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ABSTRACT

When using distributed training to speed up stochastic gradient descent, learn-
ing rates must adapt to new scales in order to maintain training effectiveness.
Re-tuning these parameters is resource intensive, while fixed scaling rules often
degrade model quality. We propose AdaScale SGD, a practical and principled al-
gorithm that is approximately scale invariant. By continually adapting to the gra-
dient’s variance, AdaScale often trains at a wide range of scales with nearly identi-
cal results. We describe this invariance formally through AdaScale’s convergence
bounds. As the batch size increases, the bounds maintain final objective values,
while smoothly transitioning away from linear speed-ups. In empirical compar-
isons, AdaScale trains well beyond the batch size limits of popular “linear learning
rate scaling” rules. This includes large-scale training without model degradation
for machine translation, image classification, object detection, and speech recog-
nition tasks. The algorithm introduces negligible computational overhead and no
tuning parameters, making AdaScale an attractive choice for large-scale training.

1 INTRODUCTION

Large datasets and large models underlie much of the recent success of machine learning. Training
such models is time consuming, however, as stochastic gradient descent algorithms can require days
or weeks to train effectively. Thus, procedures that speed up SGD are valuable. Faster training
enables consideration of more data and models, which expands the capabilities of machine learning.

To speed up SGD, distributed systems can process thousands of training examples per iteration. But
training at large scales also creates a major algorithmic challenge. Specifically, learning rates must
adapt to each scale. Without choosing these training parameters carefully, scaled SGD frequently
trains low-quality models, producing a waste of resources rather than a useful model.

To adapt learning rates, “fixed scaling rules” are standard but unreliable strategies. Goyal et al.
(2017) popularized “linear learning rate scaling,” which can work well, especially for computer
vision tasks (Krizhevsky, 2014; Devarakonda et al., 2017; Jastrzębski et al., 2018; Smith et al.,
2018; Lin et al., 2019). For other problems or larger scales, however, linear scaling often fails. This
fact is well-known in theory (Yin et al., 2018; Jain et al., 2018; Ma et al., 2018) and in practice
(Goyal et al., 2017). Other fixed scaling rules are also undependable. Golmant et al. (2018) test
three rules—linear, root, and identity—and conclude that each one often degrades model quality.
Shallue et al. (2019) compute near-optimal parameters for many tasks and scales, and the results
do not align with any fixed rule. To ensure effective training, the authors recommend avoiding such
rules and re-tuning parameters for each new scale—an inconvenient and resource-intensive solution.

We propose AdaScale SGD. A practical but principled algorithm, AdaScale more reliably scales
training by adapting to the gradient’s variance. Decreased gradient variance is the fundamental im-
pact of large batch sizes. Thus, scaling provides little gain if the variance is already “small” at small
scales. In such cases, AdaScale increases the learning rate conservatively, and large-scale training
progresses similarly to the small-batch setting. For iterations with “large” gradient variance, Ada-
Scale increases the learning rate aggressively, and the per-iteration progress dramatically increases.

AdaScale is approximately scale invariant, a quality that simplifies large-batch training. With no
changes to learning rates or other inputs, AdaScale can train at many scales with similar results. This
leads to two important innovations: (i) AdaScale improves the translation of training configurations
between scales, which is useful for scaling up tasks or adapting to dynamic resource availability;
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Figure 1: Motivating results. For cifar10, AdaScale preserves model quality for many scales S. When
plotted in terms of scale-invariant iterations, training curves align closely. With AdaScale, “warm-up” behavior
emerges from adapting a simple learning rate schedule (exponential decay) to scale S (learning rate plot cropped
to show behavior). Meanwhile, linear scaling (with warm-up heuristic) degrades model quality as S increases.

and (ii) AdaScale works at scale with simple learning rate schedules, which eliminates the need
for “warm-up” heuristics (Goyal et al., 2017). Qualitatively, AdaScale and warm-up have similar
effects on learning rates, but with AdaScale, this behavior emerges from a principled and adaptive
mechanism, not hand-tuned parameters.

We provide theoretical results that formalize this approximate scale invariance. Bounds for all scales
converge to identical objective values. In contrast, the linear scaling rule requires fewer iterations
but compromises model quality and training stability, causing divergence as the batch size increases.

We perform large-scale empirical evaluations on five training benchmarks. Tasks include image clas-
sification, machine translation, object detection, and speech recognition. The results align well with
our theory, as AdaScale systematically preserves model quality across many scales. This includes
training ImageNet with batch size 32k and Transformer with 262k max tokens per batch.

To provide context for our description of AdaScale, Figure 1 includes results from a simple scaling
experiment using CIFAR-10 data. These results illustrate the concept of scale invariance, AdaScale’s
qualitative impact on learning rates, and a failure case for the linear scaling rule.

2 PROBLEM FORMULATION

We focus on quickly computing approximate solutions to the problem

minimizew∈Rd F (w) , where F (w) = Ex∼X [f(w,x)] . (P1)

Here w parameterizes a machine learning model, while X denotes a distribution over batches of
training data. We assume that the loss function f is differentiable with respect to w.

Stochastic gradient descent is a popular algorithm for solving (P1). Let wt denote the model pa-
rameters when iteration t begins. During this iteration, SGD samples a batch xt ∼ X and computes
the gradient gt ← ∇wf(wt,xt). SGD then applies the update wt+1 ← wt − ηtgt. Here ηt is the
learning rate. Given a schedule lr : Z≥0 → R>0, SGD defines ηt = lr(t). For our experiments
in §4, lr is an exponential decay or step decay function. SGD completes training after T iterations.

To speed up training, practitioners often parallelize gradient computation across multiple devices.
Algorithm 1 defines a scaled SGD algorithm. At scale S, the algorithm samples S independent
batches during each iteration. After computing the gradient for each batch in parallel, the algorithm
applies the mean of these gradients (in place of gt) when updating model parameters.

But scaling training in this way creates a considerable algorithmic challenge. Each new scale re-
quires a new learning rate schedule, which is inconvenient and resource intensive to obtain. To help
address this challenge, we propose a scaled SGD algorithm that is approximately scale invariant.

Definition 1. A scaled SGD algorithm is scale invariant if its final model does not depend on S.

A scale-invariant algorithm makes parallelizing training significantly easier. Such an algorithm can
scale to any available amount of computational resources, and there is no need for parameter re-
tuning, unreliable heuristics, or algorithmic expertise from users.
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Algorithm 1 Scaled SGD

function Scaled_SGD(S, lr, T , X , f , w0)
for t = 0, 1, 2, . . . , T − 1 do

ḡt ← compute_gradient(wt, S,X , f )
ηt ← lr(t)
wt+1 ← wt − ηtḡt

return wT

function compute_gradient(wt, S, X , f )
in parallel for i = 1, . . . , S do

x(i) ← sample_batch(X )
g(i) ← ∇wf(wt,x

(i))

return 1
S

∑S
i=1 g(i)

Algorithm 2 AdaScale SGD

function AdaScale(S, lr, TSI, X , f , w0)
initialize τ0 ← 0; t← 0
while τt < TSI do

ḡt ← compute_gradient(wt, S,X , f )

# Compute gain rt ∈ [1, S] (see §3.3):

rt ← σ2(wt)+‖∇F (wt)‖2
1
S σ

2(wt)+‖∇F (wt)‖2

ηt ← rt · lr(bτtc)
wt+1 ← wt − ηtḡt
τt+1 ← τt + rt; t← t+ 1

return wt

3 ADASCALE SGD ALGORITHM

This section introduces our AdaScale algorithm. As motivation, we first consider the role of gradient
variance in SGD. We later provide practical guidance for variance estimation and momentum tuning.

3.1 INTUITION: IDENTITY SCALING, LINEAR SCALING, AND GRADIENT VARIANCE

We now consider two fixed scaling rules, which influence the design of AdaScale. One of these rules
is identity scaling, which keeps the training configuration constant for all scales:
Definition 2. To apply the identity scaling rule to Algorithm 1, use the same lr and T for all S.

Note that this rule has little practical appeal, since it fails to reduce the number of training iterations.
A second and more popular strategy is linear learning rate scaling:
Definition 3. To apply the linear learning rate scaling rule to Algorithm 1, use lr(t) = S ·lrS1(St)
and T = dTS1/Se, where lrS1 and TS1 denote the learning rate schedule and total steps for S = 1.

Conceptually, linear scaling treats SGD as a perfectly parallelizable algorithm. If true, applying
gradients from S batches in parallel achieves the same result as doing so in sequence.

For special cases of (P1), the identity and linear rules result in scale-invariant algorithms. To show
this, we first define the variance quantities

Σ(w) = covx∼X (∇wf(w,x),∇wf(w,x)) , and σ2(w) = tr(Σ(w)) .

In words, σ2(w) sums the variances of each entry in ∇wf(w,x). By sampling batches indepen-
dently, scaling fundamentally impacts SGD by reducing this variance. Given wt in Algorithm 1, we
have cov(ḡt, ḡt) = 1

SΣ(wt) and E [ḡt] = ∇F (wt). Here, only the covariance depends on S.

Consider the special case of zero gradient variance. In this case, identity scaling performs ideally:
Proposition 1 (Scale-invariant SGD for deterministic gradients). If σ2(w) = 0 for all w ∈ Rd,
then applying identity scaling to Algorithm 1 results in a scale-invariant algorithm.

Although identity scaling does not speed up training, Proposition 1 is critical for framing the impact
of large scales. If the gradient variance is “small,” then we cannot expect large gains from increasing
S—a larger scale has little effect on ḡt. With “large” variance, however, the opposite is true:
Proposition 2 (Scale-invariant SGD for extreme stochasticity). Consider fixed covariance matrix
Σ̃ ∈ Sd++, learning rate value η̃ ∈ R>0, and training duration T̃ . For a given ν ∈ R>0, assume
∇wf(w,x) ∼ N (∇F (w), νΣ̃), and apply linear scaling to Algorithm 1 with lrS1(t) = ν−1η̃ and
TS1 = νT̃ . The resulting scaled SGD algorithm is scale-invariant in the limit ν → +∞.

In less formal terms, linear scaling leads to scale-invariance in the case of very large gradient vari-
ance (as well as small learning rates and many iterations, to compensate for this variance). Since
increasing S decreases variance, it is natural that scaling yields large speed-ups in this extreme case.

In practice, the gradient’s variance is neither zero nor infinite, and both identity and linear scal-
ing may perform poorly. Moreover, the gradient’s variance does not remain constant throughout
training. A scale-invariant algorithm, it seems, must continually adapt to the state of training.
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3.2 ADASCALE DEFINITION

AdaScale, defined in Algorithm 2, adaptively interpolates between identity and linear scaling, based
on σ2(wt). During iteration t, AdaScale multiplies the learning rate by the “gain ratio” rt ∈ [1, S]:
ηt = rt · lr(bτtc). Here τt is the “scale-invariant iteration,” defined as τt =

∑t−1
t′=0 rt′ . The idea is

that iteration t performs the equivalent of rt single-batch iterations, and τt accumulates this progress.
AdaScale concludes training when τt ≥ TSI, where TSI denotes the total scale-invariant iterations.
Since rt ∈ [1, S], AdaScale trains for at minimum dTSI/Se iterations and at most TSI iterations.

The identity and linear rules correspond to two special cases of AdaScale. If rt = 1 for all t, the
algorithm equates to SGD with identity scaling. Similarly, if rt = S for all t, we have linear scaling.
Thus, to approximate scale-invariance, §3.1 suggests setting rt ≈ 1 when the gradient’s variance is
small and rt ≈ S when this variance is large. Given wt, AdaScale achieves this by defining

rt =
(
σ2(wt) + ‖∇F (wt)‖2

)/(
1
Sσ

2(wt) + ‖∇F (wt)‖2
)
.

As a more technical justification, this rt ensures that E[〈wt+1−wt,∇F (wt)〉] and E[‖wt+1−wt‖2]
both increase multiplicatively by rt as S increases. This leads to our scale-invariant bound in §5.

3.3 PRACTICAL CONSIDERATIONS
imagenet, S=16 imagenet, S=128
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Figure 2: Gain ratios. Plots compare moving average
rt estimates to values computed offline (using 1000
batches). The values align closely. Abrupt changes
align with learning rate step changes.

If S = 1 in AdaScale, then rt = 1 for all
iterations. For larger scales, rt depends on
σ2(wt) and ‖∇F (wt)‖2, and a practical im-
plementation must efficiently approximate these
values. Fortunately, the per-batch gradients
g
(1)
t , . . . ,g

(S)
t and aggregated gradient ḡt are

readily available in distributed SGD algorithms.
This makes estimating rt straightforward. In
particular, we define

σ̂2
t = 1

S−1
∑S
i=1 ‖g

(i)
t ‖2 − S

S−1 ‖ḡt‖
2
,

and µ̂2
t = ‖ḡt‖2 − 1

S σ̂
2
t .

Here σ̂2
t and µ̂2

t are unbiased estimates of σ2(wt) and ‖∇F (wt)‖2. To ensure robustness to es-
timation variance, we estimate rt by plugging in moving averages σ̄2

t and µ̄2
t , which average σ̂2

t
and µ̂2

t over prior iterations. Our implementation uses exponential moving average parameter
θ = max{1 − S/1000, 0}, where θ = 0 results in no averaging. We find that AdaScale is ro-
bust to the choice of θ, and we provide evidence of this in Appendix C. To initialize, we set r0 ← 1,
and for iterations t < (1−θ)−1, we define σ̄2

t and µ̄2
t as the mean of past samples. Before averaging,

we clip estimates so that σ̂2
t ≥ 10−6 (to prevent division by zero) and µ̂2

t ≥ 0 (to ensure rt ∈ [1, S]).

To verify these estimators, Figure 2 compares moving average estimates to offline measurements of
the gain ratios. These plots also provide examples of gain ratios for practical problems. We note that
numerous prior works—for example, (Schaul et al., 2013; Kingma & Ba, 2015; McCandlish et al.,
2018)—have relied on similar moving averages to estimate gradient moments.

One final practical consideration is the momentum parameter ρ when using AdaScale with
momentum-SGD. The performance of momentum-SGD depends less critically on the ρ than the
learning rate (Shallue et al., 2019). For this reason, we find that AdaScale often performs well
if ρ remains constant across scales and iterations. This approach to momentum scaling has also
succeeded in prior works involving the linear scaling rule (Goyal et al., 2017; Smith et al., 2018).

4 EMPIRICAL COMPARISONS

We evaluate AdaScale on five practical training benchmarks. We assess scale invariance by compar-
ing training curves across scales. We assess impact on training times by comparing total iterations.
We consider a variety of tasks, models (He et al., 2016a;b; Amodei et al., 2016; Vaswani et al.,
2017; Redmon & Farhadi, 2018), and datasets (Deng et al., 2009; Krizhevsky, 2009; Everingham
et al., 2010; Panayotov et al., 2015). Table 1 summarizes our training benchmarks. Due to space
limitations, we provide additional implementation details in Appendix B.
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Figure 3: AdaScale training curves. For many scales and benchmarks, AdaScale trains quality models.
Training curves align closely in terms of τt. In all cases, ηt warms up gradually at the start of training, even
though all lr schedules are simple exponential or step decay functions (which are non-increasing in t).

For each benchmark, we use one simple learning rate schedule. Specifically, lr is an exponential
decay function for cifar10 and speech, and a step decay function otherwise. We use standard lr
parameters for imagenet and yolo. Otherwise, we use tuned parameters that approximately max-
imize the validation metric (to our knowledge, there are no standard schedules for solving speech
and transformer with momentum-SGD). We use momentum ρ = 0.9 except for transformer,
in which case we use ρ = 0.99 for greater training stability.

Figure 3 (and Figure 1) contains AdaScale training curves for the benchmarks and many scales.
Each curve plots the mean of five distributed training runs with varying random seeds. As S in-
creases, AdaScale trains for fewer iterations but consistently preserves model quality. Illustrating
AdaScale’s approximate scale invariance, the training curves align closely when plotted in terms of
scale-invariant iterations.

Table 1: Overview of training benchmarks.

Name Task Model Dataset Metric

cifar10 Image classification ResNet-18 (v2) CIFAR-10 Top-1 accuracy (%)
imagenet Image classification ResNet-50 (v1) ImageNet Top-1 accuracy (%)
speech Speech recognition Deep speech 2 LibriSpeech Word accuracy (%)
transformer Machine translation Transformer base WMT-2014 BLEU
yolo Object detection YOLOv3 PASCAL VOC mAP (%)
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Figure 4: Elastic AdaScaling. For imagenet, AdaScale is approximately scale invariant, even if S changes
abruptly (at τt = 133k, 225k). Unlike AdaScale, LSW degrades model quality in this setting (see Table 2).
Elastic scaling comparisons consider one random trial; future versions of this work will include five trials.

For S > 1, AdaScale’s learning rate increases gradually during initial training, despite the fact
that lr is non-increasing. Unlike warm-up heuristics (Goyal et al., 2017), this behavior emerges
naturally from a principled algorithm, not hand-tuned user input. Thus, AdaScale provides not only
a compelling alternative to warm-up but also a plausible explanation for warm-up’s success.

For imagenet, we also consider elastic scaling. Here, the only change to AdaScale is that S changes
abruptly after some iterations. We consider two cases: (i) S increases from 32 to 64 at τt = TSI/4
and from 64 to 128 at τt = TSI/2, and (ii) the scale decreases at the same points, from 128 to 64 to
32. In Figure 4, we include training curves from this setting. AdaScale remains approximately scale
invariant, highlighting AdaScale’s value for the common scenario of dynamic resource availability.

Table 2: Comparison of final model quality. Shorthand: AS=AdaScale, LSW=Linear scaling rule with
warm-up, gray=model quality significantly worse than for S = 1 (5 trials, 0.95 significance), N/A=training
diverges, Elastic↑/↓=elastic scaling with increasing/decreasing scale (see Figure 4). Linear scaling leads to
poor model quality as the scale increases, while AdaScale preserves model performance for nearly all cases.

Task S
Total

batch size
Validation metric Training loss Total iterations

AS LSW AS LSW AS LSW

cifar10 1 128 94.1 94.1 0.157 0.157 39.1k 39.1k
8 1.02k 94.1 94.0 0.153 0.161 5.85k 4.88k

16 2.05k 94.1 93.6 0.150 0.163 3.36k 2.44k
32 4.10k 94.1 92.8 0.145 0.177 2.08k 1.22k
64 8.19k 93.9 76.6 0.140 0.272 1.41k 611

imagenet 1 256 76.4 76.4 1.30 1.30 451k 451k
16 4.10k 76.5 76.3 1.26 1.31 33.2k 28.2k
32 8.19k 76.6 76.1 1.23 1.33 18.7k 14.1k
64 16.4k 76.5 75.6 1.19 1.35 11.2k 7.04k

128 32.8k 76.5 73.3 1.14 1.51 7.29k 3.52k
Elastic↑ various 76.8 75.7 1.15 1.36 11.6k 7.04k
Elastic↓ various 76.6 73.8 1.23 1.46 13.7k 9.68k

speech 1 32 79.6 79.6 2.03 2.03 84.8k 84.8k
4 128 81.0 80.9 5.21 4.66 22.5k 21.2k
8 256 80.7 80.2 6.74 6.81 12.1k 10.6k

16 512 80.6 N/A 7.33 N/A 6.95k 5.30k
32 1.02k 80.3 N/A 8.43 N/A 4.29k 2.65k

transformer 1 2.05k 27.2 27.2 1.60 1.60 1.55M 1.55M
16 32.8k 27.4 27.3 1.60 1.60 108k 99.0k
32 65.5k 27.3 27.0 1.59 1.61 58.9k 49.5k
64 131k 27.6 26.7 1.59 1.63 33.9k 24.8k

128 262k 27.4 N/A 1.59 N/A 21.4k 12.1k

yolo 1 16 80.2 80.2 2.65 2.65 207k 207k
16 256 81.5 81.4 2.63 2.66 15.9k 12.9k
32 512 81.3 80.5 2.61 2.81 9.27k 6.47k
64 1.02k 81.3 70.1 2.60 4.02 5.75k 3.23k

128 2.05k 81.4 N/A 2.57 N/A 4.07k 1.62k
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Figure 5: Scale invariance for many learning rate schedules. Heat maps cover the space of exponential
decay lr schedules for cifar10. At scale 16, validation accuracies for AdaScale align closely with results for
single-batch training, with the space of 94+% schedules growing moderately with AdaScale. With LSW, no
schedule achieves 94% accuracy. On the right, direct lr search at scale 16 produces inferior results to AdaScale
(here the total iterations, 3.28k, is the average total iterations among 94+% AdaScale trials). Thus, AdaScale
induces a superior family of schedules for scaled training. The white ‘×’ indicates the lr used for Figure 1.

As a baseline for all benchmarks, we also evaluate linear scaling with warm-up (LSW). As inputs,
LSW takes single-batch schedule lrS1 = lr and single-batch steps TS1 = TSI, where lr and TSI
are the inputs to AdaScale. Our warm-up implementation closely follows Goyal et al. (2017). LSW
trains for dTS1/Se iterations, applying warm-up to the first 5.5% of iterations. During warm-up, the
learning rate increases linearly from lrS1(0) to S · lrS1(0).

Table 2 compares results for AdaScale and LSW. LSW consistently trains for fewer steps, but doing
so comes at a cost. As S grows larger, LSW consistently degrades model quality and sometimes di-
verges. For these divergent cases, we also tested doubling the warm-up duration to 11% of iterations,
and training still diverged. In contrast, AdaScale preserves model quality for nearly all cases.

As a final comparison, Figure 5 demonstrates AdaScale’s performance on cifar10 with many dif-
ferent lr schedules. We consider a 13×13 grid of exponential decay schedules and plot contours of
resulting validation accuracy. At scale 16, AdaScale results align with accuracies for single-batch
training, illustrating that AdaScale is approximately scale-invariant for many schedules. Moreover,
AdaScale convincingly outperforms direct search over exponential decay schedules for scaled SGD
at S=16. For training at scale, AdaScale provides a more natural learning rate parameterization.

5 SCALE-INVARIANT CONVERGENCE BOUND

We now present convergence bounds that formalize the approximate scale invariance of AdaScale.
The bounds provide identical convergence guarantees for all scales, meaning that in terms of upper
bounds on training loss, AdaScale is scale invariant. For comparison, we include an analogous
bound for the linear scaling rule. Qualitatively, the bounds agree closely with our empirical results.

Let us define F ∗ = minw F (w). Our analysis requires a few assumptions that are typical of SGD
analysis of non-convex problems (see, for example, (Lei et al., 2017; Yuan et al., 2019)):

Assumption 1 (α-Polyak-Łojasiewicz). For some α > 0, F (w)− F ∗ ≤ 1
2α ‖∇F (w)‖2 for all w.

Assumption 2 (β-smooth). For some β > 0, ‖∇F (w)−∇F (w′)‖ ≤ β‖w −w′‖ for all w, w′.
Assumption 3 (Bounded variance). There exists a V ≥ 0 such that σ2(w) ≤ V for all w.

We emphasize that we do not assume convexity. The PL condition, which is perhaps our strongest
assumption, is proven to hold for some nonlinear neural networks (Charles & Papailiopoulos, 2018).

We consider constant lr schedules, which result in simple and instructive bounds. To provide
context for the AdaScale result, we first present a straightforward bound for single-batch training:
Theorem 1 (Single-batch SGD bound). Given Assumptions 1, 2, 3 and η ∈ (0, 2β−1), consider
Algorithm 1 with S = 1 and lr(t) = η. Defining γ = ηα(2− ηβ) and ∆ = 1

2γ η
2βV , we have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp {−γ · T}+ ∆ .

The bound describes two important characteristics of the single-batch algorithm. First, the sub-
optimality converges in expectation to at most ∆. Second, convergence to ∆ + ε requires at most
dγ−1 log((F (w0)−F ∗)ε−1)e iterations. We note similar bounds exist for this case, under a stronger
variance assumption (Karimi et al., 2016; Reddi et al., 2016; De et al., 2017; Yin et al., 2018).
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Importantly, for all scales, our AdaScale bound converges to this same ∆:
Theorem 2 (AdaScale bound). For any scale S, given Assumptions 1, 2, 3 and η ∈ (0, 2β−1),
define wT as the result of Algorithm 2 with lr(t) = η. Define γ and ∆ as in Theorem 1. We have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp {−γ · TSI}+ ∆ .

This bound for AdaScale is scale invariant, as it does not depend on S. Like single-batch SGD, the
suboptimality converges in expectation to at most ∆, but AdaScale achieves this for all scales. In
addition, AdaScale speeds up training by a factor r̄ = 1

T

∑T−1
t=0 rt. That is, convergence to ∆ + ε

requires at most dr̄−1γ−1 log((F (w0)− F ∗)ε−1)e iterations (since TSI ≤ τT = r̄T ).

As a final comparison, we provide an analogous bound for linear scaling, which is not scale invariant:
Theorem 3 (Bound for linear scaling rule). Given Assumptions 1, 2, 3 and η ∈ (0, 2(Sβ)−1),
consider Algorithm 1 with lr(t) = Sη. Defining γ and ∆ as in Theorem 1, we have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp
{
−γ ·

(
2−Sηβ
2−ηβ

)
ST
}

+
(

2−ηβ
2−Sηβ

)
∆ .

Note that unlike Theorem 2, this bound converges to a value that increases with S. In addition, a
smaller range of learning rates guarantees convergence. In practical terms, this means that linear
scaling often leads to worse model quality and greater risk of divergence, especially for large S.
These differences appear throughout our empirical comparisons in §4.

6 RELATION TO PRIOR WORK

While linear scaling with warm-up is perhaps the most popular scaling rule, researchers have con-
sidered a few alternative strategies. “Square root learning rate scaling” (Krizhevsky, 2014; Li et al.,
2014; Hoffer et al., 2017; You et al., 2018) multiplies learning rates by the square root of the batch
size increase. Across scales, this preserves the covariance of the SGD update. Establishing this in-
variant remains poorly justified, however, and often root scaling degrades model quality in practice
(Goyal et al., 2017; Golmant et al., 2018; Jastrzębski et al., 2018). AdaScale adapts learning rates
by making ηtE

[
‖ḡt‖2

]
invariant across scales, which results in our scale-invariant bound from §5.

Finally, we might also consider model-specific scaling rules, such as LARS for CNNs (You et al.,
2017). AdaScale solves the general problem (P1), making AdaScale applicable to many models.

Many prior works have also considered the role of gradient variance in SGD. McCandlish et al.
(2018) study the impact of gradient variance on scaling efficiency. These general findings also apply
to AdaScale, as gradient variance similarly determines AdaScale’s efficiency. Much like AdaScale,
Johnson & Guestrin (2018) also adapt learning rates to lower amounts of gradient variance—in
this case when using SGD with importance sampling. Because the variance reduction is relatively
small in this setting, however, distributed training can have far greater impact on training times.
Lastly, many algorithms also adapt to gradient moments for improved training, given a fixed amount
of variance—see (Schaul et al., 2013; Kingma & Ba, 2015; Balles & Hennig, 2018), just to name a
few. AdaScale adapts learning rates across scales, which correspond to different amounts of gradient
variance. Perhaps future algorithms will combine approaches in order to achieve both goals.

7 DISCUSSION

SGD is not perfectly parallelizable. Unsurprisingly, the linear scaling rule can fail at large scales.
In contrast, AdaScale accepts sublinear speedups in order to better preserve model quality. What
do the speed-ups from AdaScale tell us about the scaling efficiency of SGD in general? For many
problems, such as imagenet with batch size 32.8k, AdaScale establishes lower bounds on SGD’s
scaling efficiency. An important remaining question is whether AdaScale is optimally efficient, or if
other practical algorithms can achieve similar scale invariance with fewer iterations.

AdaScale provides a useful new parameterization of learning rate schedules for large-batch SGD.
We provide a simple lr schedule, which AdaScale adapts to learning rates for scaled training. From
this, warm-up behavior emerges naturally, which produces quality models for many problems and
scales. Even in elastic scaling settings, AdaScale adapts successfully to the state of training. Given
these appealing qualities, it seems important to further study such learning rate schedules.

Based on our empirical results, as well as the algorithm’s practicality and theoretical justification,
we believe that AdaScale is valuable for speeding up training in practice.
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A PROOFS

In this appendix, we prove the results from §5 and §3. We first prove a lemma in §A.1, which we
apply in the proofs. We prove Theorem 1 in §A.2, Theorem 2 in §A.3, and Theorem 3 in §A.4. We
also prove Proposition 1 in §A.5 and Proposition 2 in §A.6.

A.1 KEY LEMMA

Lemma 1. Given Assumptions 1, 2, 3 and η ∈ (0, 2β−1), define γ = ηα(2−ηβ) and ∆ = 1
2γ η

2βV .
Consider Algorithm 2 with lr(t) = η. For all iterations t, we have

E [F (wt)− F ∗] ≤ (F (w0)− F ∗) exp
{
−γ
∑t−1
t′=0 rt′

}
+ ∆ .

Proof. We prove this by induction. To simplify notation, let us define F̃ (w) = F (w) − F ∗. For
t = 0, we have

E[F̃ (w0)] = F̃ (w0)−∆ + ∆ ≤ F̃ (w0) exp{0}+ ∆ .
For t ≥ 1, assume the inductive hypothesis

E[F̃ (wt−1)] ≤ F̃ (w0) exp
{
−γ
∑t−2
t′=0 rt′

}
+ ∆ . (1)

Applying Assumption 2 (smoothness) and the update equation wt = wt−1 − rt−1ηḡt−1, we have
F̃ (wt) ≤ F̃ (wt−1) + 〈∇F (wt−1),wt −wt−1〉+ β

2 ‖wt −wt−1‖2

= F̃ (wt−1)− rt−1η〈∇F (wt−1), ḡt−1〉+ r2t−1η
2 β
2 ‖ḡt−1‖

2
. (2)

Let x
(i)
t−1 denote the ith batch that Algorithm 2 samples during iteration t − 1. Noting

Ex∼X [∇f(w,x)] = ∇F (w) for all w, we have

E
[
‖ḡt−1‖2 | wt−1

]
= E

∥∥∥∥∥ 1

S

S∑
i=1

∇f(wt−1,x
(i)
t−1)

∥∥∥∥∥
2

| wt−1


= E

∥∥∥∥∥∇F (wt−1) +
1

S

S∑
i=1

(
∇f(wt−1,x

(i)
t−1)−∇F (wt−1)

)∥∥∥∥∥
2

| wt−1


= ‖∇F (wt−1)‖2 +

1

S
σ2(wt−1)

=
1

rt−1

(
‖∇F (wt−1)‖2 + σ2(wt−1)

)
≤ 1

rt−1

(
‖∇F (wt−1)‖2 + V

)
. (3)

In the last two steps above, we applied the definition of rt from Algorithm 2 and Assumption 3
(bounded variance).

Combining (3) with (2), we have

E[F̃ (wt) | wt−1] ≤ F̃ (wt−1)− rt−1η ‖∇F (wt−1)‖2 + r2t−1η
2 β
2E
[
‖ḡt−1‖2 | wt−1

]
≤ F̃ (wt−1)− rt−1η(1− η β2 ) ‖∇F (wt−1)‖2 + rt−1η

2 β
2V

≤ (1− rt−1ηα(2− ηβ)) F̃ (wt−1) + rt−1η
2 β
2V .

In this last step, we applied Assumption 1 (PL condition). To complete the proof, we apply (1):
E[F̃ (wt)] = E[E[F̃ (wt) | F̃ (wt−1)]]

= (1− rt−1γ)E[F̃ (wt−1)] + rt−1η
2 β
2V

≤ (1− rt−1γ)
[
F̃ (w0) exp

{
−γ
∑t−2
t′=0 rt′

}
+ ∆

]
+ rt−1η

2 β
2V

≤ F̃ (w0) exp
{
−γ
∑t−1
t′=0 rt′

}
+ ∆ .

In the final step, we used the inequality 1− u ≤ exp{−u} for all u ≥ 0.
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A.2 PROOF OF THEOREM 1

Theorem 1 (Single-batch SGD bound). Given Assumptions 1, 2, 3 and η ∈ (0, 2β−1), consider
Algorithm 1 with S = 1 and lr(t) = η. Defining γ = ηα(2− ηβ) and ∆ = 1

2γ η
2βV , we have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp {−γ · T}+ ∆ .

Proof. The theorem is a special case of Lemma 1. In particular, Algorithm 1 with inputs lr(t) = η,
S = 1, and T iterations is equivalent to Algorithm 2 with TSI = T and the same scale and learning
rate inputs. This follows from the fact that rt = 1 for all iterations of AdaScale when S = 1. Thus,
we can obtain the result by plugging t = T and

∑t−1
t′=0 rt′ = T into the bound from Lemma 1.

A.3 PROOF OF THEOREM 2

Theorem 2 (AdaScale bound). For any scale S, given Assumptions 1, 2, 3 and η ∈ (0, 2β−1),
define wT as the result of Algorithm 2 with lr(t) = η. Define γ and ∆ as in Theorem 1. We have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp {−γ · TSI}+ ∆ .

Proof. Let T denote the total iterations for Algorithm 2. Applying Lemma 1, we have

E [F (wt)− F ∗] ≤ (F (w0)− F ∗) exp
{
−γ
∑T−1
t=0 rt

}
+ ∆

≤ (F (w0)− F ∗) exp {−γTSI}+ ∆ .

Here we have used the stopping condition of Algorithm 2, which implies that TSI ≤ τT =
∑T−1
t=0 rt.

A.4 PROOF OF THEOREM 3

Theorem 3 (Bound for linear scaling rule). Given Assumptions 1, 2, 3 and η ∈ (0, 2(Sβ)−1),
consider Algorithm 1 with lr(t) = Sη. Defining γ and ∆ as in Theorem 1, we have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp
{
−γ ·

(
2−Sηβ
2−ηβ

)
ST
}

+
(

2−ηβ
2−Sηβ

)
∆ .

Proof. We reduce the theorem to a special case of Theorem 1. Define x̃ = (x̃(1), . . . , x̃(S)), where
x̃(i) ∼ X for each i ∈ [S], and x̃(1), . . . , x̃(S) are jointly independent. Denote by X̃ the distribution
of x̃. Also define

f̃(w, x̃) =
1

S

S∑
i=1

f(w, x̃(i)) .

It follows that

Ex̃

[
‖∇f̃(w, x̃)−∇F (w)‖2

]
=

1

S
Ex

[
‖∇f(w,x)−∇F (w)‖2

]
≤ V

S
.

The algorithm described in Theorem 3 is identical to running Algorithm 1 with scale 1, batch distri-
bution X̃ , loss f̃ , learning rate lr(t) = Sη, and variance upper bound V

S . Plugging these values into
Theorem 1, we have

E [F (wT )− F ∗] ≤ (F (w0)− F ∗) exp {−Sηα(2− Sηβ)T}+
SηβV S−1

2α (2− Sηβ)

= (F (w0)− F ∗) exp {−ηα(2− Sηβ)ST}+
ηβV

2α (2− Sηβ)
.
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A.5 PROOF OF PROPOSITION 1

Proposition 1 (Scale-invariant SGD for deterministic gradients). If σ2(w) = 0 for all w ∈ Rd,
then applying identity scaling to Algorithm 1 results in a scale-invariant algorithm.

Proof. Since the gradient variance is zero, the compute_gradient function returns ∇F (wt),
which does not depend on S. Thus, the algorithm does not depend on S in this case, which im-
plies that it is scale-invariant.

A.6 PROOF OF PROPOSITION 2

Proposition 2 (Scale-invariant SGD for extreme stochasticity). Consider fixed covariance matrix
Σ̃ ∈ Sd++, learning rate value η̃ ∈ R>0, and training duration T̃ . For a given ν ∈ R>0, assume
∇wf(w,x) ∼ N (∇F (w), νΣ̃), and apply linear scaling to Algorithm 1 with lrS1(t) = ν−1η̃ and
TS1 = νT̃ . The resulting scaled SGD algorithm is scale-invariant in the limit ν → +∞.

Proof. The scaled SGD algorithm runs for dνT̃ /Se iterations and follows the update rule

wt+1 = wt − Sη̃
ν ∇F (wt) + Sη̃

ν ξt .

Here ξt is normally distributed with E [ξt] = 0 and cov(ξt, ξt) = ν
S Σ̃. In the limit ν → +∞, this

difference equation converges to a stochastic differential equation on the interval [0, η̃T̃ ] (Kloeden
& Platen, 1992, Chapter 9):

dw = −∇F (w)dt+ (η̃Σ̃)1/2dW(t) , where W(t) ∼ N (0, I) .

Since this SDE does not depend on S, the algorithm is scale-invariant in this limit.

B ADDITIONAL DETAILS ON EMPIRICAL COMPARISONS

This appendix provides additional details of our experiment set-up.

B.1 LEARNING RATE SCHEDULES

We describe the lr schedules for each training benchmark in Table 3. We use two learning
rate families: exponential decay and step decay. Using parameters η0, d, and wi, we define
lr(t) = η0d

(t/TS1) for exponential decay families and lr(t) = η0d
∑n

i 1[t>wi] for step decay fam-
ilies. Here TS1 denotes the total iterations for scale S = 1. Note that in all cases, we use simple
schedules and no warm-up.

Table 3: Learning rate schedules for training benchmarks.

Benchmark Learning rate famliy η0 d wi

cifar10 Exponential decay 0.08 0.0133 N/A
imagenet Step decay 0.1 0.1 150,240, 300,480, 400640
speech Exponential decay 1.4 ×10−3 0.05 N/A
transformer Step decay 0.01 0.1 1,440,000
yolo Step decay 2.5 ×10−4 0.1 160,000, 180,000

For imagenet and yolo, we used standard learning rate schedules from (Goyal et al., 2017) and
(Zhang et al., 2019). For cifar10, speech, and transformer, we chose learning rate parameters,
via hand-tuning, that approximately maximized model quality. This was necessary for speech and
transformer, since our reference implementations train with the Adam optimizer (Kingma & Ba,
2015), and momentum-SGD requires different learning rate values.

13



Under review as a conference paper at ICLR 2020

B.2 WARM-UP IMPLEMENTATION

Our warm-up procedure closely follows the strategy of Goyal et al. (2017). We apply warm-up for
the first 5.5% of training iterations—we denote this number by WS . During warm-up, the learning
rate increases linearly, starting at the initial learning rate for single-batch training and finishing at
S times this value. After warm-up, we apply linear scaling to the single-batch schedule. Following
Goyal et al. (2017), we modify this scaled schedule so that the total iterations, including warm-up,
is proportional to S−1. For step-decay schedules, we omit the first WS iterations after warm-up.
For exponential decay schedules, we compress the scaled schedule by WS iterations, using slightly
faster decay.

B.3 BENCHMARK-SPECIFIC IMPLEMENTATION DETAILS

Here we describe implementation details that are specific to each benchmark task.

B.3.1 cifar10

We train ResNet-18 (preactivation) models (He et al., 2016b), using the standard training data split
for CIFAR-10 (Krizhevsky, 2009). We use weight decay = 5× 10−4. For batch normalization, we
use parameters momentum = 0.995 and ε = 2× 10−5, and we do not train the batch normalization
scaling parameters. We apply standard data augmentation during training. Specifically, we pad
images to 40× 40 and random crop to 32× 32, and we also apply random horizontal reflections.

B.3.2 imagenet

For ImageNet classification (Deng et al., 2009), we train ResNet-50 models (He et al., 2016a).
Our implementation closely follows the implementation of Goyal et al. (2017). We use stride-
2 convolutions on 3 × 3 layers. For each block’s final batch normalization layer, we initialize
the batch norm scaling parameters to 0 (and we initialize to 1 everywhere else). We use weight
decay parameter 10−4. Since each GPU processes 128 examples per batch, we use ghost batch
normalization (Hoffer et al., 2017) with ghost batch size 32. We resize input images to 224×224×3.
For data augmentation, we apply random cropping and left-right mirroring during training.

B.3.3 speech

We use Amodei et al. (2016)’s Deep Speech 2 model architecture. The model consists of two 2D
convolutional input layers, five bidirectional RNN layers, one fully connected layer, and softmax
outputs. Each convolutional layer has 32 filters. The RNN layers use GRU cells with hidden size
800. We apply batch normalization to the inputs of each layer. The batch norm parameters are
momentum = 0.997 and ε = 10−5. The loss is CTC loss. The inputs to the network are log
spectrograms, which we compute using 20ms windows from audio waveforms sampled at 16 kHz.
The training data is the train-clean-100 and train-clean-360 partitions of the OpenSLR
LibriSpeech Corpus, which amounts to 460 hours of recorded speech. We evaluate models on the
dev-clean partition.

B.3.4 transformer

We train Transformer base models (Vaswani et al., 2017). We use dynamic batching with at most
256 tokens per example. In Table 2, the “batch size” is the maximum number of tokens processed
per iteration. Our implementation closely follows that of Vaswani et al. (2017). Unlike Vaswani
et al., we use only the final model for evaluation instead of the average of the last five checkpoints.
We train on the WMT 2014 English-German dataset and evaluate on the newstest2014 test set.

B.3.5 yolo

We train YOLOv3 models (Redmon & Farhadi, 2018). To achieve high mAP scores, we also apply
mixup (Zhang et al., 2018) and class label smoothing, following (Zhang et al., 2019). We also use
focal loss. We use batch normalization momentum= 0.9 and weight decay = 5 × 10−4. We resize
input images to 416×416 (for both training and validation). We report mAP values at IOU threshold
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0.5. We use the Pascal VOC 2007 trainval and 2012 trainval datasets for training and the
2007 test set for validation (Everingham et al., 2010). During training, we initialize the darknet-53
convolutional layers with weights trained on ImageNet.

B.4 MISCELLANEOUS

In practice, wall time speed-ups also depend on system scaling efficiency. Since most aspects of sys-
tem scaling relate orthogonally to the training algorithm, we limit our scope to algorithmic aspects
of training.

For Figure 5, one dimension defines initial value lr(0), and the second dimension specifies total
decrease lr(TSI)/lr(0). For single-batch training, we use T = 39.1× 103 steps. We run AdaScale
and the LW baseline at S = 16, and we compare the final validation accuracies.

C ROBUSTNESS TO AVERAGING PARAMETER

In this appendix, we test the robustness of AdaScale to the averaging parameter θ for estimating
gain ratios (see §3.3). When θ = 0, AdaScale does not average estimates of gradient moments. The
closer θ is to 1, the more that AdaScale averages across iterations.

Using the cifar10 benchmark, we compare four values of θ at scales S = 8 and S = 32. The case
θ = 1 − S/1000 corresponds to the cifar10 experiment for Figure 1. We average the resulting
metrics over five trials. Figure 6 contains the training curves.
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Figure 6: AdaScale training curves with varying moving average parameter.

We also include final metric values in Table 4.

For the three smaller settings of θ, the results align very closely. This suggests that AdaScale is
robust to the choice of θ. When θ = 1− S/10000, we see that smoothing more significantly biases
gain ratio estimates, which leads to more contrasting results.

D ADDITIONAL EMPIRICAL RESULTS

This appendix provides additional empirical results.
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Table 4: AdaScale final metrics with varying moving average parameter.

S θ
Final val.

accuracy (%)
Final train
objective

Total
iterations

8 1− S/10 94.0 0.153 5.75k
1− S/100 94.1 0.154 5.78k

1− S/1000 94.1 0.153 5.85k
1− S/10000 94.1 0.147 6.45k

32 0 94.0 0.145 2.02k
1− S/100 94.1 0.147 2.03k

1− S/1000 94.1 0.145 2.08k
1− S/10000 94.1 0.136 2.46k
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Figure 7: Gain ratios for transformer. Plots compare moving average rt estimates to values computed
offline (using 1000 batches).

D.1 GAIN RATIO ESTIMATION

Our online gain ratio estimates align closely with offline estimates (computed by averaging over
1000 batches). Figure 7 demonstrates this for the transformer task.

D.2 cifar10 SCALE INVARIANCE CURVES

Figure 8 shows additional plots for the cifar10 task. Notably, training loss curves at various scales
and full view of the learning rate curves are shown.

D.3 ELASTIC SCALING

Learning rate and gain ratio curves for the two dynamic scaling scenarios we consider (discussed in
§4) align surprisingly well with the corresponding curves for the scenarios where the scale is kept
constant throughout the training. This is shown in Figure 9. The abrupt change in scale causes the
gain ratio to change quickly which in turn leads to an almost immediate change in learning rate.
This allows the algorithm to quickly adapt to varying scales.
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Figure 8: AdaScale training curves for cifar10. AdaScale trains quality models at various scales.

G
ai

n
ra

tio
r t

0 113k 225k 455k
0

32

64

128

L
ea

rn
in

g
ra

te
η
t

0 113k 225k 455k
0
1
2
3
4
5

S-invariant iteration τt S-invariant iteration τt
S=32↑64↑128 S=128↓64↓32 S=32 S=64 S=128

Figure 9: Learning rate adaptation for elastic AdaScaling. Gain ratio and learning rate curves for elas-
tic scaling scenarios align with the corresponding curves for constant scaling scenarios, despite abrupt scale
changes. (at τt = 133k, 225k, dotted lines)
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