and 0.71% in ResNet-56 and ResNet-110 without BN, respectively.

We also performed experiments with the deep ELU networks which examined in VCL Littwin &
Wolf (2018). The deep ELU networks is a modified 11-layer CNN described in Clevert et al. (2015).
Alongside of ELU, experiments with Leaky ReLU and ReLU are performend. We match the exper-
imental settings in Littwin & Wolf (2018) except that we used 10x less learning rate for bias param-
eters and use of additional scalar bias after ReLU and Leaky ReLU based on Zhang et al. (2019).
Again, we search the regularization coefficient over { 3e-4, 1e-4, 3e-5, 1e-5 }. In the case of ReLU
and Leaky ReLU in CIFAR-100, we search { 3e-6, 1e-6, 3e-7, 1e-7 } because of divergence of
training with PER in these setting. As shown in Table 2, PER shows best performance on four con-
figurations among six configurations. In other cases, PER also results in comparable performance to
BN or VCL giving at most 0.16 % less than best performing method. Herein, we want to note that
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Table 2: The top-1 error rates of deep ELU network on CIFAR-10 and CIFAR-100. Lower is better.
All numbers are rounded to two decimal places. Boldface indicates minimum error.

Activation Method CIFAR-10 CIFAR-100

ReLU Vanilla 8.43 29.45
BN 7.53 29.13
VCL 7.80 30.30
PER 7.21 29.29

LeakyReLU Vanilla 6.73 26.50
BN 6.38 26.83
VCL 6.45 26.30
PER 6.29 25.50

ELU Vanilla 6.74 27.53
BN 6.69 26.60
VCL 6.26 25.86
PER 6.42 25.73

the PER have no additional parameters unlike BN requiring parameters for each channel in every
layer (2.5K total) and VCL requiring parameters for each location and channel in every layer (350K
total).

4.2 LANGUAGE MODELING IN PTB AND WIKITEXT2

We evaluate PER in word-level language modeling task in PTB (Mikolov et al., 2010) and WikiText2
(Merity et al., 2016). We apply PER loss to LSTM with two layers having 650 hidden units with
and without reuse embedding (RE) in Inan et al. (2016) and Press & Wolf (2016), and variational
dropout (VD) in Gal & Ghahramani (2016). We used the same configurations with Merity et al.
(2017) except clipping gradient at 0.25 instead of 10 and train for 60 epochs instead of 80. PER
is compared with recurrent BN (RBN) because BN is not directly applicable to LSTM (Cooijmans
et al., 2016). PER is also compared with L1 and L2 activation norm regularizations. Herein, the
search space of regularization coefficient is {3e-4, 1e-4, 3e-5 }. In the case of L1 and L2 penalties
in PTB, we search additional hyperparameters { 1e-5, 3e-6, 1e-6, 3e-6, 1e-6, 3e-7, 1e-7 } because
the searched coefficients seem to constrain the capacity.

We list in Table 3 the perplexity comparison of methods on PTB and WikiText2. While all regular-
ization techniques shows somewhat regularization effects by improving test perplexity, PER gives
best test perplexity except LSTM and RE-LSTM in PTB dataset. We also note that naively applying
RBN often reduce performance especially when VD is used unlike PER. For instance, RBN increase
test perplexity of VD-LSTM by about 5 in PTB and WikiText2.

4.3 CLOSENESS TO THE STANDARD NORMAL DISTRIBUTION.

To examine the effect of PER on the closeness to N (0, I), we investigate distributional characteris-
tics of activations under PER in deep ELU networks used in the previous benchmark task. We first
analyze distribution of νhl

j
= 1

n

∑
i δhl

ij
for some unit j and layer l (Fig. 3). In the analysis, BN

shows somewhat stable distribution in a sense that distributional shift between two consecutive iter-
ations due to the nature of normalization. On the contrary, activation distribution of vanilla method
and PER result in somewhat noisy distributions. However, we observed that PER prevents explosion
of variance and pushes the mean to zero. As shown in the Fig. 3, variances of νh6

j
under PER and

Vanilla are very high in the beginning of training. However, as training the network, the variance
keeps decreasing towards one under PER. Similarly, biased means of νh3

j
and νh9

j
at early stage of

learning are recovered under PER.

Since the distribution of single activation only capture the scalar, SW1(N (0, I), νhl) is also exam-
ined (Fig. 4). Herein, the sliced Wassertein distance is computed by approximating the Gaussian
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Table 3: Validation and test perplexity on PTB and WikiText2. Lower is better. All numbers are
rounded to one decimal places. Boldface indicates minimum perplexity.

PTB WikiText2
Model Method Valid Test Valid Test

LSTM Vanilla 123.2 122.0 138.9 132.7
L1 penalty 119.6 114.1 137.7 130.0
L2 penalty 120.5 115.2 136.0 131.1
RBN 118.2 115.1 156.2 148.3
PER 118.5 114.5 134.2 129.6

RE-LSTM Vanilla 114.1 112.2 129.2 123.2
L1 penalty 112.2 108.5 128.6 122.7
L2 penalty 116.6 108.2 126.5 123.3
RBN 113.6 110.4 138.1 131.6
PER 110.0 108.5 123.2 117.4

VD-LSTM Vanilla 84.9 81.1 99.6 94.5
L1 penalty 84.9 81.5 98.2 92.9
L2 penalty 84.5 81.2 98.8 94.2
RBN 89.7 86.4 104.3 99.4
PER 84.1 80.7 98.1 92.6

RE-VD-LSTM Vanilla 78.9 75.7 91.4 86.4
L1 penalty 78.3 75.1 90.5 86.1
L2 penalty 79.2 75.8 90.3 86.1
RBN 83.7 80.5 95.5 90.5
PER 78.1 74.9 90.6 85.9

Figure 3: Evolution of distributions of νh3
i
, νh6

j
, and νh9

j
for fixed randomly drawn i, j, k on training

set. (a)-(c) represent values (0.25, 0.5, 0.75) quantiles under PER, Vanilla, and BN. (d) and (e)
represent the mean and variance of activations. Variance is clipped at 5 for better visualization.
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(a) SW1(N (0, I), νh3) (b) SW1(N (0, I), νh6) (c) SW1(N (0, I), νh9)

Figure 4: Closeness to the standard normal distribution in terms of the Wasserstein metric

measure using the empirical measure of samples drawn from N (0, I) as in Rabin et al. (2011). As
similar to the previous result, while normalization methods with initialization βlj = 0 and l

j = 1
can constrain activations close to N (0, I) in the sliced Wasserstein metric sense, PER can also ef-
fectively control the distribution of activations without such normalization. This confirms that the
regularization loss of PER prevent the distribution of activation from drifting away from the target
distribution.

5 CONCLUSION

We proposed the regularization loss that minimizes the upper bound of the 1-Wasserstein distance
between the standard normal distribution and the distribution of activations. PER differs from the ex-
isting methods that act on sample statistics rather than a distribution itself. Our experimental results
in image classification and language modeling show that PER outperforms or shows a comparable
performance to sample statistics based approaches (BN and VCL) as well as L1 and L2 activation
norm regularization. The benchmark performances show the somewhat marginal but consistent reg-
ularization effects. The analysis on activations’ distribution during training verifies that PER can
stabilize probability distribution of activation without normalization techniques. Considering that
the regularization loss can be easily applied to a wide range of tasks without changing architec-
tures or training strategies unlike BN, we believe that the results indicate the valuable potential of
regularizing networks in the probability distribution space as a future direction of research.

The idea of regularizing activations with metric in probability distribution space can be extended
to many useful applications encoding task-specific priors. For instance, one can investigate the
Laplace distribution to promote sparsity activation behavior. In addition, the empirical distribution
of pretrained networks can be used as the target distribution. For instance, to prevent catastrophic
forgetting, activation distribution can be regularized so that it does not drift away from the activation
distribution from the previous tasks unlike constraining the weight updates in parameter l2 space
(Kirkpatrick et al., 2017) or in function L2 space (Benjamin et al., 2018).
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