
Under review as a conference paper at ICLR 2020

LOOKAHEAD: A FAR-SIGHTED ALTERNATIVE OF
MAGNITUDE-BASED PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Magnitude-based pruning is one of the simplest methods for pruning neural net-
works. Despite its simplicity, magnitude-based pruning and its variants have
shown state-of-the-art performances for pruning modern architectures. Based on
the observation that the magnitude-based pruning indeed minimizes the Frobenius
distortion of a linear operator corresponding to a single layer, we develop a simple
pruning method, coined lookahead pruning, by extending the single layer opti-
mization to a multi-layer optimization. Our experimental results demonstrate that
the proposed method consistently outperforms the magnitude pruning on various
networks including VGG and ResNet, particularly in the high-sparsity regime.

1 INTRODUCTION

The “magnitude-equals-saliency” approach has been long underlooked as an overly simplistic base-
line among all imaginable techniques to eliminate unnecessary weights from over-parametrized
neural networks. Since the early works of LeCun et al. (1989); Hassibi & Stork (1993) which pro-
vided more theoretically grounded alternative of magnitude-based pruning (MP) based on second
derivatives of loss function, a wide range of methods including Bayesian / information-theoretic
approaches (Neal, 1996; Louizos et al., 2017; Molchanov et al., 2017; Dai et al., 2018), `p-
regularization (Wen et al., 2016; Liu et al., 2017; Louizos et al., 2018), sharing redundant channels
(Zhang et al., 2018; Ding et al., 2019), and reinforcement learning approaches (Lin et al., 2017;
Bellec et al., 2018; He et al., 2018) has been proposed as more sophisticated alternatives.

On the other hand, the capabilities of MP heuristics are gaining attention once more. Combined
with minimalistic techniques including iterative pruning (Han et al., 2015) and dynamic reestab-
lishment of connections (Zhu & Gupta, 2017), a recent large-scale study by Gale et al. (2019) has
demonstrated that MP can achieve state-of-the-art trade-off of sparsity and accuracy. The unreason-
able effectiveness of magnitude scores often extend beyond the strict domain of network pruning; a
recent experiment by Frankle & Carbin (2019) suggests existence of an automatic subnetwork dis-
covery mechanism underlying the standard gradient-based optimization procedures of deep, over-
parametrized neural networks by showing that the MP algorithm finds an efficient trainable subnet-
work. These observations constitute a call to revisit the “magnitude-equals-saliency” approach for a
better understanding of deep neural network itself.

As an attempt to better understand the nature of MP methods, we study a generalization of magnitude
scores under a functional approximation framework; by viewing MP as a relaxed minimization of
distortion in layerwise operators introduced by zeroing out parameters, we can consider a multi-layer
extension of the distortion minimization problem. Minimization of the newly suggested distortion
measure which ‘looks ahead’ the impact of pruning on neighboring layers gives birth to a novel
pruning strategy, coined lookahead pruning (LAP).

In this paper, we focus on comparison of the proposed LAP scheme to its MP counterpart. We
empirically demonstrate that LAP consistently outperforms the MP under various setups including
linear networks, fully-connected networks, and deep convolutional networks. In particular, the LAP
consistently enables more than ×2 gain in the compression rate of the considered models, with in-
creasing benefits under the high-sparsity regime. Apart from its performance, the lookahead pruning
method enjoys additional attractive properties:

1

Under review as a conference paper at ICLR 2020

(a) MP (b) LAP (c) LAP-forward

Figure 1: An illustration of magnitude-based pruning (MP), lookahead pruning (LAP) and ordered
version of LAP (LAP-forward). MP only consider a single weight while LAP also considers the
effects of neighboring edges. LAP-forward iteratively applies LAP from the bottom to the top.

• Easy-to-use: The proposed LAP method is a simple model-agnostic, score-based approach and
can be implemented via elementary tensor operations, introducing only a minimal computational
overhead, comparable to the magnitude-based pruning methods. Unlike most Hessian-based
methods, the proposed method does not rely on the availability of additional training batches
except during the retraining phase. It also has no hyper-parameter to tune, in contrast to sophisti-
cated training-based and optimization-based schemes.

• Versatility: As our method simply replaces the “magnitude-as-saliency” criterion with a looka-
head alternative, it can be deployed jointly with algorithmic tweaks developed for magnitude-
based pruning, such as iterative pruning and retraining (Han et al., 2015) or joint pruning and
training with dynamic reconnections (Zhu & Gupta, 2017; Gale et al., 2019).

The remainder of this manuscript is structured as follows: In Section 2, we introduce a functional
approximation perspective toward MP and motivate LAP and its variants as a generalization of MP
for multiple layer setups; in Section 3 we explore the capabilities of LAP and its variants with simple
models, then move on to apply LAP to larger-scale models.

2 LOOKAHEAD: A FAR-SIGHTED LAYER APPROXIMATION

We begin by a more formal description of the magnitude-based pruning (MP) algorithm (LeCun
et al., 1989; Han et al., 2015). Given an L-layer neural network associated with weight tensors
W1, . . . ,WL, the MP algorithm removes connections with smallest absolute weights from each
weight tensor, until the desired level of sparsity has been achieved. This layerwise procedure is
equivalent to finding a mask M whose entries are either 0 or 1, incurring a smallest Frobenius
distortion, measured by

min
M :‖M‖0=s

‖W −M �W‖F , (1)

where � denotes the Hadamard product, ‖ · ‖0 denotes the entry-wise `0-norm, and s is a sparsity
constraint imposed by some operational criteria.

Aiming to minimize the Frobenius distortion (Eq. (1)), the MP algorithm naturally admits a func-
tional approximation interpretation. For the case of a fully-connected layer, the maximal difference
between the output from a pruned and an unpruned layer can be bounded as

‖Wx−M �Wx‖2 ≤ ‖W −M �W‖2 · ‖x‖2 ≤ ‖W −M �W‖F · ‖x‖2. (2)

A similar idea holds for convolutional layers. For the case of a two-dimensional convolution with a
single input and a single output channel, the corresponding linear operator takes a form of a doubly
block circulant matrix constructed from the associated kernel tensor (see, e.g., Goodfellow et al.
(2016)). Here, the Frobenius distortion of doubly block circulant matrices can be controlled by the
Frobenius distortion of the weight tensor of the convolutional layer.1

1The case of multiple input/output channel or non-circular convolution can be dealt with similarly using
channel-wise circulant matrices as a block. We refer the interested readers to Sedghi et al. (2019).

2

Under review as a conference paper at ICLR 2020

Algorithm 1 Lookahead Pruning (LAP)

1: Input: Weight tensors W1, . . . ,WL of a trained network, desired sparsities s1, . . . , sL
2: Output: 0-1 masks M1, . . . ,ML

3: for i = 1, . . . , L do
4: Compute Li(w) according to Eq. (4) for all entry w of Wi

5: Set w̃si as a si smallest element of {Li(w) : w is an entry of Wi}
6: Set Mi = 1{Wi − w̃si ≥ 0}
7: end for

2.1 LOOKAHEAD DISTORTION AS A BLOCK APPROXIMATION ERROR

The myopic optimization (Eq. (1)) based on the per-layer Frobenius distortion falls short even in
the simplest case of the two-layer linear neural network with one-dimensional output, where we
consider predictors of a form Ŷ = u>Wx and try to minimize the Frobenius distortion of u>W
(equivalent to `2 distortion in this case). Here, if ui is extremely large, pruning any nonzero element
in the i-th row of W may incur a significant Frobenius distortion.

Motivated by this observation, we consider a block approximation analogue of the magnitude-
based pruning objective Eq. (1). Given an L-layer linear network associated with weight tensors
W1, . . . ,WL, let J (Wi) denote the Jacobian matrix corresponding to linear operator characterized
by Wi. For pruning the i-th layer, we take into account the weight tensors of neighboring layers
Wi−1,Wi+1 in addition to the original weight tensor Wi. In particular, we propose to minimize the
Frobenius distortion of the operator block J (Wi+1)J (Wi)J (Wi−1), i.e.,

min
Mi:‖Mi‖0=si

‖J (Wi+1)J (Wi)J (Wi−1)− J (Wi+1)J (Mi �Wi)J (Wi−1)‖F . (3)

An explicit minimization of the block distortion (Eq. (3)), however, is computationally intractable
(see Appendix A for a more detailed discussion).

To avoid an excessive computational overhead, we propose to use the following score-based pruning
algorithm, coined lookahead pruning (LAP), for approximating Eq. (3): For each entry w of Wi, we
prune away the weights with the smallest value of lookahead distortion, defined as

Li(w) : = ‖J (Wi+1)J (Wi)J (Wi−1)− J (Wi+1)J (Wi|w=0)J (Wi−1)‖F (4)

where Wi|w=0 denotes the tensor whose entries are equal to the entries of Wi except for having
zeroed out w. We let bothW0 andWL+1 to be tensors consisting of ones. In other words, lookahead
distortion (Eq. (4)) measures the distortion (in Frobenius norm) induced by pruning w while all
other weights remain intact. For three-layer blocks consisting only of fully-connected layers and
convolutional layers, Eq. (4) reduces to the following compact formula: for an edge w connected to
the j-th input neuron and the k-th output neuron of the i-th layer,

Li(w) = |w| ·
∥∥∥Wi−1[j, :]

∥∥∥
F
·
∥∥∥Wi+1[:, k]

∥∥∥
F
, (5)

where |w| denotes the weight of the neuron, W [j, :] denotes the slice of W composed of weights
connected to the j-th output neuron, and W [:, k] denotes the same for the k-th input neuron. A
formal description of LAP is presented in Algorithm 1.

LAP on linear networks. To illustrate the benefit of lookahead, we evaluate the performance of
MP and LAP on a linear fully-connected network with a single hidden layer of 1,000 nodes, trained
with MNIST image classification dataset. Fig. 2a and Fig. 2b depict the test accuracy of models
pruned with each methods, before and after retraining steps.

As can be expected from the discrepancy between the minimization objectives (Eqs. (1) and (3)),
networks pruned with LAP outperform networks pruned with MP at every sparsity level, in terms
of its performance before a retraining phase. Remarkably, we observe that test accuracy of models
pruned with LAP monotonically increases from 91.2% to 92.3% as the sparsity level increases, until
the fraction of surviving weights reaches 1.28%. At the same sparsity level, models pruned with MP
achieves only 71.9% test accuracy. We also observe that LAP leads MP at every sparsity level even
after a retraining phase, with an increasing margin as we consider a higher level of sparsity.

3

Under review as a conference paper at ICLR 2020

MP
LAP

Te
st

 a
cc

ur
ac

y

20

40

60

80

Fraction of remaining weights
10−410−310−210−11

(a) before retraining

MP
LAP

Te
st

 a
cc

ur
ac

y

40

60

80

Fraction of remaining weights
10−410−310−2

(b) after retraining

Figure 2: Test accuracy of pruned linear network under varying levels of sparsity, (a) before and
(b) after a retraining phase. MP denotes magnitude-based pruning and LAP denotes the lookahead
pruning. All reported points are averaged over 5 trials.

2.2 LOOKAHEAD DISTORTION WITH NONLINEAR ACTIVATION FUNCTIONS

Most neural network models in practice deploy nonlinear activation functions, e.g., rectified linear
units (ReLU), between the fully-connected or convolutional layers. Although the lookahead distor-
tion was originally defined without any consideration of nonlinear activation functions, the quantity
Li(w) remains relevant to the original block approximation point of view even for the networks with
commonly used activation functions, especially when the network is severely over-parametrized. To
see this, consider a case where one aims to prune a connection in the first layer of a two-layer
fully-connected network with ReLU, i.e.,

x 7→W2σ(W1x), (6)

where σ(x) = max{0, x} is applied entrywise. Under the over-parametrized scenario, zeroing out a
single weight may alter the activation pattern of connected neurons with only negligible probability,
which allows one to decouple the probability of activation of each neuron from the act of pruning
each connection. This enables us to approximate the root mean square distortion of the network
output introduced by pruning w of W1 by√pjL1(w), where j is the index of the output neuron that
w is connected to, and pj denotes the probability of activation for the j-th neuron.

Another theoretical justification of using the lookahead distortion (Eq. (5)) for neural networks with
nonlinear activation functions comes from recent discoveries regarding the implicit bias imposed by
training procedures using stochastic gradient descent. More specifically, Du et al. (2018) proves the
following result, generalizing the findings of Arora et al. (2018): For any two neighboring layers of
fully-connected neural network using positive homogeneous activation functions, the quantity

‖Wi+1[:, j]‖22 − ‖Wi[j, :]‖22 (7)

remains constant for any hidden neuron j over training via gradient flow. In other words, the total
outward flow of weights is tied to the inward flow of weights for each neuron. This observation hints
at the possibility of a relative undergrowth of weight magnitude of an ‘important’ connection, in the
case where the connection shares the same input/output neuron with other ‘important’ connections.
From this viewpoint, the multiplicative factors in Eq. (5) take into account the abstract notion of
neuronal importance score, assigning significance to connections to the neuron through which more
gradient signals have flowed through. Without considering such factors, LAP reduces to the ordinary
magnitude-based pruning.

We perform empirical validations on the deployment of LAP on neural networks with nonlinear
activation functions in Section 3.1, where we find that LAP is an effective strategy not only with
piece-wise linear activation function like ReLU, but also with sigmoid or tanh functions.

2.3 VARIANTS OF LOOKAHEAD PRUNING

As the LAP algorithm (Algorithm 1) takes into account current states of the neighboring layers,
LAP admits several variants in terms of lookahead direction, order of pruning, and sequential prun-
ing methods; these methods are extensively studied in Section 3.2 Along with “vanilla” LAP, we
consider in total, six variants, which we now describe below:

4

Under review as a conference paper at ICLR 2020

Mono-directional LAPs. To prune a layer, LAP considers both preceding and succeeding layers.
Looking forward, i.e., only considering the succeeding layer, can be viewed as an educated modi-
fication of the internal representation the present layer produces. Looking backward, on the other
hand, can be interpreted as only taking into account the expected structure of input coming into the
present layer. The corresponding variants, coined LFP and LBP, are tested.

Order of pruning. Instead of using the unpruned tensors of preceding/succeeding layers, we can
also consider performing LAP on the basis of already-pruned layers. This observation brings up a
question of the order of pruning; an option is to prune in a forward direction, i.e., prune the preceding
layer first and use the pruned weight to prune the succeeding, and the other is to prune backward.
Both methods are tested, which are referred to as LAP-forward and LAP-backward, respectively.

Sequential pruning. We also consider a sequential version of LAP-forward/backward methods.
More specifically, if we aim to prune total p% of weights from each layer, we divide the pruning
budget into five pruning steps and gradually prune p/5% of the weights per step in forward/backward
direction. Sequential variants will be marked with a suffix -seq.

To deploy lookahead pruning in deeper networks, one must take into account two de facto standard
techniques to stabilize the training of deep neural networks, namely, batch normalization (Ioffe &
Szegedy, 2015) and residual connections (He et al., 2016).

2.4 LOOKAHEAD PRUNING WITH BATCH NORMALIZATION

Batch normalization (BN), introduced by Ioffe & Szegedy (2015), aims to normalize the output of a
layer per batch by scaling and shifting the outputs with trainable parameters. Based on our functional
approximation perspective, having batch normalization layers in a neural network is not an issue for
MP, which relies on the magnitudes of weights; batch normalization only affects the distribution of
the input for each layer, not the layer itself. On the other hand, as the lookahead distortion (Eq. (3))
characterizes the distortion of the multi-layer block, one must take into account batch normalization
when assessing the abstract importance of each connection.

The revision of lookahead pruning under the presence of batch normalization can be done fairly
simply. Note that such a normalization process can be expressed as

x 7→ a� x+ b, (8)

for some a, b ∈ Rdim(x). Hence, we can revise the lookahead pruning to prune the connections with
a minimum value of

Li(w) = |w| · ai−1[j]ai[k] ·
∥∥∥Wi−1[j, :]

∥∥∥
F
·
∥∥∥Wi+1[:, k]

∥∥∥
F
, (9)

where ai[k] denotes the k-th index scaling factor for the BN layer placed at the output of the i-th
fully-connected or convolutional layer (if BN layer does not exist, let ai[k] = 1). This modification
of LAP makes it an efficient pruning strategy, as will be empirically verified in Section 3.2.

3 EXPERIMENTS

In this section, we compare the empirical performance of LAP with that of MP. More specifically,
we validate the applicability of LAP to nonlinear activation functions in Section 3.1. In Section 3.2,
we test the variants of LAP introduced in Section 2.3. In Section 3.3, we deploy LAP on VGG
models (Simonyan & Zisserman, 2015) and residual networks (He et al., 2016).

Experiment setup. We consider four neural network architectures: (1) The fully-connected net-
work (FCN) under consideration is composed of four hidden layers, each with 500 hidden neurons.
(2) The convolutional network (Conv-6) consists of six convolutional layers, followed by a fully-
connected classifier with two hidden layers with 256 hidden neurons each; this model is identical
to that appearing in the work of Frankle & Carbin (2019) suggested as a scaled-down variant of
VGG.2 (3) VGGs of depths {11, 16, 19} were used, with an addition of batch normalization layers
after each convolutional layers, and a reduced number of fully-connected layers from three to one.3

2Convolutional layers are organized as [64, 64]−MaxPool− [128, 128]−MaxPool− [256, 256].
3This is a popular configuration of VGG for CIFAR-10 (Liu et al., 2019; Frankle & Carbin, 2019)

5

Under review as a conference paper at ICLR 2020

MP
LAP

Te
st

 a
cc

ur
ac

y

20

40

60

80

100

Fraction of remaining weights
10−310−210−1

(a) sigmoid

MP
LAP

Te
st

 a
cc

ur
ac

y

20

40

60

80

100

Fraction of remaining weights
10−310−210−1

(b) tanh

MP
LAP

Te
st

 a
cc

ur
ac

y

20

40

60

80

100

Fraction of remaining weights
10−310−210−1

(c) ReLU

MP
LAP

Te
st

 a
cc

ur
ac

y

80

90

100

Fraction of remaining weights
0.040.101.00

(d) before retraining

Figure 3: Test accuracy of FCN with (a) sigmoid, (b) tanh, (c) ReLU activations; (d) Test accuracy
of FCN with ReLU activation before retraining, for MNIST dataset.

(4) ResNet-18 was used for the validations with residual connections. All networks are initialized
via the method of Glorot & Bengio (2010), and used the ReLU activation function except for the
experiments in Section 3.1. We evaluate LAP on image classification tasks. In particular, FCN is
trained with MNIST dataset (Lecun et al., 1998), while Conv-6, VGG, and ResNet are trained with
CIFAR-10 dataset (Krizhevsky & Hinton, 2009). We focus on the one-shot pruning of MP and LAP,
i.e., models are trained with a single training-pruning-retraining cycle. All results in this section are
averaged over five independent trials. We present further detailed experimental setup in Appendix C.

3.1 NETWORKS WITH NONLINEAR ACTIVATION FUNCTIONS

We first compare the performance of LAP with that of MP on FCN using three different types of
activation functions: sigmoid, and tanh, and ReLU. Figs. 3a to 3c depict the performance of models
pruned with LAP (Green) and MP (Red) under various levels of sparsity.

Although LAP was motivated primarily from linear networks and partially justified for positive-
homogenous activation functions such as ReLU, the experimental results show that LAP consis-
tently outperforms MP even on networks using sigmoidal activation functions. We remark that LAP
outperforms MP by a larger margin as fewer weights survive (less than 1%). Such a pattern will be
observed repeatedly in the remaining experiments of this paper.

In addition, we also check whether LAP still exhibits better test accuracy before retraining under the
usage of nonlinear activation functions, as in the linear network case (Fig. 2b). Fig. 3d illustrates
the test accuracy of pruned FCN using ReLU on MNIST dataset before retraining. We observe that
the network pruned by LAP continues to perform better than MP in this case; the network pruned
by LAP retains the original test accuracy until only 38% of the weights survive, and shows less than
1% performance drop with only 20% of the weights remaining. On the other hand, MP requires
54% and 30% to achieve the same level of performance, respectively. In other words, the models
pruned with MP requires about 50% more survived parameters than the models pruned with LAP to
achieve a similar level of performance before being retrained using additional training batches.

3.2 EVALUATING LAP VARIANTS

Now we evaluate LAP and its variants introduced in Section 2.3 on FCN and Conv-6, each trained
on MNIST and CIFAR-10, respectively. Table 1 summarizes the experimental results on FCN and
Table 2 summarizes the results on Conv-6. In addition to the baseline comparison with MP, we also
compare with random pruning (RP), where the connection to be pruned was decided completely
independently. We observe that LAP performs consistently better than MP and RP with similar or
smaller variance in any case. In the case of an extreme sparsity, LAP enjoys a significant perfor-
mance gain; over 75% gain on FCN and 14% on Conv-6. This performance gain comes from a
better training accuracy, instead of a better generalization; see Appendix B for more information.

Comparing mono-directional lookahead variants, we observe that LFP performs better than LBP
in the low-sparsity regime, while LBP performs better in the high-sparsity regime; in any case,
LAP performed better than both methods. Intriguingly, the same pattern appeared in the case of
the ordered pruning. Here, LAP-forward can be considered an analogue of LBP in the sense that
they both consider layers closer to the input to be more important. Likewise, LAP-backward can be
considered an analogue of LFP. We observe that LAP-forward performs better than LAP-backward
in the high-sparsity regime, and vice versa in the low-sparsity regime.

6

Under review as a conference paper at ICLR 2020

Table 1: Test error rates of FCN on MNIST. Subscripts denote standard deviations, and bracketed
numbers denote relative gains with respect to MP. Unpruned models achieve 1.98% error rate.

6.36% 3.21% 1.63% 0.84% 0.43% 0.23% 0.12%

MP (baseline) 1.75±0.11 2.11±0.14 2.53±0.09 3.32±0.27 4.77±0.22 19.85±8.67 67.62±9.91
RP 2.36±0.13 2.72±0.16 3.64±0.17 17.54±7.07 82.48±4.03 88.65±0.00 88.65±0.00

LFP 1.63±0.08 1.89±0.11 2.43±0.10 3.32±0.13 4.23±0.38 9.59±1.70 50.11±12.99
(-6.41%) (-10.60%) (-3.95%) (-0.12%) (-11.40%) (-51.70%) (-25.91%)

LBP 1.75±0.17 2.04±0.12 2.61±0.15 3.62±0.17 4.19±0.31 9.09±1.41 28.51±14.85
(+0.69%) (-3.31%) (+3.00%) (+8.97%) (-12.23%) (-54.21%) (-57.84%)

LAP 1.67±0.11 1.89±0.12 2.48±0.13 3.29±0.06 3.93±0.26 6.72±0.44 16.45±5.61
(-4.24%) (-10.61%) (-2.05%) (-1.08%) (-17.72%) (-66.15%) (-75.68%)

LAP-forward 1.60±0.08 1.93±0.15 2.51±0.11 3.56±0.19 4.47±0.20 6.58±0.33 12.00±0.73
(-8.25%) (-8.43%) (-0.95%) (+7.03%) (-6.41%) (-66.81%) (-82.26%)

LAP-backward 1.63±0.11 1.88±0.07 2.35±0.02 3.12±0.08 3.87±0.18 5.62±0.17 13.00±3.30
(-6.64%) (-10.80%) (-7.03%) (-6.08%) (-19.02%) (-71.71%) (-80.78%)

LAP-forward-seq 1.68±0.11 1.92±0.10 2.49±0.14 3.39±0.24 4.21±0.06 6.20±0.32 10.98±1.03
(-3.66%) (-9.09%) (-1.42%) (+1.93%) (-11.86%) (-68.73%) (-83.76%)

LAP-backward-seq 1.57±0.08 1.84±0.10 2.20±0.10 3.13±0.16 3.62±0.14 5.42±0.27 11.92±4.61

(-10.08%) (-12.41%) (-13.27%) (-5.90%) (-24.13%) (-72.71%) (-82.36%)

Table 2: Test error rates of Conv-6 for CIFAR-10. Subscripts denote standard deviations, and brack-
eted numbers denote relative gains with respect to MP. Unpruned models achieve 11.97% error rate.

10.62% 8.86% 7.39% 6.18% 5.17% 4.32% 3.62%

MP (baseline) 11.86±0.33 12.20±0.21 13.30±0.30 15.81±0.59 20.19±2.35 24.43±1.48 28.60±2.10
RP 26.85±1.23 29.72±1.13 32.98±1.10 35.92±1.08 39.13±1.05 41.20±1.19 43.60±0.82

LFP 11.81±0.35 12.18±0.23 13.27±0.44 15.04±0.43 18.50±0.80 22.86±1.66 26.65±1.33
(-0.39%) (-0.20%) (-0.26%) (-4.87%) (-8.37%) (-6.40%) (-6.83%)

LBP 12.08±0.17 12.34±0.36 13.26±0.16 14.93±0.85 18.11±1.27 22.57±0.94 26.34±1.60
(+1.84%) (-1.15%) (-0.33%) (-5.57%) (-10.31%) (-7.59%) (-7.91%)

LAP 11.76±0.24 12.16±0.27 13.05±0.14 14.39±0.44 17.10±1.26 21.24±1.16 24.52±1.11
(-0.83%) (-0.34%) (-1.86%) (-8.99%) (-15.30%) (-13.04%) (-14.29%)

LAP-forward 11.82±0.16 12.35±0.34 13.09±0.36 14.42±0.45 17.05±1.30 20.28±1.40 22.80±0.51
(-0.33%) (+1.24%) (-1.62%) (-8.79%) (-15.57%) (-16.98%) (-20.30%)

LAP-backward 11.82±0.25 12.29±0.06 12.93±0.38 14.55±0.58 17.00±0.84 20.00±0.82 23.37±1.16
(-0.32%) (+0.68%) (-2.78%) (-7.98%) (-15.78%) (-18.11%) (-18.30%)

LAP-forward-seq 12.01±0.17 12.47±0.37 13.19±0.19 14.12±0.28 16.73±0.95 19.63±1.81 22.44±1.31
(+1.28%) (+2.21%) (-0.81%) (-10.70%) (-17.13%) (-19.62%) (-21.54%)

LAP-backward-seq 11.81±0.16 12.35±0.26 13.25±0.21 14.17±0.44 16.99±0.97 19.94±1.02 23.15±1.12

(-0.39%) (+1.25%) (-0.41%) (-10.37%) (-15.87%) (-18.38%) (-19.08%)

Finally, we observe that employing forward/backward ordering tricks and sequential methods leads
to better performance, especially in the high-sparsity regime. There are no clear benefits of adopting
a directional method in the low-sparsity regime; while the performance was generally better than
default LAP, there seems to be an issue with the stability of both methods. In FCN, for instance, we
observe that LAP-forward(-seq) attains a higher test error rate than MP when 0.84% of the weights
remain unpruned. In Conv-6, both LAP-forward/backward(-seq) performed worse than MP at the
sparsity level where 8.86% fraction of weights survive.

3.3 DEEPER NETWORKS: VGG AND RESNET

We also compare the empirical performances of MP with LAP on VGG-{11, 16, 19} (Tables 3 to 5,
respectively) and ResNet-18 (Table 6) trained on CIFAR-10 dataset. We perform additional ex-
periments on LAP-forward to verify the observation that it outperforms LAP in the high-sparsity
regime, on such deeper network architectures. As in the last section, we observe that LAP outper-
forms MP consistently at all sparsity levels in VGG. In particular, test accuracies decay at a much
slower rate with LAP. Most notably, we observe that the models pruned by LAP retain test accura-
cies of 70∼80% even with less than 2% of the weights remaining. In contrast, the performance of
models pruned with MP falls drastically, to below 50% accuracy.

7

Under review as a conference paper at ICLR 2020

Table 3: Test error rates for VGG-11. Subscripts denote standard deviations, and bracketed numbers
denote relative gains with respect to MP. Unpruned models achieve 11.51% error rate.

16.74% 12.10% 8.74% 6.32% 4.56% 3.30% 2.38% 1.72%

MP (baseline) 11.41±0.24 12.38±0.14 13.54±0.35 16.08±1.13 19.76±1.67 28.12±3.45 45.38±11.69 55.97±15.99

LAP 11.19±0.15 11.79±0.44 12.95±0.14 13.95±0.17 15.59±0.35 20.96±6.02 22.00±1.09 28.96±3.30

(-1.96%) (-4.78%) (-4.39%) (-13.25%) (-21.13%) (-25.47%) (-51.52%) (-48.25%)
LAP-forward 11.47±0.30 12.33±0.12 13.15±0.22 13.96±0.25 15.42±0.21 18.22±0.69 21.74±1.59 25.85±1.40

(+0.56%) (-0.44%) (-2.87%) (-13.18%) (-21.97%) (-35.20%) (-52.10%) (-53.82%)

Table 4: Test error rates for VGG-16. Subscripts denote standard deviations, and bracketed numbers
denote relative gains with respect to MP. Unpruned models achieve 9.33% error rate.

10.28% 7.43% 5.37% 3.88% 2.80% 2.03% 1.46% 1.06%

MP (baseline) 9.55±0.11 10.78±0.45 13.42±2.19 17.83±3.08 26.61±4.91 48.87±5.85 69.39±11.85 83.47±5.60

LAP 9.35±0.18 10.07±0.19 11.52±0.26 12.57±0.34 14.23±0.27 17.01±1.46 25.03±2.08 32.45±12.20

(-2.05%) (-6.59%) (-14.21%) (-29.50%) (-46.52%) (-65.19%) (-63.92%) (-61.12%)
LAP-forward 9.45±0.17 10.40±0.20 11.33±0.15 13.09±0.21 14.61±0.25 17.10±0.19 22.39±0.74 24.99±0.49

(-1.03%) (-3.49%) (-15.60%) (-26.56%) (-45.08%) (-65.02%) (-67.74%) (-70.06%)

Table 5: Test error rates for VGG-19. Subscripts denote standard deviations, and bracketed numbers
denote relative gains with respect to MP. Unpruned models achieve 9.02% error rate.

12.09% 8.74% 6.31% 4.56% 3.30% 2.38% 1.72% 1.24%

MP (baseline) 8.99±0.12 9.90±0.09 11.43±0.24 15.62±1.68 29.10±8.78 40.27±11.51 63.27±11.91 77.90±7.94

LAP 8.89±0.14 9.51±0.22 10.56±0.28 12.11±0.44 13.64±0.77 16.38±1.47 20.88±1.71 22.82±0.81

(-1.07%) (-3.96%) (-7.63%) (-22.48%) (-53.13%) (-59.31%) (-67.00%) (-70.71%)
LAP-forward 9.63±0.25 10.31±0.23 11.10±0.22 12.24±0.33 13.54±0.28 16.03±0.46 19.33±1.14 21.59±0.32

(+7.16%) (+4.12%) (-2.89%) (-21.66%) (-53.46%) (-60.18%) (-69.44%) (-72.29%)

Table 6: Test error rates for ResNet-18. Subscripts denote standard deviations, and bracketed num-
bers denote relative gains with respect to MP. Unpruned models achieve 8.68% error rate.

10.30% 6.33% 3.89% 2.40% 1.48% 0.92% 0.57% 0.36%

MP (baseline) 8.18±0.33 8.74±0.15 9.82±0.18 11.28±0.30 14.31±0.18 18.56±0.36 22.93±0.93 26.77±1.04

LAP 8.09±0.10 8.97±0.22 9.74±0.15 11.35±0.20 13.73±0.24 16.29±0.29 20.22±0.53 22.45±0.64
(-1.08%) (+2.59%) (-0.81%) (+0.64%) (-4.08%) (-12.23%) (-11.82%) (-15.82%)

LAP-forward 8.19±0.15 9.17±0.07 10.32±0.27 12.38±0.30 15.31±0.62 18.56±0.88 21.09±0.53 23.89±0.46

(+0.12%) (+4.85%) (+5.09%) (+9.79%) (+6.96%) (-0.02%) (-8.04%) (-10.44%)

In ResNet-18 where we deploy LAP without an explicit mechanism to handle residual connections,
we still observe performance gains in most cases, but the gain is not significant until the sparsity
gets extremely low. Note that our LAP-pruned models maintain a smaller variance in test error rates
compared to MP-pruned models. In all experiments, we find that LAP requires approximately 50%
fewer parameters compared to MP, to achieve a similar error rate in the high-sparsity regime.

Again, the ordered pruning method (LAP-forward) outperforms both LAP and MP in the high-
sparsity regime (more than 95% weights pruned). On the other hand, LAP-forward is also consis-
tently worse (by at most 1%) than MP or LAP in the low-sparsity regime. In the case of ResNet-18,
LAP performs better than LAP-forward for every sparsity levels tested. LAP-forward still performs
better than MP in the high-sparsity regime. We think LAP-forward underperforms LAP because we
ignore residual connections in computing its Frobenius distortion. Handling residual connections in
LAP variants is an interesting direction to explore in the future.

4 CONCLUSION

In this work, we interpret magnitude-based pruning as a solution to the minimization of the Frobe-
nius distortion of a single layer operation incurred by pruning. Based on this framework, we consider
the minimization of the Frobenius distortion of multi-layer operation, and propose a novel lookahead
pruning (LAP) scheme as a computationally efficient algorithm to solve the optimization. Although
LAP was motivated from linear networks, we empirically show its effectiveness on networks with
nonlinear activation functions, and test the algorithm on various network architectures including
VGG and ResNet, where LAP consistently performs better than MP.

8

Under review as a conference paper at ICLR 2020

REFERENCES

S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration by
overparametrization. In Proceedings of the International Conference on Machine Learning, 2018.

G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring: training very sparse deep
networks. In International Conference on Learning Representations, 2018.

B. Dai, C. Zhu, B. Guo, and D. Wipf. Compressing neural networks using the variational information
bottleneck. In Proceedings of the International Conference on Machine Learning, 2018.

X. Ding, G. Ding, Y. Guo, and J. Han. Centripetal SGD for pruning very deep convolutionnal net-
works with complicated structure. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019.

S. S. Du, W. Hu, and J. D. Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. In Advances in Neural Information Processing Systems, 2018.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In International Conference on Learning Representations, 2019.

T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
1902.09574, 2019.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2010.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient neural
networks. In Advances in Neural Information Processing Systems, 2015.

B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In Advances in Neural Information Processing Systems, 1993.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han. AMC: AutoML for model compression and
acceleration on mobile devices. In European Conference on Computer Vision, 2018.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the International Conference on Machine Learning,
2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, 2009.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems, 1989.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. In Proceedings of the IEEE, 1998.

J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Advances in Neural Information
Processing Systems, 2017.

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional networks
through network slimming. In IEEE International Conference on Computer Vision, 2017.

Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In
International Conference on Learning Representations, 2019.

9

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Under review as a conference paper at ICLR 2020

C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep learning. In Advances in
Neural Information Processing Systems, 2017.

C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l0 regulariza-
tion. In International Conference on Learning Representations, 2018.

D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsified deep neural networks. In
Proceedings of the International Conference on Machine Learning, 2017.

K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear program-
ming. Mathematical programming, 39(2):117–129, 1987.

R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers. In International
Conference on Learning Representations, 2019.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, 2015.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep networks. In
Advances in Neural Information Processing Systems, 2016.

D. Zhang, H. Wang, M. Figueiredo, and L. Balzano. Learning to share: simultaneous parameter ty-
ing and sparsification in deep learning. In International Conference on Learning Representations,
2018.

M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

10

Under review as a conference paper at ICLR 2020

A ON NP-HARDNESS OF EQ. (3)

In this section, we show that the optimization in Eq. (3) is NP-hard by showing the reduction from
the following binary quadratic programming which is NP-hard (Murty & Kabadi, 1987):

min
x∈{0,1}n

xTAx (10)

for some symmetric matrix A ∈ Rn×n. Without loss of generality, we assume that the minimum
eigenvalue ofA (denoted with λ) is negative; if not, Eq. (10) admits a trivial solution x = (0, . . . , 0).

Assuming λ < 0, Eq. (10) can be reformulated as:

min
x∈{0,1}n

xTHx+ λ
∑
i

xi (11)

where H = A − λI . Here, one can easily observe that the above optimization can be solved by
solving the below optimization for s = 1, . . . , n

min
x∈{0,1}n:

∑
i xi=s

xTHx (12)

Finally, we introduce the below equality

x>Hx = x>UΛU>x (13)

= ‖
√

ΛU>x‖2F (14)

= ‖
√

ΛU>x‖2F (15)

= ‖
√

ΛU>1−
√

ΛU>
(
(1− x)� 1

)
‖2F (16)

where 1 denotes a vector of ones, U is a matrix consisting of the eigenvectors of H as its column
vectors, and Λ is a diagonal matrix with corresponding (positive) eigenvalues of H as its diagonal
elements. The above equality shows that Eq. (12) is a special case of Eq. (3) by choosing W1 =√

ΛU>,W2 = 1,W3 = 1 and M = 1− x. This completes the reduction from Eq. (10) to Eq. (3).

B WHERE IS THE PERFORMANCE GAIN OF LAP COMING FROM?

In this section, we briefly discuss where the benefits of the sub-network discovered by LAP comes
from; does LAP subnetwork have a better generalizability or expressibility? For this purpose, we
look into the generalization gap, i.e., the gap between the training and test accuracies, of the hypoth-
esis learned via LAP procedure. Below we present a plot of test accuracies (Fig. 4a) and a plot of
generalization gap (Fig. 4b) for FCN trained with MNIST dataset. The plot hints us that the network
structure learned by LAP may not necessarily have a smaller generalizability. Remarkably, the gen-
eralization gap of the MP-pruned models and the LAP-pruned models are very similar to each other;
the benefits of LAP subnetwork compared to MP would be that it can express a better-performing
architecture with a network of similar sparsity and generalizability.

MP
LAP

Te
st

 a
cc

ur
ac

y

20

40

60

80

100

Fraction of remaining weights
10−310−210−1

(a) Test accuracy

MP
LAPG

en
er

al
iz

at
io

n
ga

p

0

1

2

3

Fraction of remaining weights
10−310−210−11

(b) Generalization gap

Figure 4: Test accuracy and generalization gap of FCN trained on MNIST.

11

Under review as a conference paper at ICLR 2020

C EXPERIMENTAL SETUP

Models and datasets. We consider four neural network architectures: (1) The fully-connected
network (FCN) under consideration is composed of four hidden layers, each with 500 hidden neu-
rons. (2) The convolutional network (Conv-6) consists of six convolutional layers, followed by a
fully-connected classifier with two hidden layers with 256 hidden neurons each; this model is iden-
tical to that appearing in the work of Frankle & Carbin (2019) suggested as a scaled-down variant of
VGG.4 (3) VGGs of depths {11, 16, 19} were used, with an addition of batch normalization layers
after each convolutional layers, and a reduced number of fully-connected layers from three to one.5
(4) ResNet-18 was used for the validations with residual connections. All networks were initialized
via the method of Glorot & Bengio (2010), and used the ReLU activation function except for the
experiments in Section 3.1. We focus on image classification tasks. FCN is trained with MNIST
dataset (Lecun et al., 1998), while Conv-6, VGG, and ResNet are trained with CIFAR-10 dataset
(Krizhevsky & Hinton, 2009).

Optimizers and hyperparameters. We use Adam optimizer (Kingma & Ba, 2015) with batch
size 60. We use a learning rate of 1.2 ·10−3 for FCN and 3 ·10−4 for all other models. For FCN, we
use [50k,50k] for the initial training phase and retraining phase. For Conv-6, we use [30k,20k] steps.
For VGG-11 and ResNet-18, we use [35k,25k] steps. For VGG-16, we use [50k,35k]. For VGG-19,
we use [60k,40k]. We do not use any weight decay, learning rate scheduling, or regularization.

Sparsity levels. To determine the layerwise pruning ratio, we largely follow the the guidelines of
Han et al. (2015); Frankle & Carbin (2019): For integer values of τ , we keep pτ fraction of weights
in all convolutional layers and qτ fraction in all fully-connected layers, except for the last layer
where we use (1+q)/2 instead. For FCN, we use (p, q) = (0, 0.5). For Conv-6, VGGs and ResNet-
18, we use (0.85, 0.8). For ResNet-18, we do not prune the first convolutional layer. The range of
sparsity for reported figures in Tables 1 to 6 is decided as follows: we start from τ where test error
rate starts falling below that of an unpruned model and report the results at τ, τ + 1, τ + 2, . . . for
FCN and Conv-6, τ, τ + 2, τ + 4, . . . for VGGs and τ, τ + 3, τ + 6, . . . for ResNet-18.

4Convolutional layers are organized as [64, 64]−MaxPool− [128, 128]−MaxPool− [256, 256].
5This is a popular configuration of VGG for CIFAR-10 (Liu et al., 2019; Frankle & Carbin, 2019)

12

	Introduction
	Lookahead: a far-sighted layer approximation
	Lookahead distortion as a block approximation error
	Lookahead distortion with nonlinear activation functions
	Variants of lookahead pruning
	Lookahead pruning with batch normalization

	Experiments
	Networks with nonlinear activation functions
	Evaluating LAP variants
	Deeper networks: VGG and ResNet

	Conclusion
	On NP-Hardness of eq:lapobj
	Where is the performance gain of LAP coming from?
	Experimental setup

