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ABSTRACT

Hashing-based collaborative filtering learns binary vector representations (hash
codes) of users and items, such that recommendations can be computed very ef-
ficiently using the Hamming distance, which is simply the sum of differing bits
between two hash codes. A problem with hashing-based collaborative filtering
using the Hamming distance, is that each bit is equally weighted in the distance
computation, but in practice some bits might encode more important properties
than other bits, where the importance depends on the user. To this end, we pro-
pose an end-to-end trainable variational hashing-based collaborative filtering ap-
proach that uses the novel concept of self-masking: the user hash code acts as a
mask on the items (using the Boolean AND operation), such that it learns to encode
which bits are important to the user, rather than the user’s preference towards the
underlying item property that the bits represent. This allows a binary user-level
importance weighting of each item without the need to store additional weights for
each user. We experimentally evaluate our approach against state-of-the-art base-
lines on 4 datasets, and obtain significant gains of up to 12% in NDCG. We also
make available an efficient implementation of self-masking, which experimentally
yields <4% runtime overhead compared to the standard Hamming distance.

1 INTRODUCTION

Collaborative filtering (Herlocker et al., 1999) is an integral part of personalized recommender sys-
tems and works by modelling user preference on past item interactions to predict new items the user
may like (Sarwar et al., 2001). Early work is based on matrix factorization approaches (Koren et al.,
2009) that learn a mapping to a shared m-dimensional real-valued space between users and items,
such that user-item similarity can be estimated by the inner product. The purpose of hashing-based
collaborative filtering (Liu et al., 2014) is the same as traditional collaborative filtering, but allows
for fast similarity searches to massively increase efficiency (e.g., realtime brute-force search in a bil-
lion items (Shan et al., 2018)). This is done by learning semantic hash functions that map users and
items into binary vector representations (hash codes) and then using the Hamming distance (the sum
of differing bits between two hash codes) to compute user-item similarity. This leads to both large
storage reduction (floating point versus binary representations) and massively faster computation
through the use of the Hamming distance.

One problem with hashing-based collaborative filtering is that each bit is weighted equally when
computing the Hamming distance. This is a problem because the importance of each bit in an item
hash code might differ between users. The only step towards addressing this problem has been to
associate a weight with k-bit blocks of each hash code (Liu et al., 2019). However, smaller values of
k lead to increased storage cost, but also significantly slower computation due to the need of com-
puting multiple weighted Hamming distances. To solve this problem, without using any additional
storage and only a marginal increase in computation time, we present Variational Hashing-based
collaborative filtering with Self-Masking (VaHSM-CF). VaHSM-CF is our novel variational deep
learning approach for hashing-based collaborative filtering that learns hash codes optimized for self-
masking. Self-masking is a novel technique that we propose in this paper for user-level bit-weighting
on all items. Self-masking modifies item hash codes by applying an AND operation between an item
and user hash code, before computing the standard Hamming distance between the user and self-
masked item hash codes. Hash codes optimized with self-masking represent which bit-dimensions
encode properties that are important for the user (rather than a bitwise -1/1 preference towards each
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property). In practice, when ranking a set of items for a specific user, self-masking ensures that only
bit differences on bit-dimensions that are equal to 1 for the user hash code are considered, while
ignoring the ones with a -1 value, thus providing a user-level bitwise binary weigthing. Since self-
masking is applied while having the user and item hash codes in the lowest levels of memory (i.e.,
register), it only leads to a very marginal efficiency decrease.

We contribute (i) a new variational hashing-based collaborative filtering approach, which is opti-
mized for (ii) a novel self-masking technique, that outperforms state-of-the-art baselines by up to
12% in NDCG across 4 different datasets, while experimentally yielding less than 4% runtime over-
head compared to the standard Hamming distance. We publicly release the code for our model, as
well as an efficient implementation of the Hamming distance with self-masking1.

2 RELATED WORK

We focus on collaborative filtering with explicit feedback, which assumes that users and items are
related via a user-specified rating: the task is to rank a pool of pre-selected items. This is different
from implicit feedback, where the task is to estimate the pool of items that are of interest to the user.
Matrix factorization is one of the most successful collaborative filtering methods (Koren et al., 2009),
but to reduce storage requirements and speed up computation, hashing-based collaborative filtering
has been researched. For hashing-based methods the users and items are represented as binary
hash codes (as opposed to real-valued vectors), such that the highly efficient Hamming distance (as
opposed to the inner product) can be used for computing user-item similarities.

Two-stage approaches. Early hashing-based collaborative filtering methods include two stages:
First, real-valued user and item vectors are learned, and then the real-valued vectors are transformed
into binary hash codes. Zhang et al. (2014) employ matrix factorization initially, followed by a bi-
nary quantization of rounding the real-valued vectors, while ensuring that the hash code is preference
preserving of the observed user-item ratings using their proposed Constant Feature Norm constraint.
Zhou & Zha (2012) and Liu et al. (2014) both explore binary quantization strategies based on or-
thogonal rotations of the real-valued vectors, which share similarities with Spectral Clustering (Yu
& Shi, 2003). However, the two-stage approaches often suffer from large quantization errors (Zhang
et al., 2016; Liu et al., 2019), because the hash codes are not learned directly, but rather based on
different quantization procedures.

Learned hashing approaches. Zhang et al. (2016) propose Discrete Collaborative Filtering (DCF),
which is a binary matrix factorization approach that directly learns the hash codes using relaxed in-
teger optimization, while enforcing bit balancing and decorrelation constraints. Extensions of DCF
have focused on incorporating side-information (e.g., reviews associated with a rating) (Lian et al.,
2017; Liu et al., 2018; Zhang et al., 2019) and have been redesigned for implicit feedback signals
(Zhang et al., 2017). More recent work addresses the problem that hashing-based collaborative fil-
tering methods have reduced representational power compared to real-valued vectors, but increasing
the hash code dimensionality to match the amount of bits used in the real-valued case hurts model
generalization (Liu et al., 2019). To address this, Liu et al. (2019) propose Compositional Cod-
ing for Collaborative Filtering (CCCF), which is broadly similar to learning compositional codes
for (word) embedding compression (Chen et al., 2018; Shu & Nakayama, 2018). CCCF is a hy-
brid approach that combines hash codes and real-valued weights: each hash code is split into k
blocks of r bits each, and each block is associated with a real-valued scalar indicating the weight
of the block. The distance between two CCCF hash codes is then computed as a weighted sum of
the Hamming distances of the individual blocks, where each weight is the product of each block’s
weight. The problem with this approach is that each block requires an individual Hamming distance
computation, as well as floating point multiplications of the block weights. In fact, the CCCF block
construction no longer allows for highly efficient Boolean operations because the distance computa-
tion is weighted by each block’s weight. Another problem with CCCF is that it drastically increases
storage requirements by needing to store the real-valued weights for all blocks in a hash code.

In contrast to CCCF, our proposed variational hashing-based collaborative filtering with self-
masking solves the same problems, as it effectively allows to disable unimportant bits – corre-
sponding to a 1-bit block size with 0/1 weights – without needing to store any additional weights

1The code is available at anonymized-for-submission
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or vectors. Additionally, after having applied the self-masking, user-item similarity can still be
computed using only a single Hamming distance on the two hash codes.

3 HASHING-BASED COLLABORATIVE FILTERING

Hashing-based Collaborative filtering aims to learn binary user and item representations (called hash
codes), such that the distance between the representations indicates how well user u likes item i. In
practice, the Hamming distance is used due to its fast hardware-level implementation. Formally, we
learn zu ∈ {−1, 1}m and zi ∈ {−1, 1}m, where m is the number of bits in the hash code, which
is typically chosen to fit into a machine word. The preference of user u for item i is specified by
the rating Ru,i ∈ {1, 2, 3, ...,K}, where K is the maximum rating, such that the Hamming distance
between zu and zi is low when Ru,i is high. Computing the Hamming distance computation is
extremely efficient due to fast hardware-level implementation of the Boolean operations, as

Hamming(zu, zi) = SUM(zu XOR zi) (1)

where SUM is computed fast on hardware using the popcnt instruction. Given a user and set of
items, the integer-valued Hamming distances can be linear-time sorted using e.g. radix sort (because
Hamming distances are bounded in [0,m]) in ascending order to create a ranked list based on user
preference (Shan et al., 2018).

3.1 SELF-MASKING

The Hamming distance assigns equal weights to all bits, but in reality bit importance might differ
among users. For example, if we consider each bit an encoding of a specific property of an item
(e.g., a movie being a thriller), then the weight of each property would be dependent on each user’s
preference. However, since the hash codes are binary, it is not possible to encode such preference
weights without using more storage and computation time due to no longer operating on binary val-
ues. In fact, no existing method even allows disabling specific bits for certain users (corresponding
to the case of 0 preference weight). We next present a solution for the latter problem, which en-
codes the importance of each bit directly into the user hash code, and therefore does not require any
additional storage. We define the Hamming distance with self-masking:

Hammingself-mask(zu, zi) = SUM(zu XOR (zi AND zu)︸ ︷︷ ︸
self-masking

) (2)

We first apply an AND operation between the user and item hash codes, and then compute the Ham-
ming distance between that and the user hash code. This fundamentally changes the purpose of the
user hash code: instead of encoding a positive or negative preference for a property, it encodes which
properties are important to the user (-1’s from the user hash code are copied to the item due to the
AND operation). This allows the model to disable unimportant bits on a user-level, meaning that we
enable the model to produce user-specific item representations while still only storing a single hash
code for each user and item respectively. Self-masking requires an additional Boolean operation,
but since this is applied once the hash codes are already placed in the lowest levels of memory (i.e.,
register), it only leads to a marginal decrease in efficiency (see Section 4.6 for an empirical analysis).

3.2 VARIATIONAL HASHING-BASED COLLABORATIVE FILTERING

To derive a variational setup for hashing-based collaborative filtering, we define the likelihood of
a user, u, and the likelihood of an item i, as the product over the likelihoods of the observed user
specified ratings:

p(u) =
∏
i∈I

pθ(Ru,i) (3)

p(i) =
∏
u∈U

pθ(Ru,i) (4)

where θ are the parameters of the (neural network) model. This formulation enforces a dual sym-
metric effect of users being defined by all their rated items, and items being defined by the ratings
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provided by all the users. To maximize the likelihood of all observed items and users, we need
to maximize the likelihood of the observed ratings pθ(Ru,i). Note that instead of maximizing the
raw likelihood, we consider the log likelihood to derive the objective below. We assume that the
likelihood of a rating, pθ(Ru,i), is conditioned on two latent vectors, a user hash code zu, and an
item hash code zi. To obtain the hash codes of the user and item, we assume that zu and zi each are
sampled by repeating m Bernoulli trials, which have equal probability of sampling -1 and 1. This
gives us the following log likelihood, which we wish to maximize:

log pθ(Ru,i) = log
∑

zi∈{−1,1}m
zu∈{−1,1}m

pθ(Ru,i|zu, zi)p(zi)p(zu) (5)

The latent vectors zu and zi are a user and item hash code, and should therefore be conditioned on
the user and item respectively. To do this we first multiply and divide with the approximate posterior
distributions qφ(zi|i), qψ(zu|u):

log pθ(Ru,i) = log
∑

zi∈{−1,1}m
zu∈{−1,1}m

pθ(Ru,i|zu, zi)p(zi)p(zu)
qφ(zi|i)
qφ(zi|i)

qψ(zu|u)
qψ(zu|u)

(6)

where ψ and φ are the parameters of the approximate posteriors. We can now rewrite to an expecta-
tion and apply Jensen’s inequality to obtain a lower bound on the log likelihood:

log pθ(Ru,i) ≥ Eqφ(zi|i),qψ(zu|u) log
[
pθ(Ru,i|zu, zi)

p(zi)

qφ(zi|i)
p(zu)

qψ(zu|u)

]
= Eqφ(zi|i),qψ(zu|u)

[
log
[
pθ(Ru,i|zu, zi)

]
+ log p(zi)− log qφ(zi|i)

+ log p(zu)− log qψ(zu|u)
]

(7)

Since zi and zu will be sampled independently, then qφ(zi|i) and qψ(zu|u) are independent and we
can rewrite to the variational lower bound:

log pθ(Ru,i) ≥ Eqφ(zi|i),qψ(zu|u)
[
log[pθ(Ru,i|zu, zi)]

]
− KL(qφ(zi|i), p(zi))− KL(qψ(zu|u), p(zu)) (8)

where KL(·, ·) is the Kullback-Leibler divergence. Thus, to maximize the expected log likelihood
of the observed rating, we need to maximize the conditional log likelihood of the rating, while min-
imising the KL divergence between the approximate posterior and prior distribution of the two latent
vectors. Maximizing the expected conditional log likelihood can be considered as a reconstruction
term of the model, while the KL divergence can be considered as a regularizer.

Next we present the computation of the approximate posterior distributions qiφ(zi|i) and quψ(zu|u)
(Section 3.3) and the conditional log likelihood of the rating pθ(Ru,i|zu, zi) (Section 3.4).

3.3 COMPUTING THE APPROXIMATE POSTERIOR DISTRIBUTIONS

The approximate posterior distributions can be seen as two encoder functions modelled through
a neural network by considering the functions as embedding layers. Each encoder function maps
either a user or an item to a hash code. Next, we focus on the derivation of the encoder function for
the user, as they are both computed in the same way. The probability of the j’th bit is given by:

q
(j)
φ (zu|u) = σ(E(j)

u ) (9)

where E(j)
u is the j’th entry in a learned real-valued embedding E for user u, and σ is the sigmoid

function. The j’th bit is then given by:

z(j)u = dσ(E(j)
u )− µ(j)e (10)

where µ(j) is either chosen stochastically by sampling µ(j) from a uniform distribution in the interval
[0,1], or chosen deterministically to be 0.5, which can be used for evaluation to obtain fixed hash
codes. Note that µ is sampled for each bit. As the sampling is non-differentiable, a straight-through
estimator (Bengio et al., 2013) is used for backpropagation.
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Figure 1: Model overview: The m-dimensional user and item sampling probabilities are learned
and then sampled by repeatingm Bernoulli trials. The AND operation denotes the self-masking. The
model is optimized using MSE between an affine transformation of the Hamming distance and the
observed rating.

3.4 COMPUTING THE CONDITIONAL LOG LIKELIHOOD

The conditional log likelihood can be considered a reconstruction of the rating, given the user and
item hash codes. We model the observed ratings as a ground truth rating with additive standard nor-
mally distributed noise, which is then discretized to the observed categorical rating. The conditional
log likelihood can then be computed as:

pθ(Ru,i|zu, zi) = N (Ru,i − f(zu, zi), σ2) (11)
where f(zu, zi) is a function that reconstructs the rating given the user and item hash codes. Max-
imising the log likelihood, log pθ(Ru,i|zu, zi), corresponds to minimising the mean squared error
(MSE) between Ru,i and f(zu, zi), which is done for training the model.

We define the reconstruction function to be the self-masking Hamming distance from Eq. 2:
f(zu, zi) = g(Hammingself-mask(zu, zi)) (12)

where g is a fixed affine transformation that maps the interval of the Hamming distance to the
interval of the ratings, such that the minimum and maximum of the Hamming distance correspond
to the minimum and maximum of the ratings. The model is now fully differentiable and can be
trained end-to-end using backpropagation, such that the network is able to optimize the hash codes
directly for self-masking. A depiction of the model is provided in Figure 1.

4 EXPERIMENTAL EVALUATION

4.1 DATASETS AND EVALUATION METRICS

We evaluate on 4 publicly available datasets commonly used in prior work (Zhang et al., 2016; Liu
et al., 2019; Zhang et al., 2017; Liu et al., 2018; Lian et al., 2017) and summarized in Table 1.
Specifically, we use: two movie rating datasets, Movielens 1M2 (ML-1M) and Movielens 10M3

(ML-10M); a Yelp dataset with ratings of e.g., restaurant and shopping malls4; and a book rating
dataset from Amazon5(He & McAuley, 2016). Similarly to Rendle et al. (2009), we filter the data
such that all users and items have at least 10 ratings. Following Zhang et al. (2016), for each user
50% of the ratings are used for testing, 42.5% are used for training, while the last 7.5% are used for
validation.

We evaluate our method, VaHSM-CF, and all baselines (see Section 4.2) using Normalised Dis-
counted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2000), which is often used to evaluate
recommender systems with non-binary ratings (or relevance values). We use the average NDCG at
cutoffs {2, 6, 10} over all users and report the average for each cutoff value.

2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/movielens/10m/
4https://www.yelp.com/dataset/challenge
5http://jmcauley.ucsd.edu/data/amazon/
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Dataset #Ratings #Items #Users Density Range of ratings
ML-1M 998,539 3,260 6,040 5.07% 1-5
ML-10M 9,995,471 9,708 69,878 1.47% 1-10
Yelp 602,517 14,873 22,087 0.18% 1-5
Amazon 4,701,968 128,939 158,650 0.02% 1-5

Table 1: Dataset statistics. Density: % ratings relative to the total amount of user-item combinations.

4.2 BASELINES

We use as baselines state-of-the-art methods for hashing-based collaborative filtering, standard ma-
trix factorisation, and two different strategies for binarising the output of the matrix factorisation6:

DCF7 (Zhang et al., 2016) learns user and item hash codes through a binary matrix factorization
solved as a relaxed integer problem.

CCCF8 (Liu et al., 2019) learns hash codes consisting of k blocks, where each block has r bits. A
floating point weight is associated with each block for computing user-item similarities as a weighted
sum of block-level Hamming distances. In the original paper, the floating point weights are not
counted towards the amount of bits used, thus leading to an unfair advantage. For a fair comparison,
we count each floating point weight as 16 bits in the following experimental comparison.

MF9 (Koren et al., 2009) is the classical matrix factorization based collaborative filtering method,
where latent real-valued vectors are learned for users and items. We include this baseline as a
comparison to a traditional real-valued collaborative filtering baseline.

MFmean and MFmedian are based on MF, but use either each dimension’s mean or median for doing
the binary quantization to bits (Zhang et al., 2010).

VaH-CF is our proposed method without self-masking. We use it to show the effect of a neural
variational hashing-based collaborative approach without self-masking.

4.3 TUNING

We train both VaHSM-CF and VaH-CF using the Adam optimizer (Kingma & Ba, 2014), and tune
the learning rate from the set {0.005, 0.001, 0.0005}, where 0.001 is chosen consistently across all
data sets. The batch size is chosen from the set {100, 200, 400, 800}, where 400 was consistently
chosen. To reduce over-fitting, Gaussian noise is added to the ratings during training, as noise
injection has been found beneficial in multiple domains for variational neural models (Sohn et al.,
2015). For the noise injection, we initially set the variance of the Gaussian to 1 and reduce by a
factor of 1− 10−4 every iteration during training. Our model is implemented using the Tensorflow
Python library (Abadi et al., 2016), and all experiments are run on Titan X GPUs.

All hyper parameters for the baselines are tuned using the same set of possible values as in the
original papers. For the CCCF baseline, we consider block sizes of {8, 16, 32, 64} and each floating
point weight counts for 16 bits. We try all possible combinations that fit within the bit budget, and
if a single block is chosen, then the weight is not included in the bit calculation.

4.4 RESULTS

The results are shown in Table 2, for hash code lengths of 32 and 64 bits, as these correspond
to common machine word sizes. The highest NDCG per column is shown in bold and results
statistically significantly better than the best baseline (DCF), using a paired two tailed t-test at the
0.05 level, are indicated by an asterisk ∗. The Amazon results for CCCF are not included, as the
released implementation requires excessive amounts of RAM (>128GB) on this dataset due to the
large amount of items and users.

6All hyperparameters are tuned on the validation data as described in the original papers.
7https://github.com/hanwangzhang/Discrete-Collaborative-Filtering
8https://github.com/3140102441/CCCF
9Provided as a baseline in the CCCF repository https://github.com/3140102441/CCCF
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32 bits ML-1M ML-10M Yelp Amazon
NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10

MF 0.6454 0.6540 0.6722 0.4084 0.4482 0.4932 0.6332 0.7403 0.7879 0.7542 0.8210 0.8539
MFmean 0.5109 0.5282 0.5569 0.3467 0.3876 0.4361 0.6015 0.7174 0.7702 0.7358 0.8089 0.8444
MFmedian 0.5110 0.5288 0.5573 0.3481 0.3888 0.4366 0.6012 0.7174 0.7701 0.7360 0.8090 0.8445
DCF 0.6730 0.6875 0.7088 0.5275 0.5618 0.6009 0.6588 0.7642 0.8080 0.7737 0.8382 0.8681
CCCF 0.6507 0.6768 0.7003 0.5227 0.5583 0.5982 0.6417 0.7506 0.7978 - - -
VaH-CF 0.6755 0.6916 0.7137 0.5382∗ 0.5745∗ 0.6137∗ 0.6668∗ 0.7694∗ 0.8124∗ 0.7795∗ 0.8419∗ 0.8712∗
VaHSM-CF 0.7362∗ 0.7304∗ 0.7405∗ 0.5555∗ 0.5892∗ 0.6249∗ 0.7424∗ 0.8176∗ 0.8517∗ 0.8081∗ 0.8618∗ 0.8874∗

64 bits ML-1M ML-10M Yelp Amazon
NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10 NDCG@2 NDCG@6 NDCG@10

MF 0.6551 0.6629 0.6807 0.5216 0.5415 0.5765 0.6280 0.7394 0.7869 0.7499 0.8199 0.8529
MFmean 0.5075 0.5293 0.5576 0.3528 0.3918 0.4394 0.6016 0.7179 0.7702 0.7346 0.8090 0.8445
MFmedian 0.5126 0.5302 0.5582 0.3541 0.3925 0.4399 0.6015 0.7183 0.7705 0.7344 0.8089 0.8444
DCF 0.6922 0.7043 0.7242 0.5528 0.5824 0.6193 0.6708 0.7725 0.8148 0.7788 0.8418 0.8710
CCCF 0.6862 0.7008 0.7220 0.5390 0.5735 0.6127 0.6528 0.7584 0.8039 - - -
VaH-CF 0.7014∗ 0.7152∗ 0.7340∗ 0.5621∗ 0.5960∗ 0.6332∗ 0.6769∗ 0.7759∗ 0.8178∗ 0.7840∗ 0.8446∗ 0.8733∗
VaHSM-CF 0.7204∗ 0.7277∗ 0.7441∗ 0.5815∗ 0.6072∗ 0.6399∗ 0.7511∗ 0.8224∗ 0.8553∗ 0.8162∗ 0.8663∗ 0.8911∗

Table 2: NDCG@K of our method (VaHSM-CF) against baselines using hash codes of length 32
and 64 bits. The missing results for CCCF on Amazon are due to the model requiring more than 128
GB of RAM. Statistically significant improvements using a paired two tailed t-test at the 0.05 level,
compared to the best existing baseline (DCF), are indicated by ∗.
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Figure 2: 2a shows convergence using the validation NDCG@10 on ML-1M, where self-masking
significantly speeds up convergence. We observe the same trend on the other datasets (see Appendix
A.1). 2b Shows the test NDCG@10 when varying whether hash codes are sampled stochastically or
deterministically while training and for evaluation. For example, Det.Eval + Stoc.Train corresponds
to deterministic sampling of hash codes for evaluation, while sampling stochastically when training
the model.

Our proposed VaHSM-CF significantly outperforms all baselines across all datasets by up to 12%.
Our VaH-CF without self-masking is second best (up to 2% better than the baselines), although
on ML-1M the VaH-CF results are not statistically significantly better than DCF. This highlights
the benefit of modelling hashing-based collaborative filtering with a variational deep learning based
framework, which is notably different from existing hashing-based methods based on binary matrix
factorization solved as relaxed integer problems. Most importantly however, it shows the significant
improvement self-masking brings to hashing-based collaborative filtering. We observe that the top 3
baselines (including our VaH-CF) generally obtain similar scores, which highlights the difficulty of
improving performance without changing how the hash codes are used (as done by self-masking).

Interestingly, all hashing-based approaches perform at least as well as the classical matrix factoriza-
tion baseline, as also observed in prior work for similar bit lengths (Zhang et al., 2016; Liu et al.,
2019). Additionally, the large performance decrease by both the mean or median rounding shows
the large quantization error obtained if the hash codes are not learned directly.
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4.5 MODEL ANALYSIS

How self-masking influences the convergence rate of the model. Figure 2a shows the convergence
rate for the ML-1M dataset with and without self-masking. We see that training with self-masking
significantly improves the convergence rate compared to the model without self-masking. Since
the time for a single epoch is approximately the same with and without self-masking, we conclude
that self-masking not only improves NDCG, but also reduces training time by a very large margin.
Convergence plots for the remaining datasets are shown in the Appendix, where we observe the
same trend.

Stochastic or deterministic sampling. We investigate the effect of the sampling strategy for the
hash codes (see Eq. 10) during training and evaluation. The sampling can either be deterministic
(µ(j) = 0.5) or stochastic (µ(j) is sampled uniformly at random from [0, 1]), and does not have to
be the same for training and evaluation. Figure 2b shows the performance for these 4 configura-
tions across all datasets. We see that stochastic training with deterministic evaluation performs the
best, while deterministic training and deterministic evaluation perform second best. As expected,
stochastic sampling at evaluation performs significantly worse than deterministic sampling, as every
item has a very small probability of being sampled such that it has a small Hamming distance to a
user, even though it has a low rating (and vice versa for highly rated items).

4.6 RUNTIME ANALYSIS

Self-masking has an additional cost added to the standard Hamming distance, due to the additional
AND operation between the user and item hash codes (see Eq. 1 and 2). We now investigate the
actual runtime cost associated with this modification.

We implement both the Hamming distance and Hamming distance with self-masking efficiently in
C on a machine with a 64 bit instruction set. A test environment was made with 64 bit hash codes for
100,000 users and 100,000 items. For each user, the distances were computed to all items using both
the Hamming distance and Hamming distance with self-masking. We measure the actual time taken
for computing the distances to all items from each user, and report the average over 50 repeated runs.
All experiments are run on a single thread10, with all users and items loaded in RAM. The code was
compiled with the highest optimization level, and utilizing all optimization flags applicable to the
hardware. We verified the produced assembler code used the efficient popcnt instruction.

The mean experiment time was 8.0358s when using the Hamming distance, and 8.3506s when using
the Hamming distance with self-masking. Thus, self-masking only adds a runtime overhead of
3.91% compared to using the standard Hamming distance. As in this setup we are only computing
the distances, this can be seen as an upper bound of the actual overhead in a complete system, as the
remaining operations (e.g., sorting) would be the same with and without self-masking. Thus, this
provides a good trade-off compared to the large performance gains it yields. Note that the measured
times are for the total 1010 distance computations, highlighting the scalability of hashing-based
methods to datasets of massive scale.

5 CONCLUSION

We proposed an end-to-end trainable variational hashing-based collaborative filtering method, which
optimizes hash codes using a novel modification to the Hamming distance, which we call self-
masking. The Hamming distance with self-masking first creates a modified item hash code, by
applying an AND operation between the user and item hash codes, before computing the Hamming
distance. Intuitively, this can be seen as ignoring user-specified bits when computing the Hamming
distance, corresponding to applying a binary importance weight to each bit, but without using more
storage and only a very marginal runtime overhead. We verified experimentally that our model
outperforms state-of-the-art baselines by up to 12% in NDCG at different cutoffs, across 4 widely
used datasets. These gains come at a minimal cost in recommendation time (self-masking only
increased computation time by less than 4%).

10We used a Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz.
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A APPENDIX

A.1 CONVERGENCE PLOTS

Convergence plots for Yelp, Amazon, and ML-10M are shown in Figure 3. We observe a similar
trend to ML-1M in Figure 2a, where the self-masking leads to a notably faster rate of convergence.
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Figure 3: Convergence plot for Yelp, Amazon, and ML-10M.

11


	Introduction
	Related Work
	Hashing-based Collaborative Filtering
	Self-masking
	Variational Hashing-based Collaborative Filtering
	Computing the approximate posterior distributions
	Computing the conditional log likelihood

	Experimental Evaluation
	Datasets and evaluation metrics
	Baselines
	Tuning
	Results
	Model Analysis
	Runtime Analysis

	Conclusion
	Appendix
	Convergence plots


