
Under review as a conference paper at ICLR 2020

ON THE DIFFICULTY OF WARM-STARTING
NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In many real-world deployments of machine learning systems, data arrive piecemeal.
These learning scenarios may be passive, where data arrive incrementally due to structural
properties of the problem (e.g., daily financial data) or active, where samples are selected
according to a measure of their quality (e.g., experimental design). In both of these cases,
we are building a sequence of models that incorporate an increasing amount of data. We
would like each of these models in the sequence to be performant and take advantage of all
the data that are available to that point. Conventional intuition suggests that when solving a
sequence of related optimization problems of this form, it should be possible to initialize
using the solution of the previous iterate—to “warm start” the optimization rather than
initialize from scratch—and see reductions in wall-clock time. However, in practice this
warm-starting seems to yield poorer generalization performance than models that have fresh
random initializations, even though the final training losses are similar. While it appears that
some hyperparameter settings allow a practitioner to close this generalization gap, they seem
to only do so in regimes that damage the wall-clock gains of the warm start. Nevertheless, it
is highly desirable to be able to warm-start neural network training, as it would dramatically
reduce the resource usage associated with the construction of performant deep learning
systems. In this work, we take a closer look at this empirical phenomenon and try to
understand when and how it occurs. Although the present investigation did not lead to a
solution, we hope that a thorough articulation of the problem will spur new research that
may lead to improved methods that consume fewer resources during training.

1 INTRODUCTION

Although machine learning research generally assumes the existence of a fixed set of training data, real-life
machine learning systems face more complicated situations. One particularly common scenario is where
a production machine learning system must be constantly updated with new data. This situation occurs
in finance, online advertising, recommendation systems, fraud detection, and many other domains where
machine learning systems are used for prediction and decision making in the real world (He et al., 2014;
Chandramouli et al., 2011; Kuncheva, 2008). When the new data arrive, the model needs to be updated so
that it can be as accurate as possible and to also account for any domain shift that is occurring.

As a concrete example, consider a large-scale social media website, to which users are constantly uploading
images and text. The company would like to have up-to-the-minute predictive models in order to recommend
content, filter out inappropriate media, and determine what advertisements to show. There might be millions
of new data arriving every day, the structure of which needs to be rapidly incorporated into the production
machine learning systems.

It is natural in this scenario to imagine maintaining, in effect, a single model that is updated with the latest
data at a regular cadence. Every day, for example, new training might be performed on the model with the
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Figure 1: A comparison between ResNets trained using a warm start and a random initialization on the CIFAR-10 dataset.
Blue lines correspond to models that were trained on 50% of CIFAR-10 for 350 epochs then trained using 100% of the
data for an additional 350 epochs. Green lines correspond to models trained using 100% of the data from the start. The
two training paradigms produce similar training performance but significantly and consistently differing test performance.

updated, larger data set. Ideally, this new training procedure is initialized from the parameters of yesterday’s
model, i.e., it is “warm-started” from those parameters rather than a fresh initialization. Such an initialization
makes intuitive sense: the data used yesterday are mostly the same as the data today, and it seems wasteful
to throw away all the previous computation. For linear models and convex optimization problems, such
warm starting is widely used and highly successful, e.g., He et al. (2014); the theoretical properties of online
learning are well understood for such problems. However, warm-starting seems to hurt generalization
in deep neural networks. This is particularly troubling, because warm-starting does not damage training
accuracy.

Figure 1 shows a simple illustration of this phenomenon. Three 18-layer ResNets have been trained on the
CIFAR-10 natural image classification task to create these figures. One was trained on 100% of the data, one
was trained on 50% of the data, and a third warm-started model was trained on 100% of the data but initialized
from the parameters found from the 50% training. All three achieve the upper bound on training accuracy.
However, the warm-started network performs worse on test samples than the network trained on the same
data but with a good random initialization. Problematically, this phenomenon incentivizes performance-
focused researchers and engineers to constantly retrain models from scratch, at potentially enormous
financial and environmental cost (Strubell et al., 2019); this is an example of “Red AI” as articulated in
Schwartz et al. (2019) , which disregards resource consumption in the pursuit of raw predictive performance.

We observe that the warm-starting phenomenon has implications for other situations of interest as well. In
active learning, for example, unlabeled samples are abundant but the labels themselves are expensive. The
goal of the learner is to identify samples that would maximally improve its hypothesis, then send those to an
oracle to be labeled and integrated into the existing training set. These decisions are best made using a model
that has been fitted to every item in the training set; a model that is trained on samples that were chosen one
at a time will almost always outperform a model that is trained on samples that were chosen in batches (Yang
and Carbonell, 2013). It would be time efficient, then, to simply update the model each time a sample is
appended to the training set, rather than retrain the model from scratch at every iteration of sample acquisition.
However, this kind of update seems to damage generalization. In fact, although this phenomenon has not
received much direct attention from the research community, some recent papers on deep active learning
mention that their model is retrained at every step of data collection (Sener and Savarese, 2018; Ash et al.,
2019), and popular deep active learning repositories on Github (Rostamiz, 2017–2019; Huang, 2018–2019)
all retrain models from scratch. This caveat limits the feasibility of active learning for deep neural networks
in the absence of the ability to effectively warm-start training.

The ineffectiveness of warm-starting has been observed anecdotally in the community, but this paper seeks
to examine its empirical properties more closely in controlled settings. Note that the findings in this paper
are not inconsistent with extensive work on unsupervised pre-training (Erhan et al., 2010; Bengio, 2011)
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Table 1: Validation percent accuracies for various optimizers and models for both warm-started and randomly initialized
models on various indicated datasets. We consider an 18-layer ResNet, three-layer multilayer perceptron (MLP), and
logistic regression (LR) as our classifiers. Validation sets are a randomly-chosen third of the training data. Standard
deviations are indicated parenthetically.

RESNET RESNET MLP MLP LR LR
CIFAR-10 SGD ADAM SGD ADAM SGD ADAM
RANDOM INIT 56.2 (1.0) 78.0 (0.6) 39.0 (0.2) 39.4 (0.1) 40.5 (0.6) 33.8 (0.6)
WARM START 51.7 (0.9) 74.4 (0.9) 37.4 (0.2) 36.1 (0.3) 39.6 (0.2) 33.3 (0.2)

SVHN
RANDOM INIT 89.4 (0.1) 93.6 (0.2) 76.5 (0.3) 76.7 (0.4) 28.0 (0.2) 22.4 (1.3)
WARM START 87.5 (0.7) 93.5 (0.4) 75.4 (0.1) 69.4 (0.6) 28.0 (0.3) 22.2 (0.9)

CIFAR-100
RANDOM INIT 18.2 (0.3) 41.4 (0.2) 10.3 (0.2) 11.6 (0.2) 16.9 (0.18) 10.2 (0.4)
WARM START 15.5 (0.3) 35.0 (1.2) 9.4 (0.0) 9.9 (0.1) 16.3 (0.28) 9.9 (0.3)

and transfer learning in the small-data and “few shot” problem regimes (Vinyals et al., 2016; Snell et al.,
2017; Finn et al., 2017). Rather here we are examining how to accelerate training in the large-data supervised
regime in a way that is consistent with expectations from convex problems. The ultimate goal is to achieve
an understanding that can lead to procedures for successful warm starting and reduced resource usage in
common real-world retraining scenarios. This paper is fundamentally about investigating and reporting on a
phenomenon that should be of broad interest to researchers and practitioners. Our investigation has not yet
revealed a solution, but we hope it will spur a broader discussion about techniques for reducing the resource
consumption of deep neural network training.

2 WARM STARTING DAMAGES GENERALIZATION

In this section we provide empirical evidence that warm starting consistently damages generalization per-
formance in neural networks. To that end, we conduct a series of experiments across a several different
architectures, optimizers, and image datasets. Our goal is to create simple, reproducible settings that are
reflective of real-world situations, in which the warm-starting phenomenon is observable.

2.1 BASIC BATCH UPDATING

In order to clearly highlight the basic problem, we consider the simplest case of warm-starting, in which
a single training dataset is partitioned into two subsets that are presented sequentially. In each series of
experiments, we randomly segment the training data into two batches. The model is trained to convergence on
the first half, then is trained on the union of the two batches, i.e., 100% of the data. This is repeated for modern
deep learning classifiers (ResNet-18 of He et al. (2016), multilayer perceptrons (MLPs) consisting of three
layers and tanh activations, and logistic regression. Models are optimized using either stochastic gradient
descent or the Adam variant of stochastic gradient descent (Kingma and Ba, 2014), and are fitted to the
standard CIFAR-10, CIFAR-100, and SVHN classification datasets. All models are trained using a mini-batch
size of 128 and a learning rate of 0.001, the smallest learning rate used in the learning schedule for fitting state-
of-the-art ResNet models (He et al., 2016). We further investigate the effect of these parameters in Section 3.

Our results (shown in Table 1) indicate that generalization performance is damaged consistently and signifi-
cantly for both ResNets and MLPs. This effect is more dramatic when data are more challenging to model, as
in CIFAR-10, for which obtaining competitive validation performance generally requires data augmentation
and a sophisticated architecture. When the classification problem is believed to be relatively easy, as in SVHN,
the warm-start generalization gap is less pronounced. Conversely, logistic regression, which enjoys a convex
loss surface, is not significantly damaged by warm starting.
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Figure 2: A passive online learning
experiment for CIFAR-10 data
using a ResNet. The horizontal axis
shows the total number of samples
in the training set available to the
learner. Notice the growing gener-
alization gap between warm-started
and randomly-initialized models.

This result is surprising. Even though MLP and ResNet optimization is non-convex, conventional intuition
suggests that the warm-started solution should be close to the full-data solution and therefore a good initializa-
tion. One view on pre-training is that the initialization is a “prior” on weights; we often view prior distributions
as arising from inference on old (or hypothetical) data and so this sort of pre-training should always be helpful.
The generalization gap shown here creates a computational burden for real-life machine learning systems
that must be retrained from scratch to perform well, rather than initialized from previous models.

2.2 ONLINE LEARNING

Passive Online Learning. A common real-world setting involves data that are being provided to the ma-
chine learning system in a stream. At every step, the learner is given k new samples to append to its training
data, and it updates its hypothesis to reflect the larger dataset. Financial data, social media, and recommen-
dations systems are common examples of scenarios where new data are constantly arriving. This paradigm
is simulated in Figure 2, where we supply CIFAR-10 data, selected randomly without replacement, in groups
of 100 to an 18-layer ResNet. We examine two cases: 1) where the model is retrained from scratch after each
batch, starting from a random initialization, and 2) where the model is trained to convergence starting from the
parameters learned in the previous iteration. In both cases, the models are optimized with Adam, using an ini-
tial learning rate of 0.001. Each was run five times with different random seeds and validation sets composed of
a random third of the training data, reinitializing Adam’s parameters at each step of learning (see Section 3.6) .
Figure 2 shows the trade-off between the two approaches. The mean and standard deviations across the five
runs are shown. On the right are the training times: clearly, starting from the previous model is preferable
and has the potential to vastly reduce computational costs and wall-clock time. However, as can be seen on
the left, generalization performance is worse in the warm-started situation. As more data arrive, the gap in
validation accuracy increases substantially.

Active Online Learning. Instead of absorbing a stream of data, it may be possible to perform active
learning (Mitchell et al., 1990) and choose what data to add to the dataset. When the data are expensive
to acquire, it’s sometimes advantageous to select samples carefully. In this situation, the data are often chosen
according to a metric that prefers data which are highly informative about the predictive hypothesis or which
are likely to maximally reduce expected risk.

Active learning is closely related to optimal experimental design in statistics. Generally, the setup is to allow
the model to choose k new data samples for which it will be provided labels. These newly labeled data are then
added to the training set and the model is updated. As in the passive scenario described in Section 2.2, we must
choose whether to retrain the model from scratch with the new data or warm-start from the previous iteration.

While there are many algorithms for active learning, we study this scenario using margin-based sam-
pling (Wang and Shang, 2014). This approach quantifies predictive uncertainty as inversely proportional to
the difference between the model’s largest and second largest prediction. As in Section 2.2, the algorithm
receives 100 new training data at each round of learning, selected according to the margin criterion.
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Figure 3: An SVHN transfer learning experiment
that compares training from scratch to pretraining on
CIFAR for various fractions of the SVHN dataset.
Notice that warm starting is helpful when there is not
much labeled data available but it becomes damaging
as more labeled data are supplied.

Domain Shift. Figure 9 in the Appendix shows that
active selection of data does not significantly change the
generalization gap between fresh initializations and warm
starting. Relative to the passive scenario, more data are
required before the warm-started model starts to under-
perform, but a gap nevertheless appears. As before, this
is over five random restarts and the right-hand subfigure
shows the dramatic difference in computational cost.

Many online learning scenarios involve domain shift, in
which the distribution is shifting as data stream in. Such
a shift could arise, for example, due to macroecomic
changes effecting financial markets, or seasonal changes
influencing people’s tastes in a recommendation system.
In general, one would expect domain shift to make the
warm-starting phenomenon worse, as the initialization is
now even farther from the final solution and indeed what
the experiments show.

We simulate domain shift by sorting the data according to their first principal component and supplying
them to the learner in order. This induces nonstationarity across batches, reflecting large-scale shifts in, e.g.,
illumination. Figure 8 in the Appendix shows these deleterious effects.

2.3 TRANSFER LEARNING

Despite successes on a variety of machine learning tasks, deep neural networks are still data hungry and
generally require large training sets to generalize well. For problems where only limited data are available,
it has become popular to warm-start learning using the parameters from training on a different but related
problem (Finn et al., 2017; Nichol and Schulman, 2018). Transfer and “few-shot” learning in this form has
seen success in computer vision and NLP (Mou et al., 2016).

The experiments we perform here, however, imply that when the second problem is not data-limited we would
expect to see this transfer learning approach deteriorate in quality. That is, at some point, the pre-training
transfer learning approach is essentially the same as warm-starting under domain shift, and the generalization
performance should suffer.

We demonstrate this phenomenon by first training a ResNet-18 to convergence on CIFAR-10, then using that
solution to warm start a model trained on a varying fraction of the SVHN dataset. When only a small portion
of SVHN is used, this is essentially the same as the pre-training transfer learning approach. As the proportion
increases, the problem turns into what we have described here as warm-starting. Figure 3 shows the result
of this experiment, and it appears to support our intuition. When the second dataset is small, warm-starting
is helpful, but there is a crossover point where better generalization would be achieved from training from
scratch on that fraction of SVHN. All models are optimized using SGD with a learning rate of 0.001.

3 OVERCOMING THE WARM-START PROBLEM

The design space for initializing and training deep neural network models is very large, and so it is important
to evaluate whether there is some trick that could be used to help warm-started training find good solutions.
Put another way, a reasonable response to this problem is “Did you see whether X helped?” where X might be
anything from batch normalization (Ioffe and Szegedy, 2015) to increasing the mini-batch size (Keskar et al.,
2016). This section tries to answer some of these questions and further empirically probe the warm-start phe-
nomenon. Unless otherwise stated, experiments in this section use a ResNet-18 model trained using SGD with
a learning rate of 0.001 on CIFAR-10 data. All experiments were run five times to report means and variances.
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Randomly Initialized
Warm Started

Figure 4: A comparison be-
tween ResNets trained from
both a warm start and ran-
dom initialization on CIFAR-
10 for various hyperparame-
ters. Red dots are randomly-
initialized models and blue
dots are warm-started mod-
els. Warm-started models
that perform roughly as
well as randomly-initialized
models offer no benefit in
terms of training time.

3.1 IS THIS AN EFFECT OF BATCH SIZE OR LEARNING RATE?

One might reasonably ask whether or not there exist any hyperparameters that close the generalization gap
between warm started and randomly initialized models. In particular, can setting a larger learning rate at either
the first or second round of learning help the model escape to regions that generalize better? Can shrinking
the batch size inject stochasticity that might improve generalization (Li et al., 2017; Gunasekar et al., 2017)?

Here we again consider a warm-started experiment of training on 50% of CIFAR-10 until convergence,
then training on 100% of CIFAR-10, using the initial round of training as an initialization. We explore all
combinations of batch sizes {16, 32, 64, 128}, and learning rates {0.001, 0.01, 0.1}, varying them across the
three rounds of training. This allows for the possibility that there exist different hyperparameters for the first
stage of training that are better when used with a different set after warm-starting. Each of these combinations
is run with three random initializations.

Figure 4 visualizes these results. Every resulting 100% model is shown from all three initializations and
all combinations, with color indicating whether it was a random initialization or a warm-start. The horizontal
axis shows the time to completion, excluding the pre-training time, and the vertical axis shows the resulting
validation performance.

Interestingly, we do find warm-started models that perform as well as randomly-initialized models, but they
are unable to do so while benefiting from their warm-started initialization. The training time for warm-started
ResNet models that generalize as well as randomly-initialized models is roughly the same as those randomly-
initialized models. That is, there is no computational benefit to using these warm-started initializations. It is
worth noting that this plot does not capture the time or energy required to identify hyperparameters that close
the generalization gap; such hyperparameter searches are often the culprit in the resource footprint of deep
learning (Schwartz et al., 2019). Wall-clock time is measured by assigning every model identical resources,
which includes 50GB of RAM and an NVIDA Tesla P100 GPU.

This increased fitting time occurs because warm-started models, when using hyperparameters that generalize
relatively well, seem to “forget” what was learned in the first round of training. Figure 5 demonstrates this
phenomenon by computing the Pearson correlation between the weights of converged warm-started models
and their initialization weights, again across various choices for learning rate and batch size, and comparing
it to validation accuracy. Models that generalize well have little correlation with their initialization—there
is a trend downward in accuracy with increasing correlation—suggesting that they have forgotten what
was learned in the first round of training. Conversely, a similar plot for logistic regression shows no such
relationship, and some of the best models have large correlations.
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Logistic Regression Figure 5: Validation accuracy as a

function of the correlation between
the warm-start initialization and
the solution found after training
for a large number of hyperparam-
eter settings. Left: Warm-started
logistic regressors often remember
their initialization. Right: Warm-
started ResNets that perform well
do not retain much information
from the initial round of training.

3.2 HOW QUICKLY IS GENERALIZATION DAMAGED?
One of the surprising results of our investigation is how little training is necessary to damage the validation
performance of the warm-started model. Our hope was that warm-starting success might be achieved by
switching from the 50% to 100% phase before the first phase of training was completed. We did a search over
switching times to try to identify whether there might be a “sweet spot” in which a partially-trained checkpoint
might provide a good initialization. We fit a ResNet-18 model on 50% of the training data, as before, and
checkpointed its parameters every five epochs. We then took each of these checkpointed models and used
them as an initialization for training on 100% of those data. As shown in Figure 7, generalization is damaged
even when initializing from parameters obtained by training on incomplete data for only a few epochs.

3.3 ARE THERE DIFFERENCES IN THE GRADIENTS OF WARM-STARTED MODELS?
We notice some interesting phenomena when examining the L2 norm of the gradients as training progresses
for a warm-started problem. Figure 6 shows a visualization of average gradients during training for a ResNet
on CIFAR-10. On the left is the sequence of gradients during the first phase of training. On the right is the
second phase of training, where the magnitudes are shown separately for the two halves of the data set. It
is unsurprising that the “old” data have zero gradients in the beginning, but it is surprising that the gradient
magnitudes of the “new” data are higher even than at the random initialization. Moreover, the average
magnitudes are very slow to converge; the new data have consistently larger gradients.

3.4 IS REGULARIZATION HELPFUL? Table 2: Average validation percent accuracies for various reg-
ularizers and regularization penalties with both warm-started
(WS) and randomly-initialized (RI) models on CIFAR-10 data.

L2 1× 10−1 1× 10−2 1× 10−3 1× 10−4

RI 72.7 (4.2) 55.4 (2.7) 54.6 (2.4) 55.1 (3.4)
WS 63.9 (6.4) 51.2 (2.7) 50.5 (1.8) 50.4 (1.3)

ADVERSARIAL
RI 54.8 (1.3) 55.1 (1.5) 55.3 (1.4) 55.6 (0.9)
WS 52.4 (1.0) 52.6 (1.5) 52.7 (1.2) 50.4 (1.4)

CONFIDENCE
RI 53.1 (1.9) 55.8 (1.3) 55.4 (1.2) 55.9 (1.4)
WS 50.3 (0.7) 50.0 (3.8) 51.2 (1.2) 49.3 (1.2)

The phenomenon of larger gradients induced by
the addition of new data suggests that warm-
started models might benefit from regulariza-
tion. Here we investigate three different ap-
proaches to regularization: 1) basic L2 weight
penalties (Krogh and Hertz, 1992), 2) confidence-
penalized training (Pereyra et al., 2017), and
3) adversarial training (Szegedy et al., 2013). We
again take a ResNet fitted to 50% of available
training data and use its parameters to warm-start
learning on 100% of those data. Regularization is
applied in both rounds of training. Table 2 shows
the results of these experiments. Regularization
often helps, but it does not resolve the generaliza-
tion gap created by warm-starting. We regularize both stages using the regularization scheme and penalty size
indicated in Table 2. Still, applying the same regularization to randomly-initialized models always produces a
better-generalizing classifier.
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Figure 6: The L2 norm of gradients during training. Left:
The gradients corresponding to 50% of data in the first round
of training. Right: Gradient magnitudes for the warm-started
model. Gradients corresponding to both the same 50% of data
used on the left and the new 50% of data. The first round of
training uses a learning rate of 0.0001, the smallest in the de-
fault learning rate schedule for ResNets, and the second uses
a learning rate of 0.00001, chosen to zoom in on this effect.

Figure 7: Left: CIFAR-10 validation accuracy of a
ResNet as training progresses on 50% of the dataset.
Right: The amount of validation accuracy damage, in
terms of percentage difference from random initialization,
after training on 100% of the data. Each warm-started
model was initialized by training on 50% of CIFAR data
for the indicated number of epochs.

3.5 CAN WE WARM-START SOME LAYERS BUT NOT OTHERS?
A common practice in deep learning is to train on one task, then continue training only the last network
layer when new data become available (Mou et al., 2016; Karpathy and Johnson, 2019). This subsection
investigates how performance is affected when we train a model on 50% of data, then use that initialization
to retrain only the last layer of the network. As the gradient of the last layer affects all earlier layers during
training, it is one possible culprit for the vast gradient magnitude differences in Section 3.3.

We examine this hypothesis in two ways, as shown in Table 4. First we ran experiments that fixed all
parameters but the last layer to their pre-trained values and then only trained the last layer in the second phase
(LL). Second we extend this experiment to a third phase in which the rest of the network was trained after
allowing the last layer to converge to something reasonable (LL+WS). While training only the last layer from
the warm-started initialization is typically worse than training all parameters (WS), some gains can be had by
training the entire network after having only trained the last layer. That is, the last layer alone does not seem
to be sufficient to explain this generalization gap.

3.6 IS THIS A PROBLEM WITH MOMENTUM OR OTHER PERSISTENT QUANTITIES DURING TRAINING?

One choice we have when using Adam or other adaptive methods involves whether or not to reset the
optimization parameters after the first round of training. Can any part of this generalization gap be explained
by a need to reinitialize hyperparameters or to use those that Adam has identified after training for a while?
The answer appears to be no: allowing hyperparameter settings to follow from the first round of training to
the second does not appear to affect out-of-sample performance of the final solution. This procedure produces
results that are very similar to Adam in Table 1, which reinitializes the optimizer before warm-start training.

3.7 CAN WE JUST ADD NOISE?

One idea for overcoming the warm-start problem is to add noise to the warm-started parameters, potentially
jostling the network out of a poor initialization. The motivation for this is to have a “partially random”
initialization. While adding noise of increased variance does help generalization, warm-started models
are still lower-performing than randomly-initialized networks. Even worse, the train time for noised,
warm-started models is proportional to the variance of the added noise. The best-generalizing noised
warm-started networks actually take longer to fit than freshly-initialized models (Table 3).
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Table 3: Validation accuracies and warm-started model train times
(minutes). Adding noise at the indicated standard deviations
improves generalization, but not to the point of performing as well
as randomly-initialized models. Better-generalizing warm-started
models take even more time to train than their randomly-initialized
peers, which on average achieve 55.2% accuracy in 34.0 minutes.

1× 10−2 1× 10−3 1× 10−4 1× 10−5 0
Accuracy 54.4 (0.9) 53.5 (1.0) 52.9 (1.0) 49.9 (1.6) 50.8 (1.8)
Train Time 165.3 (3.9) 38.0 (1.33) 16.5 (1.3) 14.6 (91.0) 13.6 (0.4)

Table 4: Validation percent accuracies for various
datasets for last layer only warm-starting (LL), last
layer warm starting followed by full network train-
ing (LL+WS), warm started (WS) and randomly ini-
tialized (RI) models on various indicated datasets.

LL LL+WS WS RI
CIFAR-10 48.8 (1.8) 50.9 (1.5) 52.5 (0.3) 56.0 (1.2)
SVHN 86.0 (0.6) 88.2 (0.2) 87.5 (0.7) 89.4 (0.1)
CIFAR-100 16.4 (0.5) 16.5 (0.6) 15.5 (0.3) 18.2 (0.3)

3.8 IS THIS A CASE OF CATASTROPHIC FORGETTING?

Warm starting is conceptually similar to continual learning. In that framework, an agent is given learning tasks
sequentially, and the goal is to become good at the current task while avoiding “catastrophic forgetting,” i.e.,
losing performance on previous tasks. One hypothesis to consider is whether the warm-start phenomenon is
simply a case of such catastrophic forgetting. We can examine this hypothesis by trying to fix the warm-start
problem using a technique commonly used to prevent catastrophic forgetting. One such approach is Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017), which adds a regularization penalty that encourages
avoiding updating weights that are important for previously-learned tasks.

Table 5: CIFAR-10 Validation percent accuracies for
warm-started ResNets using different degrees of EWC.
Standard deviations are indicated parenthetically.

1× 10−1 1× 10−2 1× 10−3 1× 10−4

48.8 (2.16) 50.8 (1.0) 51.2 (1.3) 51.9 (0.4)

However, in the warm-start problem, each round
of training adds data to what was available in the
previous round. As described here, these data are
often from the same distribution as before. Because
a model that works well on the second task of the
warm-start problem also works well on the first,
there is no reason to avoid updating important parameters. Accordingly, as shown in Table 5, including the
EWC penalty in warm-started network training actually damages performance more than not including it at all.

4 DISCUSSION AND RESEARCH SURROUNDING THE WARM START PROBLEM

Warm-starting and online learning are well understood for convex models like linear classifiers (Chu et al.,
2015) and SVMs (DeCoste and Wagstaff, 2000; Wen et al., 2017). However, it does not appear that generally
applicable techniques exist for deep neural networks that do not damage generalization, and so models are
typically retrained from scratch, e.g., Sener and Savarese (2018); Shyam et al. (2018).

There has been a variety of work in closely related areas, however. For example, in analyzing “critical learning
periods,” researchers show that a network initially trained on blurry images then on sharp images is unable
to perform as well as one trained from scratch on sharp images, drawing a parallel between human vision and
computer vision (Achille et al., 2018). In this article, we show that this phenomenon occurs more generally and
that test performance is damaged even when first and second datasets are drawn from identical distributions.

Initialization. The problem of warm starting is closely related to the rich literature on initialization of
neural network training “from scratch”. Indeed, new insights into what makes an effective initialization have
been critical to the revival of neural networks as machine learning models. While there have been several
proposed methods for initialization (Sutskever et al., 2013; Srivastava et al., 2015; Erhan et al., 2010; Glorot
and Bengio, 2010; He et al., 2015), this body of literature primarily concerns itself with initializations that are
high-quality in the sense that they allow quick and reliable training error minimization.
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Work relating initialization to generalization suggests that networks whose weights have moved far from
their initialization are less likely to generalize well compared with ones that have remained relatively
nearby (Nagarajan and Kolter, 2019). While this makes sense when learning a new problem from scratch,
warm-started networks that have less in common with their initializations seem to generalize better than those
that have more (Figure 5). So while it is not surprising that there exist initializations that generalize poorly, it
is surprising that the initializations discussed in Section 2 are in that class.

Generalization. The warm start problem is fundamentally about generalization performance, which has
been extensively studied both theoretically and empirically within the context of deep learning. These articles
have investigated generalization by studying classifier margin (Bartlett et al., 2017; Wei et al., 2018), loss
geometry (Hochreiter and Schmidhuber, 1997; Keskar et al., 2016), and measurements of complexity (Zhang
et al., 2017; Liang et al., 2017), sensitivity (Novak et al., 2018), or compressiblity (Zhou et al., 2019).

These approaches can be seen as attempting to measure the intricacy of the hypothesis learned by the network.
If two models are both consistent for the same training data, the one with the less complicated concept is
more likely to generalize well. We know that networks trained with SGD are implicitly regularized (Li
et al., 2017; Gunasekar et al., 2017), suggesting that standard training of neural networks incidentally finds
low-complexity solutions. It’s possible, then, that the initial round of training disqualifies solutions that would
most naturally explain the general problem of interest. If so, it would imply that the warm-start problem is a
pathology of SGD.

Pre-training. As previously discussed, the warm-start problem is very similar to the idea of unsupervised
and supervised pre-training (Li et al., 2019; Bengio, 2011; Erhan et al., 2010; Bengio et al., 2007). Under that
paradigm, learning where limited labeled data are available is aided by first training on related data. The warm
start problem, however, is not about limited labeled data in the second round of training. Instead, the goal of
warm starting is to hasten the time required to fit a neural network by initializing using a similar supervised
problem without damaging generalization. Our results suggest that while warm-starting is beneficial when
labeled data are limited, it actually damages generalization to warm-start in rich-data situations. This is
somewhat opposed to conventional intuition, which suggests that pre-training is helpful when there are limited
data available, but that it is not harmful when data are not limited (Karpathy and Johnson, 2019).

Concluding thoughts. This article presented challenges of warm-starting neural network training. While
this is a problem that the community seems somewhat aware of anecdotally, it does not seem to have been
directly studied. We believe that this is a major problem in important real-life tasks for which neural networks
are used, and it speaks directly to the resources consumed by training such models.

We also observe that while the presented experiments show strong evidence that the warm start problem
is not something that can be easily overcome with current optimization tools, there are still many avenues
to investigate. For example, Polyak averaging (Polyak and Juditsky, 1992), AdaGrad (Duchi et al., 2011), and
KFAC (Martens and Grosse, 2015) are techniques that find favor on certain problems and architectures and
might make warm-starting possible. Additionally, we have focused on widely-studied image data sets; we
leave similar analyses of other tasks such as natural language processing and molecular function prediction
to future work.
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A APPENDIX FIGURES
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Figure 8: A domain shift online learning experiment for CIFAR data using a ResNet. The horizontal axis displays the number of total samples in the training
set available to the learner.
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Figure 9: An active online learning experiment for CIFAR data using a ResNet. The horizontal axis displays the number of total samples in the training set
available to the learner.
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